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Wave propagation in an infinite sandwich panel reinforced by orthogonal rib-stiffeners is theoretically
formulated for harmonic point force excitation. The motions of the equally spaced rib-stiffeners are han-
dled by considering their tensional, bending vibrations and torsional movements. The response of the
sandwich is determined by employing the Fourier transform technique and considering the periodical
nature of the structure, which is numerically solved by truncating two infinite sets of simultaneous equa-
tions insofar as the solution converges. The far field radiated sound pressure is examined relative to that
of an unstiffened panel with useful conclusions deduced.
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1. Introduction

Wave propagation and sound radiation behaviors of periodi-
cally rib-stiffened structures are of significant interest due to their
increasing applications in civil and transport engineering, e.g., as
the cabin skin of aircrafts, marine ships and express trains [1–
20]. At low frequencies, a rib-stiffened structure can be approxi-
mated as an orthotropic panel when the panel flexural wave has
a wavelength much greater than stiffener spacing [3,7]. However,
at high frequencies when the wavelength is comparable with stiff-
ener spacing, the spatial periodicity of the structure should be
carefully taken into account in any theoretical modeling.

There exist a multitude of analytical studies on the vibroacous-
tic behavior of periodically rib-stiffened structures, including
beams and plates. For example, the response of a periodically sup-
ported beam subjected to spatially and temporally harmonic pres-
sure was solved by Mead and Pujara [21] using a particular series
of space harmonics. The space-harmonic method evolving from the
considerations of progressive wave propagation is superior to the
classical normal mode approach, since only as few as seven terms
can ensure accurate convergence of the solution. Subsequently,
with emphasis placed on wave propagation characteristics, Mead
and Yaman [22] developed an exact model for the harmonic
response of a uniform finite beam on multiple supports. From
the viewpoint of free wave propagation, Mead [23] investigated
theoretically an infinite beam on regularly spaced identical
ll rights reserved.
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supports in terms of superposed sinusoidal waves. For more details
regarding wave propagation in continuous periodic structures, one
may consult the review [24].

As for periodically rib-stiffened plates, a few typical works can
be referred to. For instance, multi-mode wave propagation in a
one-dimensionally (1D) stiffened plate was theoretically and
experimentally investigated by [1,2], who also examined its energy
propagation features in k-space and the corresponding dispersion
relations. Using the principle of superposition, Rumerman [25]
proposed a general solution for the forced vibration of an infinite
thin plate, periodically stiffened by identical, uniform rib-
stiffeners. An approximate method was employed by Mead and
Mallik [26] to estimate the sound power radiated by an infinite
plate, supported elastically along parallel, equi-spaced lines and
subjected to a simple pressure field convecting uniformly over
the plate. Whilst Mead and Parthan [27] studied the propagation
of flexural waves in a plate resting on an orthogonal array of
equi-spaced simple line supports, Mace [28] presented a solution
for the radiation of sound from a point-excited infinite fluid-loaded
plate reinforced by two sets of parallel stiffeners. Several aspects
related to the vibration of and sound radiation from periodically
line-stiffened and fluid-loaded plates were further examined by
Mace [3,4]. The far- and near-field acoustic radiation of an infinite
periodically rib-stiffened plate was obtained theoretically by Cray
[29], although only the tensional forces of the rib-stiffeners were
accounted for. Wang et al. [30] proposed a theoretical model of
sound transmission across double-leaf partitions having periodical
parallel rib-stiffeners using the space harmonic approach: except
for the torsional moments, both the tensional forces and bending
moments of the rib-stiffeners were accounted for.
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Fig. 1. Sandwich panel with orthogonally rib-stiffened core.
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A few investigations also focused on the pass-/stop-band char-
acteristics of wave propagation in periodically rib-stiffened plates.
For instance, the transmission of energy in 1D periodically ribbed
membrane was theoretically studied by Crighton [31] when the
structure was immersed in static compressible fluid and excited
by a time-harmonic line force. Later, addressing essentially the
same problem, Spivack [32] gave an exact solution for general
finite configurations and found that the pass-band response be-
comes increasingly sensitive to frequency as the length of rib array
increases. A further investigation on the band structure of energy
transmission in periodically ribbed elastic structures under fluid
loading was carried out by Cooper and Crighton [33,34] using the
Green’s function method, from the viewpoint of spatial periodicity
in the pass-bands and that of algebraic decay in the stop-bands,
respectively.

Although the vibroacoustic behaviors of periodically rib-stiff-
ened structures have been studied by many researchers, com-
monly only with the tensional forces of the rib-stiffeners
considered: the influence of their bending and torsional moments
as well as inertial effects remains unclear. Moreover, previous re-
searches focused mainly on relatively simple structures, e.g., infi-
nite periodically supported beams and 1D rib-stiffened plates.
Only a noticeably few [5,6] considered the more general two-
dimensional (2D) rib-stiffened structures that are of practical
importance in aeronautical and marine applications. For example,
Mace examined the radiation of sound from an infinite fluid-
loaded plate reinforced with two sets of orthogonal line stiffeners
[5], and the vibration of a thin plate lying on point supports that
form an orthogonal 2D periodic array [6]. However, in the analysis
[5], it was assumed that the stiffeners only exert forces on the
plate.

To address the aforementioned deficiencies, we aim to study
analytically the vibration and acoustic radiation of a generic 2D
periodical structure that is consisted of two infinitely large paral-
lel plates reinforced by orthogonally extended rib-stiffeners (i.e.,
a sandwich panel with orthogonal rib-stiffener arrays as its core).
To accurately model the motion of each rib-stiffener, its ten-
sional, bending and torsional vibrations are all considered. The
inertial effects arising from the mass of the rib-stiffeners are also
taken into account, by introducing the inertial terms of their ten-
sional forces, bending moments and torsional moments into the
governing equations of panel vibration. Fourier transform is em-
ployed to solve the resulting governing equations, leading to two
sets of infinite algebraic equations, which are truncated to solve
insofar as the solution converges. In terms of obtained panel re-
sponses, the radiated sound pressure at far field is numerically
calculated to gain physical insight on wave propagation and
sound radiation of the sandwich structure. Good agreements be-
tween model predictions with previous published results [5] val-
idate the present analytic model and confirm the necessity of
including the inertial effects and torsional moments of the rib-
stiffeners in any theoretical modeling especially at high frequen-
cies. The influences of inertial effects, excitation position, and
spatial periodicity of rib-stiffeners on the vibroacoustic behavior
of the sandwich are quantified with the underlying physical
mechanisms explored.

Although this paper focuses to solve and discuss a relatively
specific problem, while the theoretical model proposed can be
readily employed to solve the similar problems of periodic struc-
tures. In particular, the theoretical model based on Fourier trans-
form technique could be referential to mend finite element
method so as to solve more generalized problems efficiently. For
this point, Kohno et al. [35] have done an excellent job by combin-
ing the advantages of finite element method and spectral method
to solve problems of wave propagation. This work should be very
useful for enlightening us to extend our theoretical work for more
generalized problems, for example, by combining the advantages
of our theoretical model and finite element method.

2. Theoretical modeling of structural dynamic responses

2.1. Statement of problem

Consider an infinitely large 2D sandwich structure shown
schematically in Fig. 1, which has a lattice core in the form of
orthogonal stiffeners having periodic uniform spacings in the
x- and y-directions, lx and ly, respectively. Its geometrical dimen-
sions are: depth of orthogonal rib-stiffener core d, thickness of
upper and bottom panels h1 and h2, and thickness of x- and y-wise
stiffeners tx and ty. The mass densities of the x- and y-wise stiffen-
ers are mx and my, respectively. A right-handed Cartesian coordi-
nate system (x,y,z) is established, with its x- and y-axes located
on the surface of the upper panel and the positive direction of
the z-axis pointing downward (Fig. 1).

Let a harmonic point force with amplitude q0 be applied on the
surface of the upper panel at an arbitrary location (x0,y0). As a re-
sult, a radially outspreading bending wave propagates from the
source (x0,y0). The propagation of this bending wave in the upper
panel is affected by the attached lattice core (rib-stiffeners), which
transmits the motion to the bottom panel. Both panels are modeled
as a classical thin plate, following Kirchhoff’s thin plate theory. As
the focus is placed on the intrinsic characteristics of bending wave
propagation in the structure, air-structure coupling is ignored. The
theoretical formulation presented below proposes a comprehen-
sive analytic model for bending wave propagation in the sandwich
structure, accounting for not only the tensional forces, bending and
torsional moments of the orthogonal rib-stiffeners, but also their
inertial effects.

2.2. Analytical formulation of panel vibration

Upon point force excitation, the vibration of the upper and bot-
tom panels can be described using two dynamic governing equa-
tions, where the influence of the rib-stiffeners exists in the form
of tensional forces (general force plus inertial force), bending mo-
ments (general bending moment plus inertial bending moment),
and torsional moments (general torsional moment plus inertial
torsional moment). With the inertial effects of the rib-stiffeners
accounted for, the resultant tensional forces, bending and torsional
moments acting on the upper and bottom panels per rib-stiffener
are not equal, denoted here by ðQþ;Mþ;Mþ

T Þ and ðQ�;M�;M�
T Þ,



Fig. 2. Convention for tensional forces, bending moments and torsional moments between upper panel and (a) x-wise and (b) y-wise stiffeners.
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respectively. Fig. 2 shows the convention employed for denoting
the tensional forces as well as the bending and torsional moments
between the upper panel and the x- and y-wise stiffeners. The
same apply at the interface between the bottom panel and the
x- and y-wise stiffeners.

Since the excitation is harmonic, the dynamic responses of the
two panels should also be harmonic. For simplicity, the harmonic
time term e�ixt is suppressed from the formulation below. The
dynamic governing equations are thence given by:
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where r4 � (@2/@x2 + @2/@y2)2; d(�) is the Dirac delta function;
(w1,w2), (m1,m2) and (D1,D2) are the displacement, surface mass
density and flexural rigidity of the upper and bottom panel, respec-
tively. The material loss factor gj (j = 1, 2 for upper and bottom panel,
respectively) is introduced with the complex Young’s modulus as

Dj ¼
Ejh

3
j ð1þ igjÞ

12ð1� m2
j Þ

ðj ¼ 1;2Þ ð3Þ

As the factual forces and moments exerting on the upper and
bottom panels are not the same due to the consideration of inertial
forces and moments, the terms associated with the two panels are
denoted separately by superscripts + (upper) and � (bottom). Sub-
scripts x and y are introduced to represent those terms arising from
the x- and y-wise stiffeners, respectively.

Taking into account the inertial effects (due to stiffener mass)
and applying both the Hooke’s law and Newton’s second law, one
obtains the tensional forces arising from the rib-stiffeners as [36]:

Qþx ¼ �
KxðKx �mxx2Þ

2Kx �mxx2 w1 þ
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x
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where x is the circle frequency and (Kx,Ky) are the tensional stiff-
ness of half the rib-stiffeners per unit length.

Similarly, the bending moments of the rib-stiffeners can be
expressed as [36]:
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where ExI�x; EyI�y
� 	

are the bending stiffness of half the rib-stiffeners,
(qx,qy) and (Ix, Iy) are mass density and polar moment of inertia for
the rib-stiffeners, with subscripts x and y indicating the direction of
the stiffener.

Following similar procedures for deriving the tensional forces
and bending moments, one obtains the torsional moments of the
rib-stiffeners as [36]:
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where GxJ�x;GyJ�y
� 	

are the torsional stiffness of half the rib-stiffeners

and (Jx, Jy) are the torsional moment of inertia for the rib-stiffeners.
In the above expressions for the tensional forces, bending

moments and torsional moments of a rib-stiffener, the geometrical
properties of its cross-section are given by:
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where Ex and Ey are separately the Young’s modulus of the x- and
y-wise stiffener materials.

To simplify Eqs. (4)–(15), the following set of specified charac-
teristics is introduced to replace the coefficients of general
displacements.

(1) Replacement of tensional force coefficients:
RQ1 ¼
KxðKx �mxx2Þ

2Kx �mxx2 ; RQ2 ¼
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x
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(2) Replacement of bending moment coefficients:
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(3) Replacement of torsional moment coefficients:
RT1 ¼
GxJ�x GxJ�x � qxJxx2

� �
2GxJ�x � qxJxx2 ; RT2 ¼

G2
x J�2x

2GxJ�x � qxJxx2 ð26Þ

RT3 ¼
GyJ�y GyJ�y � qyJyx2

� 	
2GyJ�y � qyJyx2 ; RT4 ¼

G2
y J�2y

2GyJ�y � qyJyx2 ð27Þ
Using Eqs. (22)–(27), one can simplify the expressions of the
tensional forces, bending moments and torsional moments, as:

(1) Tensional forces:
Qþx ¼ �RQ1w1 þ RQ2w2; Q�x ¼ �RQ2w1 þ RQ1w2 ð28Þ
Qþy ¼ �RQ3w1 þ RQ4w2; Q�y ¼ �RQ4w1 þ RQ3w2 ð29Þ
(2) Bending moments:
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(3) Torsional moments:
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2.3. Solutions

Fully considering the periodic nature of the present sandwich
structure and applying the Poisson summation formula [5,25],
one can write the wave components in the periodic structure using
space harmonic series, as:

X
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1
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X
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X
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dðy� nlyÞ ¼
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The displacement of each panel is a function of coordinates (x,y)
as well as the Fourier transform of its wavenumber frequency, the
latter being also a function of the wavenumbers (kx,ky). The Fourier
transform pair relating these two quantities with respect to (x,y)
and (kx,ky) can be written as:
wðx; yÞ ¼
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�1
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Employing Eqs. (34) and (35) and then taking the Fourier trans-
form and replacing the wavenumbers (kx,ky) by (a,b), respectively,
one can rewrite the governing Eqs. (1) and (2) as:
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1
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~w2ða;bÞ ¼
�1

D2lxf2ða; bÞ
X

m

~Q�y ðam;bÞ þ ib ~M�
y ðam;bÞ þ ia ~M�

Tyðam;bÞ
h i

� 1
D2lyf2ða; bÞ

X
n

~Q�x ða;bnÞ þ ia ~M�
x ða; bnÞ þ ib ~M�

Txða;bnÞ
h i

ð39Þ

where the dependence of a term on wavenumbers (a,b) is
indicated using the hat sign �, meaning the corresponding
Fourier transform of this term. For instance, ð~w1; ~w2Þ are the Fourier
transforms of (w1,w2). The Fourier transforms of the tensional
forces, bending moments and torsional moments are presented
below.

(1) Fourier transforms of tensional forces:
~Qþx ða; bnÞ ¼ �RQ1 ~w1ða; bnÞ þ RQ2 ~w2ða; bnÞ ð40Þ
~Q�x ða; bnÞ ¼ �RQ2 ~w1ða; bnÞ þ RQ1 ~w2ða; bnÞ ð41Þ
~Qþy ðam;bÞ ¼ �RQ3 ~w1ðam; bÞ þ RQ4 ~w2ðam;bÞ ð42Þ
~Q�y ðam;bÞ ¼ �RQ4 ~w1ðam; bÞ þ RQ3 ~w2ðam;bÞ ð43Þ
(2) Fourier transforms of bending moments:
~Mþ
x ða;bnÞ ¼ �a2 RM1 ~w1ða; bnÞ � RM2 ~w2ða;bnÞ½ � ð44Þ

~M�
x ða;bnÞ ¼ �a2 RM2 ~w1ða; bnÞ � RM1 ~w2ða;bnÞ½ � ð45Þ

~Mþ
y ðam;bÞ ¼ �b2 RM3 ~w1ðam;bÞ � RM4 ~w2ðam;bÞ½ � ð46Þ

~M�
y ðam;bÞ ¼ �b2 RM4 ~w1ðam;bÞ � RM3 ~w2ðam;bÞ½ � ð47Þ
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(3) Fourier transforms of torsional moments:
~Mþ
Txða; bnÞ ¼ �abn RT1 ~w1ða;bnÞ � RT2 ~w2ða; bnÞ½ � ð48Þ

~M�
Txða; bnÞ ¼ �abn RT2 ~w1ða;bnÞ � RT1 ~w2ða; bnÞ½ � ð49Þ

~Mþ
Tyðam;bÞ ¼ �amb RT3 ~w1ðam; bÞ � RT4 ~w2ðam; bÞ½ � ð50Þ

~M�
Tyðam;bÞ ¼ �amb RT4 ~w1ðam; bÞ � RT3 ~w2ðam; bÞ½ � ð51Þ
Substitution of (40)–(51) into (38) and (39) yields:
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where

f1ða;bÞ ¼ ða2 þ b2Þ2 �m1x2=D1; f 2ða;bÞ ¼ ða2 þ b2Þ2 �m2x2=D2

ð54Þ

am ¼ aþ 2mp=lx; bn ¼ bþ 2np=ly ð55Þ

To solve Eqs. (52) and (53), one needs to replace (a,b) by
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which contain two sets of infinite unknowns: ~w1 a0m; b
0
n

� �
and

~w2 a0m;b
0
n

� �
, with m = �1 to +1 and n = �1 to +1. Insofar as the

solution converges, these equations can be solved simultaneously
by truncation. That is, (m,n) only take values in a finite range of
m ¼ �m̂ to m̂ and n ¼ �n̂ to n̂ (where m̂ and n̂ both being positive
integer). For brevity, the resulting simultaneous equations contain-
ing a finite number [i.e., 2MN, where M ¼ 2m̂þ 1; N ¼ 2n̂þ 1] of
unknowns can be expressed in matrix form, as:
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0

� �
2MN�1

ð58Þ

Eq. (57) can be solved numerically to obtain the panel displace-
ments ~w1ða;bÞ and ~w2ða;bÞ in their respective wavenumber space.
Details of the derivation are presented in Appendix A.

3. Far field radiated sound pressure

The radiated sound pressure is related directly to the dynamic
response of the radiating panel (bottom panel in the present case).
Once the dynamic response of the bottom panel ~w2ða; bÞ is solved,
the radiated sound pressure at far field can be obtained.

Due to the periodic nature of the sandwich, upon excitation by a
harmonic point force on its upper panel, a series of space harmonic
waves are transmitting in the structure. For a given point force
with wavenumbers (a0,b0), a flexural wave having the same wave-
numbers (a0,b0) is excited and propagates in the face panel. It will
generate the (m,n)th harmonic wavenumber components (a0 +
2mp/lx,b0 + 2np/ly) owing to the vibration interaction of the face
panel with the mth x-wise and nth y-wise stiffeners. Therefore,
the face panel vibration and the radiated sound pressure both
contain a series of space harmonic wave components with wave-
numbers (a0 + 2mp/lx,b0 + 2np/ly), where �1 < m < +1 and �1 <
n < +1.

With the origin of the spherical coordinates (r,h,u) located at
the excitation point (x0,y0), the far field sound pressure p(r,h,u)
radiated from a vibrating surface with displacement w(x,y) is given
by [37]:

pðr; h;uÞ ¼ �q0x2eik0r

2pr
eiðax0þby0Þ

Z þ1

�1

Z þ1

�1
wðx; yÞe�iðaxþbyÞdxdy

ð59Þ

where k0 = x/c0, c0 and q0 being the sound speed and air density,
respectively, and the wavenumbers a and b are:

a ¼ k0 cos u sin h; b ¼ k0 sin u sin h ð60Þ

Finally, with the Fourier transform of (37), Eq. (59) becomes:

pðr; h;uÞ ¼ �2pq0x
2ðeik0r=rÞeiðax0þby0Þ ~wða;bÞ ð61Þ
4. Numerical results and discussion

With the modeling presented above describing accurately the
dynamic response of an infinite orthogonally rib-stiffened sand-
wich structure excited by a point force and the formulation for
the far field radiated sound pressure, the on-axis (i.e., on the axis
h = u = 0) far field pressure is calculated below to explore the
sound radiation characteristics of the structure. Note that on the
selected axis (i.e., h = u = 0), the stationary phase wavenumbers �a
and �b are both zero.

The simultaneous algebraic equations are truncated at the 	m̂
and 	n̂ harmonic wave components in the x- and y-directions,
with the frequency dependent m̂ and n̂ selected as 3 and 10 at
100 Hz and 10 kHz, respectively. Numerical convergence tests have
ensured that these m̂ and n̂ values are sufficient large for obtaining



Fig. 3. Comparison between present model predictions and Mace’s results for
sound pressure level radiated by orthogonally rib-stiffened single plate excited at
(lx/3, ly/3).
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accurate results. For numerical analysis, the material properties
and structural dimensions of the sandwich are taken as follows.
The panels (facesheets) and rib-stiffeners are made of aluminum,
with Young’s modulus E = 70 GPa, density q = 2700 kg/m3, Poisson
ratio m = 0.33, and loss factor g1 = g2 = 0.01. The two facesheets
have identical thickness h = 0.002 m (see Fig. 1). For simplicity, it
is assumed that the ribs have square cross-sections, so that tx = ty.
The depth of the air cavity (i.e., height of rib connections) is
d = 0.025 m. The density of air is q0 = 1.21 kg/m3, sound speed in
air is c0 = 343 m/s, and the amplitude of the point force excitation
is 1 N.

For reference, the high frequency asymptote of the far field
sound pressure radiated by an unstiffened plate [5] is:

pa ¼
q0q0

2pm
eik0r

r
ð62Þ

The far field sound pressure radiated by the present orthogonally
rib-stiffened sandwich structure is then given in the form of sound
pressure level (SPL) in decibel scales (dB) relative to pa as:

SPL ¼ 20 � log10
p
pa


 �
ð63Þ
Fig. 4. Comparison between present model predictions and Mace’s results for
sound pressure level radiated by orthogonally rib-stiffened single plate excited at
(lx/2, ly/2).
4.1. Validation of theoretical modeling

To verify the accuracy and applicability of the present theoret-
ical modeling on wave propagation and sound radiation behavior
of an orthogonally rib-stiffened sandwich structure, results ob-
tained using the model are compared with those of Mace [5] for
sound radiation from an orthogonally rib-stiffened single plate.
To facilitate the comparison, the key parameters (i.e., Yong’s mod-
ulus E, density q and thickness h) of the bottom panel are set to
negligibly small in comparison with those of the upper panel and
rib-stiffeners, so that the orthogonally rib-stiffened sandwich be-
haves exactly like an orthogonally rib-stiffened single plate.

For the purpose of validation, the material and geometric prop-
erties (Table 1) used by Mace [5] are adopted in the numerical cal-
culations. Figs. 3 and 4 present the results for two different
excitation locations, (lx/3, ly/3) and (lx/2, ly/2). Overall, good agree-
ment is achieved between the present results and Mace’s model
prediction for both excitation locations. The discrepancies at high
frequencies between the two different models, however, are attrib-
uted to the fact that the inertial effects and torsional moments of
the rib-stiffeners were not account for by Mace [5]. The reason that
at high frequency range the deviation is small in Fig. 3 but signif-
icant in Fig. 4 is because the excitation exerted at (lx/2, ly/2) leads
to stronger torsional moments of the rib-stiffeners than that ex-
erted at (lx/3, ly/3).

4.2. Influences of inertial effects arising from rib-stiffener mass

The inertial effects of the tensional forces, bending moments
and torsional moments arising from the rib-stiffeners have been
accounted for by the present analytical model. The influence of
Table 1
Material and geometric properties of orthogonally rib-stiffened single plate [5].

Plate Fluid media

D m g q0 c0

2326 N m 39.1 kg/m 0.02 1000 kg/m3 1500 m/s
Rib-stiffeners

E q lx = ly tx = ty d

195 GPa 7700 kg/m3 0.2 m 0.00508 m 0.0508 m
the inertial effects is explored below by comparing the predictions
obtained for orthogonally rib-stiffened sandwich structures with
and without considering the inertial effects.
Fig. 5. Variation of on-axis far field radiated sound pressure with excitation
frequency: influence of inertial effects. Geometry of rib-stiffeners: tx = ty = 1 mm,
lx = ly = 0.2 m; excitation location: (x0,y0) = (lx/2, ly/2).



Fig. 6. Variation of on-axis far field radiated sound pressure with excitation
frequency: influence of inertial effects. Geometry of rib-stiffeners: tx = ty = 3 mm,
lx = ly = 0.2 m; excitation location: (x0,y0) = (lx/2, ly/2).

Fig. 7. On-axis far field radiated sound pressure plotted as a function of excitation
frequency for selected excitation positions: (x0/lx,y0/ly) at (0,0), (1/4,1/4), (1/2,1/2).
Geometry of rib-stiffeners: tx = ty = 1 mm, lx = ly = 0.2 m.
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With the point force acting at (lx/2, ly/2), Figs. 5 and 6 plot the
on-axis far field radiated sound pressure level as a function of exci-
tation frequency for rib-stiffeners having square cross-sections,
with width tx = ty = 1 mm and tx = ty = 3 mm, respectively. It can
be seen from Fig. 5 that the SPL curve with the inertial effects con-
sidered has a tendency similar to that without considering inertial
effects, the main discrepancy being the existence of several addi-
tional peaks and dips in the former. The superposition peaks (or
dips) between the inertial case and the non-inertial one are domi-
nated by face panel vibration, which are closely related to the max-
imum (or minimal) sound radiation wave shapes and vibration
patterns. The appearance of the additional peaks and dips con-
trolled predominantly by the rib-stiffeners is, on the other hand,
attributed to the inertial effects arising from the mass of the rib-
stiffeners. By comparing Fig. 5 with Fig. 6, it is seen that the dis-
crepancy between the inertial and non-initial cases is enlarged
when the thickness (or, equivalently, the mass) of the rib-stiffeners
is increased.
Fig. 8. Variation of on-axis far field radiated sound pressure with excitation
frequency: influence of periodicity spacings between rib-stiffeners. Geometry of
rib-stiffeners: tx = ty = 1 mm; excitation position: (x0,y0) = (lx/2, ly/2).
4.3. Influence of excitation position

Whilst the amplitude of any point in wave mode shape depends
strongly on its position, the radiating modes excited by a point
force vary with the excitation position. It is therefore expected that
the on-axis far field radiated sound pressure is significantly af-
fected by the excitation position, which is confirmed by plotting
in Fig. 7 the sound pressure level as a function of excitation fre-
quency for three different excitation positions, i.e., (x0/lx,y0/ly) at
(0,0), (1/4,1/4), (1/2,1/2).

It is seen from Fig. 7 that the SPL curves of the (1/4,1/4) and (1/
2,1/2) cases have peaks appearing at the same frequencies (e.g.,
445, 1659, 2769 and 3919 Hz), although there exists large discrep-
ancies at other frequencies (e.g., 3919 Hz in particular). In compar-
ison, there are no evident peaks appearing in the SPL curve of the
(0,0) case at these frequencies. As these radiated sound pressure
peaks are mainly controlled by the wave mode shapes and vibra-
tion patterns of the face panel, it appears that the point force exci-
tation at (1/4,1/4) and (1/2,1/2) can excite the appropriate
radiating mode of the face panel. In contrast, the excitation at
(0,0) is located at the joint connecting the face panel with the x-
and y-wise rib-stiffeners, which excites mainly the tensional and
bending motions of the x- and y-wise rib-stiffeners. Therefore, no
SPL peaks appear for the (0,0) case at radiating frequencies con-
trolled by panel vibration.

The radiating sound pressure peaks dominated by the rib-stiff-
eners are well captured by the three SPL curves of Fig. 7 at the same
frequencies (e.g., 936, 1888, 2329, 3722 Hz), although some peaks
may not be so evident due to complicated wave interaction at the
junctions of panel, x-wise and y-wise stiffeners.
4.4. Influence of rib-stiffener spacings

As the periodicity spacings lx and ly between rib-stiffeners are
key parameters describing the periodic nature of the sandwich
structure (Fig. 1), they should influence significantly the wave
propagation and sound radiation characteristics of the structure.
Fig. 8 illustrates the influence of the periodicity spacings on radi-
ated sound pressure by plotting the SPL curve tendencies, with
(lx, ly) selected as (0.2,0.2) m, (0.225,0.225) m and (0.25,0.25) m,
respectively, and the point force excitation fixed at (lx/2, ly/2).
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The most attractive point about the results of Fig. 8 is that the
magnitudes of the SPL peaks and dips (not only the panel vibration
dominated but also the rib-stiffeners vibration controlled) de-
crease as the periodicity spacings are increased. However, overall,
the three SPL curves exhibit almost the same tendency although
their peaks and dips shift, which is attributed to the highly similar
periodic nature of the sandwich structures.

There exists another interesting problem that what are the pos-
sible effects of breaking the assumed perfect periodicity of the
structure. As well known, in perfectly periodic rib-stiffened struc-
tures, waves can propagate throughout all the structures; while
disorder can lead to the appearance of localization phenomena of
waves in mistuned periodic structures [38,39]. The existence of
wave localization in disordered periodic structures induces a spa-
tial decay of wave amplitude, as a result, the vibration and sound
radiation of the structures will be reduced significantly. To
squarely address this issue, the localization factor that character-
izes the average exponential rates of decay of wave amplitudes
should be applied to explore the detailed effects of disordered peri-
odicity of the structures. Actually, this point should be our future
work.
5. Conclusions

An analytic model has been formulated to investigate the wave
propagation and sound radiation behavior of a point force-excited
sandwich structure having two sets of orthogonal rib-stiffeners as
its core. Unlike previous researches on rib-stiffened panel without
considering the inertial effects of rib-stiffeners, the vibration mo-
tion of the rib-stiffeners is accurately described by introducing
their tensional forces, bending moments and torsional moments
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as well as the corresponding inertial terms into the governing
equations of the two face panels. The Fourier transform technique
and Poisson summation formula are employed to solve the govern-
ing equations. The resulting two sets of infinite simultaneous alge-
braic equations are numerically solved by truncation insofar as the
solution converges.

The far field sound radiation is examined to gain physical in-
sights of the vibroacoustic response of the sandwich structure.
First, comparisons between model predictions with previous pub-
lished results for orthogonally stiffened single plates validate the
accuracy and feasibility of the present analytic model, which also
confirm the necessity of accounting for the inertial effects and tor-
sional moments of the rib-stiffeners in any theoretical modeling.
Subsequently, the influences of the excitation position, periodicity
spacings of rib-stiffeners, and inertial effects rooted in the rib-stiff-
ener mass upon the far field sound pressure radiated from the
orthogonal sandwich structure are explored.

Since the inertial effects of the rib-stiffeners are considered in
the present analytical model, a couple of additional peaks and dips
on the SPL versus excitation frequency curve related to the inertial
effects are well captured, which are especially evident when the
mass of the rib-stiffeners is significant. Besides these rib-stiffener
controlled SPL peaks and dips, it is also found that there exist panel
controlled peaks and dips, which are related to certain wave
shapes and vibration patterns possessing maximal or minimal
sound radiation.

The excitation position of the point force plays a significant role
in the wave propagation and sound radiation behavior of the sand-
wich, as different positions can excite different wave mode shape
and vibration patterns of the face panel, resulting in either panel
or rib-stiffener controlled vibration. Therefore, different peaks
and dips associated with the panel or rib-stiffener controlled vibra-
tion will emerge and noticeably affect the tendency of the SPL
curve.

As a key parameter describing the periodic nature of the sand-
wich structure, rib-stiffener spacing also has a dominant role. All
the SPL peaks and dips dominantly controlled by either panel
vibration or rib-stiffener vibration are shifted to lower frequencies
as the periodicity spacings are increased. The overall tendency of
the SPL curves remains nonetheless unchanged, owing to the sim-
ilar periodic nature of the sandwich structures.
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Appendix A. Derivation of Eq. (58)

The displacement components of the two face panels in wave-
number space are:
The left-hand side of Eq. (58) represents the generalized
force:

fFmng ¼ F11 F21 � � � FM1 F12 F22 � � � FM2 � � � FMN½ �TMN�1

ðA:3Þ
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n0 bnRT1

Djlyfj a0
1
;b0

n0ð Þ
ia02b0

n0 bnRT1

Djlyfj a02 ;b
0
n0ð Þ

. .
.

ia0Mb0
n0 bnRT1

Djlyfj a0M ;b
0
n0ð Þ

2
666666664

3
777777775

M�N

ðA:16Þ

T11;5 ¼

k11;5
M1;11 k11;5

M1;12 � � � k11;5
M1;1N

k11;5
M2;11 k11;5

M2;12 � � � k11;5
M2;1N

..

. ..
. . .

. ..
.

k11;5
MN;11 k11;5

MN;12 � � � k11;5
MN;1N

2
6666664

3
7777775

MN�MN

ðA:17Þ

T22;5 ¼

k11;5
M1;21 k11;5

M1;22 � � � k11;5
M1;2N

k11;5
M2;21 k11;5

M2;22 � � � k11;5
M2;2N

..

. ..
. . .

. ..
.

k11;5
MN;21 k11;5

MN;22 � � � k11;5
MN;2N

2
6666664

3
7777775

MN�MN

ðA:18Þ

k12;1
Mn;j ¼ �

RQ4þib03n RM4

Djlxfj a01 ;b
0
nð Þ

RQ4þib03n RM4

Djlxfj a01 ;b
0
nð Þ � � �

RQ4þib03n RM4

Djlxfj a01 ;b
0
nð Þ

RQ4þib03n RM4

Djlxfj a02 ;b
0
nð Þ

RQ4þib03n RM4

Djlxfj a02 ;b
0
nð Þ � � �

RQ4þib03n RM4

Djlxfj a02 ;b
0
nð Þ

..

. ..
. . .

. ..
.

RQ4þib03n RM4

Djlxfj a0M ;b
0
nð Þ

RQ4þib03n RM4

Djlxfj a0M ;b
0
nð Þ � � �

RQ4þib03n RM4

Djlxfj a0M ;b
0
nð Þ

2
666666664

3
777777775

M�N

ðA:19Þ

T12;1 ¼

k12;1
M1;1

k12;1
M2;1

. .
.

k12;1
MN;1

2
6666664

3
7777775

MN�MN

ðA:20Þ

T21;1 ¼

k12;1
M1;2

k12;1
M2;2

. .
.

k12;1
MN;2

2
6666664

3
7777775

MN�MN

ðA:21Þ

k12;2
Mn;j ¼ �

ia1a01b0nRT4

Djlxfj a0
1
;b0nð Þ

ia2a01b0nRT4

Djlxfj a0
1
;b0nð Þ � � �

iaMa01b0nRT4

Djlxfj a0
1
;b0nð Þ

ia1a02b0nRT4

Djlxfj a02 ;b
0
nð Þ

ia2a02b0nRT4

Djlxfj a02 ;b
0
nð Þ � � �

iaMa02b0nRT4

Djlxfj a02 ;b
0
nð Þ

..

. ..
. . .

. ..
.

ia1a0Mb0nRT4

Djlxfj a0M ;b
0
nð Þ

ia2a0Mb0nRT4

Djlxfj a0M ;b
0
nð Þ � � �

iaMa0Mb0nRT4

Djlxfj a0M ;b
0
nð Þ

2
666666664

3
777777775

M�N

ðA:22Þ

T12;2 ¼

k12;2
M1;1

k12;2
M2;1

. .
.

k12;2
MN;1

2
6666664

3
7777775

MN�MN

ðA:23Þ

T21;2 ¼

k12;2
M1;2

k12;2
M2;2

. .
.

k12;2
MN;2

2
6666664

3
7777775

MN�MN

ðA:24Þ
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k12;3
Mn;j ¼ �

RQ2þia031 RM2

Djlyfj a01 ;b
0
nð Þ

RQ2þia032 RM2

Djlyfj a02 ;b
0
nð Þ

. .
.

RQ2þia03M RM2

Djlyfj a0
M
;b0nð Þ

2
6666666664

3
7777777775

M�N

ðA:25Þ

T12;3 ¼

k12;3
M1;1 k12;3

M1;1 � � � k12;3
M1;1

k12;3
M2;1 k12;3

M2;1 � � � k12;3
M2;1

..

. ..
. . .

. ..
.

k12;3
MN;1 k12;3

MN;1 � � � k12;3
MN;1

2
6666664

3
7777775

MN�MN

ðA:26Þ

T21;3 ¼

k12;3
M1;2 k12;3

M1;2 � � � k12;3
M1;2

k12;3
M2;2 k12;3

M2;2 � � � k12;3
M2;2

..

. ..
. . .

. ..
.

k12;3
MN;2 k12;3

MN;2 � � � k12;3
MN;2

2
6666664

3
7777775

MN�MN

ðA:27Þ

k12;4
Mn0 ;jn ¼ �

ia01b0
n0 bnRT2

Djlyfj a01 ;b
0
n0ð Þ

ia02b0
n0 bnRT2

Djlyfj a0
2
;b0

n0ð Þ
. .

.

ia0Mb0
n0 bnRT2

Djlyfj a0
M
;b0

n0ð Þ

2
666666664

3
777777775

M�N

ðA:28Þ

T12;4 ¼

k12;4
M1;11 k12;4

M1;12 � � � k12;4
M1;1N

k12;4
M2;11 k12;4

M2;12 � � � k12;4
M2;1N

..

. ..
. . .

. ..
.

k12;4
MN;11 k12;4

MN;12 � � � k12;4
MN;1N

2
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3
7777775
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ðA:29Þ

T21;4 ¼

k12;4
M1;21 k12;4

M1;22 � � � k12;4
M1;2N

k12;4
M2;21 k12;4

M2;22 � � � k12;4
M2;2N

..

. ..
. . .

. ..
.

k12;4
MN;21 k12;4

MN;22 � � � k12;4
MN;2N

2
6666664

3
7777775

MN�MN

ðA:30Þ

Employing the definition of the sub-matrices presented above, one
obtains:

T11 ¼ T11;1 þ T11;2 þ T11;3 þ T11;4 þ T11;5;

T22 ¼ T22;1 þ T22;2 þ T22;3 þ T22;4 þ T22;5 ðA:31Þ

T12 ¼ T12;1 þ T12;2 þ T12;3 þ T12;4;

T21 ¼ T21;1 þ T21;2 þ T21;3 þ T21;4 ðA:32Þ
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