麻省理工学院(MIT)方绚莱教授学术讲座

2017/3/21 19:18:16      点击:

 

    应航天航空学院、机械结构强度与振动国家重点实验室邀请,麻省理工学院方绚莱教授将来访我校并作学术报告。

    报告人:方绚莱教授

    时间:2017328日上午10:00-11:00

    地点:航天航空学院教一楼第二会议室 

 

简介:方绚莱教授现任美国麻省理工学院机械工程系终身教授,麻省理工学院纳米光电及3D纳米生产技术实验室创始人、主任。方绚莱教授于南京大学获得学士和硕士学位,加州大学洛杉矶分校获得博士学位。随后在伊利诺大学厄巴纳-香槟分校任助理教授,于2011年赴麻省理工学院机械工程系从事微纳技术相关的教学研究。方绚莱教授在国际知名刊物上发表超过100篇论文,获得11项专利,被引用次数超过11000次,包括Science 3篇,Nature Materials 2篇; Nature Communications 4篇。授担任五十余国际科学刊物的审稿人,包括《科学》、《自然-材料学》、《自然-纳米技术》等。方教授曾经110多次在国际会议和研究机构做特邀报告。主要研究领域为微纳先进制造和微纳光子学,包括显微立体光刻,显示材料的纳米压印等。方教授获得诸多的荣誉和奖项,包括:2006年美国机械工程师协会Pi Tau-Sigma金奖,2007年麻省理工学院年度全球3535岁以下顶级发明人奖,2011年他作为第一个中国人被授予国际光学委员会Ernest Abbe 奖章,2013年当选为国际纳米制造协会Fellow

 

报告题目:To See A World In A Grain of Sand:

Ultralight Weight and Multi-Functional Composites

Abstract:

        Research and innovations of reinforced composite have shown great promise of weight reduction for market penetration in application areas such as transportation, mobile electronics and personal healthcare.  However, in order to adopt these functional composites, we need to overcome challenges of attributes such as performance, safety, recyclability, and cost. For example, strength, thermal conductivity and density are inherently linked to the stochastic microstructures of such composites generated by conventional processes, limiting the performance of the composite materials for a specific application. Can we overcome the tradeoffs by reliably producing highly three-dimensional, multi-scale architecture materials?

        This talk focuses on our development of high precision additive manufacturing processes to ascribe material properties at the micro/nanoscale, inspiring multi-material, functionally graded designs. Through the combination of material behavior and 3D microscale lattice geometries, we have demonstrated these architectured materials in polymers, metals, ceramics, and combinations thereof, yielding designer properties such as ultrastiff lightweight materials, superior ductility, and negative thermal expansion. Additionally, when designed with interconnected porosity, the open volume in the lightweight composites can be exploited for thermal management, acoustic absorption and other sensing mechanisms, providing unique opportunities for multi-functionality.