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The free vibration and buckling behaviors of foam-filled composite corrugated sandwich plates under
thermal loading are investigated theoretically. A refined shear deformation theory is extended incorpo-
rating two different combinations of hyperbolic and parabolic shear shape functions. Equivalent ther-
moelastic properties of the foam-filled corrugation are obtained using the method of homogenization
based on the Gibbs free energy. Based on hyperbolic-polynomial variation of all displacements across
the thickness of both face sheets and sandwich core, the shear plate theory accounts for both transverse
shear and thickness stretching effects. The theoretical predictions are validated against existing results as
well as finite element simulations. The effects of geometric and material parameters on natural frequency
and critical temperature change for buckling are systematically investigated. The proposed theory is not
only accurate but also simple in predicting the free vibration and thermal buckling responses of compos-
ite sandwich plates with foam-filled corrugated cores.
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1. Introduction

Sandwich plates with periodic lattice cores such as pyramidal
trusses and square honeycombs possess superior bending stiffness,
strength and shock resistance with respect to monolithic plates of
the same mass, and present opportunities for additional function-
ality, such as vibration control, thermal transport and energy
absorption [1,2]. As one type of lattice topologies, two-
dimensional (2D) corrugated panels as sandwich core have enjoyed
widespread applications in areas of packaging, building and trans-
portation industry (e.g., skin frame of high-speed train, naval craft
and rocket engine shell), which is attributed mainly to their rela-
tively low cost, ease of fabrication and reparability, flexibility in
design, and good structural performance [3]. However, under com-
pressive loading, a corrugated sandwich core first deforms by
stretching of its struts (core webs) and then collapses by Euler or
plastic buckling at a small strain, softening rapidly due to node fail-
ure and/or core buckling. Metallic corrugations are thus less attrac-
tive for energy absorption applications as large forces are
transferred but limited amount of energy is absorbed [4]. More-
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over, the transverse shear and bending resistance of corrugated
sandwiches are somewhat limited, since corrugated panels are
prone to buckle under such loading conditions [5,6].

Recently, in order to enhance the mechanical properties (e.g.,
specific strength and specific energy absorption) of corrugated
sandwich cores, the concept of filling foam into the interstice of cor-
rugations has been exploited, both experimentally and theoretically
[7-15]. These studies demonstrated that the performance benefits
of foam filling derive mainly from the stabilizing effects of foam
on the buckling and post-buckling of the corrugated panels (and
face sheets). The foam-filled corrugated sandwich structures have
applied as the explosion-proof plates of armored vehicles and shell
of oil tanks due to their great mechanical performance and good fire
resistance [16]. However, there is yet a study concerning free vibra-
tion and stability of a sandwich plate having foam-filled corrugated
core, either its face sheets and core members are made of metal or
fiber-reinforced composite. The applicability of such sandwich
structures could also extend to be used in the severe thermal envi-
ronments such as radomes, cryotanks, high speed spacecraft, and
nuclear reactors, etc, where the thermal environment is a key factor
which changes the stiffness of the structural system and alters the
dynamic characteristics of the system essentially. Therefore, it is
of great importance to make an intensive research on the vibration
and stability characters of such sandwich structures (especially
made of composite materials) in high temperature environment.
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Nomenclature

density of the face sheets or corrugated panels
density of foam

density of foam-filled corrugated sandwich core
volume fraction of the corrugated panels in the core
corrugated member thickness

corrugated member length

corrugation angle

plate length

plate width

total thickness

face sheet thickness

core height

E;, Gj;, v; elastic modulus, shear modulus, and Poisson’s ratio
o thermal expansion coefficient

global coordinate system of sandwich plates

local coordinate system of the unit cell of foam-filled
corrugated core

X1 — X, — X3 local coordinate system of corrugated panel,

Y1 — Y, —y; material coordinate systems of face sheets

Cg.’ material coordinate systems of corrugated panels

35

ST Q T T
a

FE

x| x

—y-Z

iz effective stiffness of foam-filled corrugated core

cH effective thermal-stress tensor of foam-filled corrugated
core

Jiis effective specific heat per unit volume of the unit cell of

foam-filled corrugated core

u, v, w generalized displacement field functions

ug, Vo, Wy, Ws, @, unknown functions of the refined shear defor-
mation theory

flz), g(z) shape function

09, 09, T3, initial in-plane thermal stresses
T temperature variation

AT critical buckling temperature change

o) natural frequency

@,AT; dimensionless natural frequency and critical buckling
temperature change

K] structural stiffness matrix

[Kc] geometric stiffness matrix induced by initial in-plane
thermal stresses

[M] mass matrix

There are several literatures carried out on lattice-cored sand-
wich plates or beams to reveal the global structural analysis (e.g.,
vibration and buckling), with the discrete lattice core usually trea-
ted as an equivalent homogenous transverse isotropic or orthotro-
pic continuum [17-19]. However, few studies have been done in
the field of vibration and stability behaviors for the lattice-cored
sandwich structures under thermal environment. All the studies
about the lattice sandwiches employed the simple first-order shear
deformation theory (FSDT). This theory assumes that the face
sheets deform according to the Bernoulli-Euler beam theory or
Kirchhoff-Love plate theory, the core deforms only in shear with
transverse shear stress assumed constant through the thickness
of the core, and the effect of thickness stretching (i.e., transverse
normal strains) is negligible. FSDT is only efficient for sandwich
plates with thin hard face sheets and thick soft core. For sandwich
plates with thick multi-layered laminated composite face sheets
and relatively hard core, the above assumptions may not hold.
Since FSDT does not satisfy the stress-free surface conditions, and
only accounts for layerwise constant states of transverse shear
stress, shear correction coefficients are usually needed to rectify
the unrealistic variation of shear strain/stress through thickness,
which ultimately defines the shear strain energy. To address this
issue, several higher-order shear deformation theories (HSDTs),
e.g., polynomial, trigonometric, exponential and hyperbolic shear
deformation theories, have been developed as the Equivalent Sin-
gle Layer (ESL) theories, LayerWise (LW) theories, and the Zigzag
(ZZ) theories, as shown in recent reviews of laminated composites
and sandwich plates [20-22] and functionally graded materials
(FGMs) [23-26]. Reddy [27] developed a well-known third order
shear deformation theory which is further extended by many
researchers for their research. The trigonometric shear deforma-
tion theories were proposed for the free vibration of thick orthotro-
pic plates by Touratier [28] and Mantari et al. [29], etc. Karama
et al. [30] proposed an exponential variation for the transverse
strain in their investigation of the bending of composite beams,
which is developed by Aydogdu [31] for the analysis of laminated
composite plates. Soldatos [32] has developed hyperbolic shear
deformation theory for the analysis of laminated composite and
sandwich plates, which was applied by Ghugal and Pawar [33]
for the free vibration analysis of orthotropic plates. Zenkour [34]
and Amale et al. [35] have employed separately hyperbolic sine
and hyperbolic tangent shear deformation theories for the bending

and free vibration analysis of FG plates. Recently, Grover et al. [36]
developed inverse hyperbolic shear deformation theory for the free
vibration analysis of laminated composite and sandwich plates
using finite element modelling.

Aydogdu [37] compared a group of shear deformation theories
for analyzing the bending, buckling, and vibration behaviors of
rectangular symmetric cross-ply plates with simply supported
edges. The results revealed that while the transverse displacement
and stresses are best predicted by the exponential shear deforma-
tion theory, the parabolic shear deformation and hyperbolic shear
deformation theories yield more accurate predictions of the natu-
ral frequency and buckling load. To reduce the number of variables
in existing theories, a kind of refined shear deformation theory
(RST) as ESL theories, incorporating various higher-order shear
deformation formulations, has been developed [38-44]. RST
assumes that the in-plane and transverse displacements contain
bending and shear components, with strong similarities with FSDT
in many aspects such as equations of motion, boundary conditions,
and stress resultant expressions. At present, RST has been mostly
applied to FGM plates, but barely to sandwich or laminated
plates.

The aim of the paper is focused on extending the original RST
formulation to vibration and buckling problems of foam-filled
composite corrugated sandwich plates under uniform thermal
loading. The refined shear and normal deformation theory is
employed and two different combinations of hyperbolic and para-
bolic shear shape functions are adopted. The sandwich core is
taken as an equivalent homogenous continuum layer so that the
sandwich itself could be regarded as an orthotropic multi-layered
plate. All the effective thermoelastic material parameters of the
foam-filled composite corrugated core are then derived via the
homogenization method for the first time. Different from previous
researches about the vibration of lattice-cored sandwich plates, the
bending, transverse shear, and thickness stretching of both the face
sheets and the core are all taken into account. Governing equations
are derived using the Hamilton principle and solutions for simply-
supported sandwich plates are obtained using the Navier’s tech-
nique. The validity of the proposed theory is demonstrated through
comparison with the results from literature and finite element (FE)
simulations. The effects of thickness stretching, geometric param-
eters and foam filling material on critical temperature change
and natural frequency are systematically explored.
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2. Mathematical formulation

With reference to Fig. 1, consider a sandwich plate comprising
two fiber-reinforced composite cross-ply laminates of equal thick-
ness as face sheets and a foam-filled corrugated core. Relevant geo-
metric variables are: sandwich plate length a, width b, and total
thickness h; face sheet thickness hy core height h.; corrugated
member thickness t, length [, and corrugation angle 6.

The hybrid sandwich core is assumed to be constructed of lin-
early elastic isotropic foam fillers and corrugated panels made of
orthotropic unidirectional laminate. Macroscopically, the hybrid
core may be treated as a homogeneous equivalent core with ortho-
tropic material properties, as depicted in Fig. 2. Let E;, v;j and o; (i,
j =1, 2, 3) denote the elastic modulus, Poisson ratio and thermal
expansion coefficient of the laminated composite making either
face sheets or corrugated panels. Let Ej, vy and & denote the elastic
modulus, Poisson ratio and thermal expansion coefficient of the
foam. Let ps and py represent the density of the face sheets and
the foam. The volume fraction 1 of the corrugated panels
(42 =2t/lsin20) and the density p. of the hybrid sandwich core
can be obtained using the method detailed by Han et al. [14].

For foam filling, both polymer foam (Rohacell) and aluminum
foam (Alporas) are considered. In addition to carbon fiber-
reinforced composite material (T700/3234), face sheets and corru-
gated members made of 304 stainless steel or titanium alloy (Ti-
6AIl-4V) are also considered.

The assumptions made for the present study are:

(1) The behavior of the sandwich falls within the state of small
deformation and linear elasticity.

(2) The face sheets and corrugated panels are made of the same
parent material.

(3) Local responses such as localized vibration or buckling are
not considered.

(4) No slippage or delamination between composite layers
occurs.

(5) The material properties are temperature-independent.

(6) The sandwich is placed in high temperature environment
sufficiently long, so that its temperature is distributed uni-
formly and uniform temperature rise is in force.

(7) The corrugated core members and the filling foam keep close
contact with each other during deformation, even though
slipping may occur at the interface.

2.1. Effective thermoelastic properties of foam-filled composite
corrugation

To analyze the free vibration and stability of the composite
sandwich plate of Fig. 1 under thermal loading, the effective ther-
moelastic properties of its foam-filled composite corrugated core
are firstly derived by employing the method of energy-based ther-
momechanical homogenization [45]. The foam-filled corrugated
core may be analyzed at two different scales: (a) at the macroscale,
it is treated as a homogeneous continuum solid; (b) at the micro-
scale, the foam fillers and the corrugated members are separately
considered. The derivation of micro-macro relations for such a
periodic medium relies on the analysis of its representative volume
element (RVE, or unit cell; Fig. 2), as detailed below.

When subjected to a X — Z plane macroscopic strain E (Fig. 3a),
the corrugated member may be characterized as an Euler-
Bernoulli beam of unit width (along the y-direction), clamped at
both ends [14], where the Cartesian coordinate system X —y —Z
is set based upon the unit cell of foam-filled corrugated sandwich
core. Analogous to the analysis of a pin-reinforced foam core [46],
the macroscopic Gibbs free energy density of the unit cell contain-
ing two corrugated beam members surrounded by foam filling
(Fig. 2) may be written as:

G=Gb+Gf (1)

1 2
Gy = Z{
i=1

N S
(u“) +2a)) - 2uM> KOa® — -

te]
N[ —

1 1cf 13
G =(1-2) (j ChiEnE — ATCl 0B — 5 T AT2> + 528
i=1

3)
where G, and Gy are the free-energy contributions of corrugated
members and foam, respectively, Q represents the current volume
of the unit cell, superscript/subscript f denotes the foam filler, c is

y

h,

Fig. 1. Schematic of foam-filled composite corrugated sandwich plate with cross-ply laminated face sheets (y = 0°,90°).
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Fig. 3. Homogenization of foam-filled corrugation in plane strain: (a) kinematics of a corrugated member; (b) a corrugated member subjected to nodal forces/moments and
lateral pressure. Shear flow in a typical representative volume element when subjected to (c) macroscopic shear strain E;, or (d) macroscopic shear strain E;.

the specific heat per volume at constant strain, C,fjk, is the elastic
constant of foam, Ep; is the macroscopic strain, V' denotes the vol-
ume of the ith corrugated member, and T, represents the initial
temperature of the field. u® is the global nodal displacement vector

for the i-th inclined beam characterized by end nodes, of which a
detailed description can be found in [14]. @)’ and @} are the nodal
displacement vectors of the ith beam induced by lateral normal
stress p® (Fig. 3b) and temperature variation AT:
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ul) =T'al?, ay) =Ty (4)
. T

e — 13100

) = [52t51 0 0 0 0 0 (5)

i =[ATL 0 0 0 0 0] (6)

where T is the transformation matrix between local and global
coordinates and the superscript e denotes values in local coordi-
nates. Note that, representing the coupling effect between corru-
gated beam and foam, the lateral normal stress p'’ is itself
induced by the foam matrix, of which the detailed expression can
be found in Han et al. [14].

In Eq. (2), KO is the global stiffness matrix that satisfies the
transformation between local and global coordinates, as:

K9 = T'KT (7)

where K¢® is the elementary stiffness matrix of the ith beam, of
which a detailed expression is presented in [14], with the elastic
modulus Es replaced by E;/(1 — v13131).

Let the macroscopic strain vector of the unit cell be defined as:

E=[8, 5, E B4 Z5 Z

=[E Ep Esy3 2Ey 2E5 2En] (8)

Then the effective stiffness C", the effective thermal-stress ten-
sor pf and the effective specific heat per unit volume of the unit
cell ¢ can be calculated as:

>’G n_ G W >G

H -
Gy OATOE,” © = T OATOAT (9)

i 9508 b=

where the superscript H means homogenized effective stiffness. The
X — z plane macroscopic effective stiffness and thermal-stress tensor
for a foam-filled corrugated core may thence be obtained using Eq.
(9), as:

H E] t COS3 0 E] t 3 .
= - ! - 0 0
G (1 —vi3v31) \I/ sind + (1 —vi3v31) \U SN FCos

t 0
1 2vi3 7>(51n 0C!, + cos? oC} )%-ﬁ-(l - )l
. E; t sin’ 0 E; £y’
Gy = (1 —v13V31) c059+(17V13V31) 1 singcos?
+2v13 %)(sm 0C!, + cos? 6C} )—(;Jr(1 - )¢l
E t E 0’
ct 1 ( > sinfcos — ———— <—) sin 6 cos 0
13 (] — V]3V31) I (1 - V13V31) l
t\ |sin” 0 cos? 0 ,
—H}B(T) {cosO Cl, +sin20C], + —— T Cls| + (1= A)Cly
E £\ . E ty’
ch :—1<—> 51n9c059+71<->
55 (] — V]3V31) I (1 - V13V31) l
(cost0 —sin” 0)" _ -
A0 cos i 45 l L singcos 0+ (1 — 4)CLs
E t cos b
i A t _avch 1+ ach el
=T ) (1)()(] sing (17 A(Gn 2600
0o E; t\ sind v f f \pyf
B3 = A = viavsn) \) X cosg " (17 H(Gs 265
qus = C?s = /3? =0 (10)

If a macroscopic strain E,, is solely imposed on the core, the
stress of core member af; (with foam-corrugation coupling

included) and the stress of foam matrix 0'{ are given by:

E .
ob = m (Exz — 0AT) + vo3(sin® 0CL, + cos? 0CS,)Ey,

(11)
o) = Cly(Ex — 0/ AT) (12)

It follows that the macroscopic stress is:

oy =200+ (1-2)a) (13)
so that
Cly = 2] + vas (sin® 0T, + cos? 0k, )| + (1 - 2)c), 4

(1 - )afch,

ﬁz = (11:125‘2’21) +

When Eq; or Ess is solely imposed on the unit cell, ;, can be
solved using nodal displacements and the corresponding equilib-
rium equations, with coupling effect included. Consequently, C?Z
and CY; can be obtained as:

H _ V1, E t 0 sin ()Cf +cos? oc’, f
Cia = vhi () $hmd V23 () —shlreoss 2 + (1 = A)Chy 15)

sin ()Cf +cos? OC
smecosf)

H _ vE £\ sino f
Gz = b5 (1) S5+ vas () + (1 -Gy

When subjected to macroscopic shear strain E;; or E,s, the
resulting distributed shear flow in the unit cell is presented in
Fig.3c and d, respectively, in which cases the foam-corrugation
coupling effect vanishes. The macroscopic shear stress X;; can be

expressed as
Ty =3h+ 2l (i=1,3) (16)

where X5, and XJ; represent the contributions from corrugated
member and foam, respectively. Further, we have

b Q=21,tlsing, =5,Q=21b,tlsino, 17)
T = (1= AChEwn, i = (1-7)ClEx

where 75, and 14, are the shear stresses of corrugated member in
local ordinate system X-Y-Z. For both shear loading cases (E;» and
E»3), due to the symmetric layout of the unit cell, all the inclined
core members bear the same local out-of-plane shear stresses.
The local shear strains can be written accordingly, as:

b b
é12 = 2 23 = 12
2Gy3’ 2Gypy

Energy balance of the corrugated members dictates thence that:

(18)

bN 2
LCR2ER)Q=1Gs () d

’ (19)
LCH(2E0)2Q = LG () o
from which:
ct=e()) 5 c2=ex(() 57 o
Consequently, we have:
c=c® 1+ (1-)C, (i=4,6) o

Since a corrugated core is orthotropic, the remaining compo-
nents of the macroscopic stiffness matrix and thermal-stress ten-
sor are all zeroes. Finally, the vector of effective thermal
expansion coefficients, !, can be finally obtained as

2= [c] g (22)
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2.2. Generalized displacement field and kinematic relationship

The refined plate theories developed recently have only five
unknown functions [40,44,47-49], in which the in-plane displace-
ments are expanded as odd functions of the thickness coordinate
while the transverse displacement is splitted into bending, shear
and thickness stretching parts, as:

U(X,y,z) = U()(X,y) - %_f(z)%
DX.Y.2) = DoY) — 72— f(z) 2 (23)
W(X,y,Z) = Wb(xay) +WS(X7y) +g(z)(pz(xvy)

where ug(x,y), vo(x,y), wp(x,y), ws(x,y), and ¢,(x,y) are the five
unknown functions of the plate (which is defined in the global
Cartesian coordinate system x —y — z, as shown in Fig. 1), and f(z)
is the shape functions determining the distribution of transverse
shear strains and stresses along the thickness:

f@=z2-yz-9(2) (24)

The function ¢(z) and the prescribed parameter y are listed in
Table 1. The function g(z) in (23) is defined as:

82)=1-f@)=y+¢'@ (25)

As a compact formulation, the above displacement field can
take into account different displacement-based shear deformation
functions. Upon taking ¢(z) =0 and y as either O or 1, the classical
plate theory (CPT) or simple first-order shear deformation theory
(SFSDT) [50] can be obtained as particular cases, as shown in
Table 1. In addition to CPT and FSDT, the stress free boundaries
at the top and bottom surfaces of the sandwich plate can be satis-
fied automatically by employing higher-order shear shape func-
tions (such as polynomial (PSDT) [27,51,52], sinusoidal (SSDT)
[28], tangential (TSDT) [29], hyperbolic-sin (HSSDT) [33],
hyperbolic-tangent (HTSDT) [53], exponential (ESDT) [30], com-
bined sinusoidal and exponential (SESDT) [54], and combined
hyperbolic-sin and exponential ones (HSESDT) [44], as summa-
rized in Table 1), without requiring any shear correction factor.
With these higher-order shear deformation theories, the cases
without including the effect of thickness stretching can be consid-
ered when ¢,(x,y) vanishes. In the present study, two different
shape functions, i.e. the combined hyperbolic sinusoidal and poly-
nomial shear deformation theory (HSPSDT) [34] and the combined

Table 1
Shape functions employed by different plate theories for generalized displacement
field.

Models Shape functions

$(2) X
CPT 0 0
SFSDT [50] 0 1
PSDT1 [51] ,% %

2 5
PSDT2 [52] _ %Z(IZT) 3
PSDT3[27]  _42 1
SSDT [28] hsin (%2) 0
TSDT [29] tan () —arsec? (1)
HSSDT [32] hsinh (§) —cosh (3)
HTSDT [53] 3 htanh (3) —37sech?®(})
ESDT [30] Ze-2/h 0
SESDT [54] sin (¥) e%cos (%) ﬁ
n

HSESDT [44]  sinh (2)esicosh () —1cosh (3) + & sinh? (3)]esheosh ()
HSPSDT [34]  hsinh (f) — 42 cosh (3) 0
HTPSDT [35]

3
’zltanh(Z P 3505:2(1) (#) 0

hyperbolic tangent and polynomial shear deformation theory
(HTPSDT) [35], are selected for the refined shear deformation the-
ories (RSTs), as shown in Table 1.

The linear strain expressions derived from the displacement
model of Eq. (23), valid for thin, moderately thick and thick plates,
are:

b
&y & k, K
0 b S
& p=49 ¢ p+2Z ky +f(2) ky
0 b S
VXy ’yxy kxy kxy
A 0
Y Xz yxz 0
=8@)q 10 ¢+ =8¢ (26)
’Vyz Y vz
where

0 dug K b _ (}Zwb
&y X Ky x2

0\ _ oy b\ _ 2wy
& - ay ) ky - T oy
0 du v, b o2
y oy 4 ovy _pPw,

Xy ay X kxy 2 e

S _ 32Ws
kif o 70 ows | 99,

_ _ 2w, Xz _ ox 223 0 _

ky - ayZS ’ VO - M+% ) 82 - (pz (27)
kfcy -2 Pws ¥ o %

X0y

2.3. Constitutive relations

The linear thermoelastic constitutive relations of orthotropic
layers are given by:

o\ 1Cp Cia Cs 0 0 07" (g —ogATy™
0, Cxn Ciz 0 0 O & — AT
03 B Ci3 0 0 O &3 — 03AT
T2 N Cua 0 O Y12
Ti3 symmetric Css O Y13
T23 Ces Y23
(28)

By performing the transformation rule of stresses/strain
between the lamina and the laminate coordinate system, the stress
strain relations for the n-th lamina in the global coordinates (x, y, z)
can be written as:

Ox @ Qun Q12 Q3 Qs O 0™ &y — 0 AT "
ay Q2 Qp Qu O 0 & — ayAT
g, B Qs Q3 0 0 & — 0AT
Txy B Qu O 0 f Vay = Oy AT
Ty symmetric Qss Qse Ve
Ty, Qss Vyz
(29)

where AT is the temperature change from stress free state. While
detailed expressions of the elements for matrices [C] and [Q] can
be found in [55], the coefficients of thermal expansion for the n-
th layer in the laminate reference coordinates are:

(Ot Oy, Otz Oy, Obz, Olyz) = (C20ty + 2002, 52001 + 20k, 03, 25C(01 — 04z),0,0)
(30)

where c = cos y and s = sin 7y, y being the angle between the princi-
pal fiber direction x; and the x-axis of individual layers.
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2.4. Initial thermal stresses

Under the thermal loading of uniform temperature variation
AT, the prebuckling strains and stresses of a multi-layer plate
can be given as:

& =& =Yy ="y =V =0, and 0, =0,,=0,=0 (31)

Inserting Eq. (31) into the constitutive relations of Eq. (29), one
obtains the nonzero prebuckling in-plane stresses (oy, 0y, Txy) as:

Qz (n)
(Qn - in) o+ (Qu - QSQB)O( + (Qm - QS%“)Ony

g0 (n)
{;‘? } == Ele QBQ”)“ + (sz 23) oy + (Q24 QBQ“)Ony AT

Xy Q4Q _ Q340 Q:
2ot (@ =22 10+ (Qas — i) o

(32)
The initial deformation induced by thermal loading is neglected
in the present study.

2.5. Governing equations

Hamilton’s principle is used to derive the governing equations
of motion appropriate to the displacement field and the constitu-
tive equation. The principle can be stated in analytical form as:

t
0= / (06U + oW — oT)dt (33)
0
The variation of strain energy U of the plate is calculated by:

U= |, (axésx +0y08y + 0708, + Tuy0Yy, + Txz0Py, + ryzéyyz> dv
Ny0&d + Nyoed + N,6&2 + Ny 6y9, + S99, + 55,679,
I\ AMESKE + MEKD + ME,0k%, + MoK, + M3k, + M, 0k,

(34)
where V is the whole volume of the sandwich plate and A is the top
surface. (Ny, Ny, Ny,) denote the total in-plane force resultants, (Mi’,
M?, M2,) denote the total moment resultants, (M5, M, M;,) denote
the additional stress couples associated with the transverse shear

effects, N, denote the transverse normal stress resultants, and (S;,,
S}.) denote the transverse shear stress resultants, defined as:

Nx7 Ny7 ny K 1
Mg'/ M; sz = Zfl?nn,l (GMO—vaXJ’)(n) z dz
M, M, M, ) ™ f@)
K K
N =3 i (08 @z, (555, =Y i, (T, Tye) V8 (2)d2
n=1 n=1
35)

where K is the number of layers in the laminated composite or
sandwich.

The variation of potential energy W of the in-plane loads
induced by thermal stresses is:

GO(UxOUx + VOV 5 + WxIWy)
+To0(Uxlly + VxVy +Wxwy)  |dV (36)
+02(UydUy + VySVy + WydWy)
The variation of kinetic energy T of the plate is:

oW =

oT = / (Ui + 5 + Wwow)dV
\4
LS(U3 + U3 4+ Wi + W2 + 2WpWs) — 21,0(iloWpx + JoWp,)
_ / +I35(W§X =+ Wﬁy) — 214(3(il0W5_x + Z’/ows‘y)
A +2155(Wb,st.x + Wb.yws.y)
+165(W?X + W?y) + 2176(Wb(/)z =+ Ws(pz) =+ Igé(pg

dxdy

37)

where

(Ii,13,13,14,15,1,17,Ig) = /h (1,2,2.f(2),2f (2),[f(z ] ,&(z

[g(Z)] )p(z)dz (38)

Upon substituting (34), (36) and (37) into (33) and integrating
the resulting equation by parts and collecting the coefficients of
dug, Vo, W5, dWs, and d¢,, the equations of motion for the sand-
wich plate are obtained as:

ONy ON,, - . . }

ol : X 8yy + Ny = lilg — LWpx — [aWsy

. ON ON, . - )

o0V : 8;y+W+N2_11”0*12Wb.y*14Ws.y
FME My, M,

0 : X Xy Na—=1 O )

Wy X2 + XDy + a2 ST 3 1(W,J + W, ) 2(1_[0 + Z/Oy)
— I (Wp + WbJY) — s (Wsx + Ws_yy) + 17,

sw, - M M, M, oS, 05,

Ox? + oxoy — 0y? + ox oy
+ Ng =1 (Wb + Ws) + I4(i107x + ‘1./07),) - Is(Wb‘xx + Wb_yy)
ass +85;2
dy

7NZ+N4 =I7(Wb +Wg)+18¢z (39)

I (stx + Wsyy) + 17(P25(pz .

where the thermal loads N;(i = 1,2,3,4) are:

N

_ K u‘xx v,xx W,xx g(Z)WXX
N, hn n)

N3 :Z/h {0 O-yvfxy} Uyy VUxy Wyy g(z)w.xy dz
N net e Uy Uy Wy 8wy

4

(40)

More detailed expressions of (40) are given in Appendix A.
By substituting Eq. (26) into Eq. (29) and the subsequent results
into Eq. (35), the stress resultants are obtained as:

N A B B e L NT
ML =|B D D|{K b+ |L0|ed—{ MT ), S=A"
M B D H||K r Mt
N, =L"e+ (ID)'K + (15K + R, —
(41)
where
N = {Ny, Ny, Ny}, MP = (M2, M2, M2, )
b b b+t
{MS MS MS } b_{8x7£’y7&xy} :{k 7k 7kxy} ’
K = {k;, k). k3, } INT = (N, Ny, Ny }T, MPT = {M"T, My M”T}7
M = (M My MST}S {Siz,Ss}, “/:{Vi’z»“/}’z} (42)
A Az Ass Bi1 Bz Bz
A: A12 A22 A23 9 B: BIZ BZZ BZ3 )
-A13 A23 A33 Bl3 BZ3 B33
D11 D1z Dis
D= |Di; Dy Do (43)
_D13 D23 D33
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(B, By, Bis Dy, Dy, Dis

B = Biz Bszz 3523 , D= Diz D;Z D523 )

|Bi; By B Di; Dy Di

[Hj, Hij, Hi,

H = Hiz H%z H;3 (44)
LHi; Hy Hi

A, A
AS—[ " “} L={L.L L}, [°={L 1515

A, Ay

L= {L;,15, 13} (45)

The stiffness coefficients A; and Bj;, ..
An B Dn By, Dy, Hy
Az B D By, Dj, Hy
Az Bis Dis By Dj; Hys
Ay Bn Dy By, Di, H3,
Ay By Dy By Di; H,
Asz Bz D33 By; D3y Hy

. are defined as:

Ql‘l
Q12
K hn Q
- 1,2,.22.f(2). 2 2).f "l 46
> /h< 22.f@. 4@ @)1 " e (46)
Qa4
Quq
Lo L7 L Qs
L L5 L th (1,2.f(2))g'(2)4 Qa3 dz,
L 1) L Q34
Al Qss
A, th {QGG }dZvRS th )’Qs3dz
A}, =1 Qs6
(47)

The force and moment resultants {N"}, N, {M""} and {M*"} due
to thermal loading are expressed as:

b’ S o
N, M M Qi1 Qiz Qi3 Qus cxx
N; Mbe M;T th (1,2f(2)) | Q12 Q2 Q2 Qu ay ATdz
NIy Mf:; Mi; Qs Qu Q3 Qu u:y
K
:th:] {Q13,Q23,Q33,Q34}8'(2) {00, 0y, 1z, D(Xy} ATdz
n=1
(48)

It is worth mentioning that in thermal environment with uni-

form temperature change AT, NI, {M""} and {M*"} all vanish in
the equations of motion expressed in terms of expanded displace-
ment components.

Introducing Eqgs. (42)(49) into (40), one can rewrite the equa-
tions of motion using the expanded displacement components
(duo, dvo, SWp, Sws, 5¢,), as
(Ar1di1Ug + 2A13d12Up + Assdaallg) + [A13d11 Vo + (A2 +As3)d12 v

+ Ag3dxn vo] — [B11d111Wp + 3B13d112Wp + (B12 + 2Bs3)d122Wp

+ By3dypaWy) — [B};d111Ws + 3Bj3d112Ws + (BY, + 2B3;3)d12oWs
+ B;3d222W5] + (L] d] ©»,+ L3d2(,02) + N1 = Iluo — Isz‘X — 14\'4'/5')(

(49)

(As3d11 Vo + 2A53d12 00 + Asad o) + [Arzdiilo + (Arz + Asz)diallo

+ Ayzdytlg] — [Bizdi11Wy + (Biz + 2B33)d112Wy + 3Bosdiow,

+ BaadapoWy) — [Bi3di11Ws + (BY, + 2B33)d112Ws + 3B d12ows

+B§2d222Ws] + (Lsdip, + dez(/)z) + Ny =1L — Izwb,y — Lyw,
(50)

[B11d111Uo + 3By3di12Up + (Bi2 + 2Bs3)d122Uo + Basdanali)
+ [B13di11 %0 + (B12 + 2Bs3)d112 0 + 3Ba3di22 Vo + Baadazs o]
— [D11d1111Wp + 4D13d1112Wp + (2D + 4D33)d1122W)
+ 4D23d122oWp + DaodapaWy] — [D};d1111Ws + 4D35d1112Ws
+ (2D3, + 4D33)d1122Ws + 4D33d1222Ws + D3, dapa Ws]
+ (Ldn @, + 2L3dv> ¢, + Lydn,) + Ns = Iy (W, + W)
+ L(liox + Doy) — I3(Wpax + Whyy) — Is(Wsx + Wsyy) + 170, (51)

[Bi;d111Uo + 3Bi5di12uo + (B}, + 2B35)d122Uo + B35 dazotio]
+ [Bi3d111 %o + (Bj, 4 2B33)d112 V0 + 3B33d122 Vo + By daa ]
— [D}1d1111Wp + 4D13d1112Wp + (2D3, + 4D%5)d1122Ws
+ 4D5;d1222Wp, + D3, 020wy — [HY d1111Ws + 4H35d1112Ws
+ (2H3, + 4H33)d1122Ws + 4H5d122o0Ws + Hpdanoo W]
+ (A dinWs + 2A3,diaws + A3 daaws) + [(L7 + AT )dn @,
+ (2L + 2A7,)d 2@, + (Ly + Ay)do2 @] + N3 = I (W + Vi)
+I4(ilox + Doy) — Is(Whpx + Whyy) — I6(Wspx + Wsyy) + 17, (52)

— (Lydyup + Ladyug) —
+ (L?anb,, + 2L'3’d12wb + Lgdzzw) + [(A}; + L5)d1ws
+ (215 4 2A3,)d1aws + (A5, + L) dapws]
+ (A a1 @, + 240120, + A dng, —Ro,)
+ Ny = I;(Wy + W) + Isp, (53)

(Lsdvvo + Lod, 1)

where d;, dj, dyy and dy,, are differential operators, defined by:
-9 = & diy = & di = &
Tox T oxoxT T axoxox,” ™ DX OX;0%10Xm
(54)

3. Solution procedure for eigenvalue problems
For illustration, the problem is solved under simply supported

boundary conditions. The boundary conditions imposed at the side
edges for shear deformation plate theories are:

Up(x,0) = wp(x,0) = ws(x,0) = ¢,(x,0) =0

Uo(X,b) = wp(x,b) = ws(x,b) = ¢@,(x,b) =0

0(0,y) = wy(0,y) = ws(0,y) = ¢,(0,y) =0

vo(a,y) =wp(a,y) =ws(a,y) = ¢,(a,y) =0
Ny(x,0) = M} (x,0) = M;(x,0) = Ny(x,b) = Mj(x,b) = M;(x,b) = 0
Nx(0,y) = M{(0,y) = M;(0,) = Ny(a,y) = My (a,y) = My(a,y) = 0
(55)

To obtain the structural responses of sandwich plate with cross-
ply laminated plates, the displacement functions which satisfy the
boundary conditions of (55) are selected as the following Fourier
series:

Up Upnn cOS(2x) sin(uy)
2 w o | Vmnsin(ix)cos(uy)
Wy p =% Wi sin(ix) sin(uy) pe* (56)
W M= W SIN(2AX) Sinpy)

?, Zyyp SIN(X) SIN(1Ly)
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Table 2 Table 4
Material properties used for numerical validation against literature results. Comparison of non-dimensional natural frequencies = wa?/h\/p/E, (AT =0) of
- simply supported cross-ply laminated square plates with E; /E, = 40 (Material 1).
Material 1
E1/E> —open, Es = Ey, Gi2 = Gi3 = 0.6E3, G3 = 0.5E,, U1p = U3 = by3 = 0.25 Lamination Theory — a/h
andnumber of layers 10 20 50 100
Material 2
Face sheets [0°/90°] A 104319 11.0663 11.2688 11.2988
E; = 131GPa, E; = 10.34 GPa, E3 = E;, G2 = 6.895 GPa, G153 = 6.205 GPa, B 10.5680 11.1052 11.2751 11.3002
Gy = 6.895 GPa, 0y = 0.22, vy3 = 0.22, b3 = 0.49, p = 1627 kg/m? C 105680 11.1052 11.2751 11.3002
Core PSDT3 10.5023 11.0967 11.2715 11.3005

TSDT 10.502 11.0965 11.2715 11.3004
HSSDT 105012 11.0963 11.2714 11.3004
HTPSDT 10.5262 11.0964 11.2707 11.2997
HSPSDT 10.5025 11.0967 11.2715 11.3003

E; =E;, =E3 = 6.89 x 10 >GPa, Gy = G5 = Gp3 = 3.45 x 10> GPa,
D12 = U13 = U3 =0, p = 97 kg/m?

Material 3

Face sheets

E1/E; = 19.Es = E5, Gi2/E; = 0.52, Gi3 = G12, Go3/E2 = 0.338, 032 = 0.32, [0°/90° /90° /0°] A 15.1048 17.6470 18.6720 18.8357
D13 = D1z, Vg3 = 0.49, ap /o = 0.001, o3 = B 15.1073 17.6457 18.6718 18.8356
Core C 15.9405 17.9938 18.7381 18.8526
EyJES = 3.2 % 1075 EyJES = 2.9 1075, Es /E] — 0.4, Gy /ES = 2.4 x 10°2, PSDT3 151203 17.6975 18.7088 18.8358
f ) f ) TSDT 15.1202 17.6975 18.7088 18.8358
G13/B; =79 x10°7, Go3/E; = 6.6 1077, v = 0.99, HSSDT ~ 15.1202 17.6975 18.7088 18.8358
D13 = U3 =3.0x 107°, oy /o) = 1.36, 03 = 0 = oy HTPSDT 15.1251 17.7026 18.7113 18.835
HSPSDT 15.1203 17.6975 18.7088 18.8357
" A: Results from Kant and Swaminathan [58] with 12 unknown variables; B:
Results from Reddy [27]; C: Results from Senthilnathan et al. [59].
Table 3
Comparison of non-dimensional natural frequencies= wa?/h\/p/E, (AT = 0) of simply supported cross-ply laminated square plates with a/h = 5 (Material 1).
Lamination andnumber of layers Theory Ei/E;
3 10 20 30 40
[0°/90°] A 6.2578 6.9845 7.6745 8.1763 8.5625
PSDT3 6.2340 (—0.38) 7.0026 (0.26) 7.8326 (2.06) 8.5150 (4.14) 9.0959 (6.23)
TSDT 6.2339 (-0.38) 7.0023 (0.25) 7.8322 (2.05) 8.5143 (4.13) 9.0948 (6.22)
HSSDT 6.2337 (-0.39) 7.0018 (0.25) 7.8311 (2.04) 8.5127 (4.11) 9.0927 (6.19)
HTPSDT? 6.2448 (-0.21) 7.0204 (0.51) 7.8631 (2.46) 8.5592 (4.68) 9.1544 (6.91)
HSPSDT? 6.2340 (—0.38) 7.0027 (0.26) [0°/90°], 7.8328 (2.06) 8.5153 (4.15) 9.0963 (6.23)
HTPSDT® 6.3734 (1.85) 7.1056 (1.73) 7.9279 (3.30) 8.6119 (5.33) 9.1986 (7.43)
HSPSDT® 6.3698 (1.79) 7.0931 (1.55) 7.9016 (2.96) 8.5711 (4.83) 9.1428 (6.78)
[0°/90°], A 6.5455 8.1445 9.4055 10.1650 10.6798
PSDT3 6.5200 (—0.39) 8.2156 (0.87) 9.6456 (2.55) 10.5520 (3.81) 11.1867 (4.75)
TSDT 6.5199 (-0.39) 8.2157 (0.87) 9.6458 (2.55) 10.5520 (3.81) 11.1871 (4.75)
HSSDT 6.5199 (-0.39) 8.2159 (0.88) 9.6462 (2.56) 10.5529 (3.82) 11.1878 (4.76)
HTPSDT? 6.5275 (—0.27) 8.2172 (0.89) 9.6412 (2.51) 10.5440 (3.73) 11.1771 (4.66)
HSPSDT? 6.5199 (—0.39) 8.2157 (0.87) 9.6456 (2.55) 10.5518 (3.81) 11.1866 (4.75)
HTPSDT? 6.6509 (1.61) 8.2715 (1.56) 9.6653 (2.76) 10.5560 (3.85) 11.1833 (4.71)
HSPSDT® 6.6496 (1.59) 8.2742 (1.59) 9.6728 (2.84) 10.5661 (3.95) 11.1945 (4.82)
[0°/90°]5 A 6.61 8.4143 9.8398 10.6958 11.2728
PSDT3 6.5749 (—-0.53) 8.4250 (0.13) 9.9363 (0.98) 10.8707 (1.64) 11.5150 (2.15)
TSDT 6.5748 (—0.53) 8.4249 (0.13) 9.9362 (0.98) 10.8706 (1.63) 11.5149 (2.15)
HSSDT 6.5747 (~0.53) 8.4249 (0.13) 9.9362 (0.98) 10.8705 (1.63) 11.5146 (2.14)
HTPSDT? 6.5836 (—0.4) 8.4330 (0.22) 9.9464 (1.08) 10.8849 (1.77) 11.5345 (2.32)
HSPSDT? 6.5749 (—-0.53) 8.4250 (0.13) 9.9363 (0.98) 10.8707 (1.64) 11.5151 (2.15)
HTPSDT® 6.7062 (1.46) 8.4847 (0.84) 9.9684 (1.31) 10.8953 (1.87) 11.5397 (2.37)
HSPSDT® 6.7040 (1.42) 8.4810 (0.79) 9.9616 (1.24) 10.8833 (1.75) 11.5218 (2.21)
[0°/90°]5 A 6.6458 8.5625 10.0843 11.0027 11.6245
PSDT3 6.6033 (—0.64) 8.5321 (-0.36) 10.0850 (0.007) 11.0349 (0.29) 11.6861 (0.53)
TSDT 6.6032 (—0.64) 8.5320 (—0.36) 10.0848 (0.005) 11.0347 (0.29) 11.6858 (0.53)
HSSDT 6.6031 (—0.64) 8.5318 (~0.36) 10.0846 (0.003) 11.0343 (0.29) 11.6851 (0.52)
HTPSDT? 6.6125 (-0.5) 8.5424 (-0.23) 10.1002 (0.16) 11.0568 (0.49) 11.7056 (0.7)
HSPSDT? 6.6033 (—0.64) 8.5321 (~0.36) 10.0850 (0.007) 11.0350 (0.29) 11.6862 (0.53)
HTPSDT® 6.7348 (1.33) 8.5930 (0.36) 10.1213 (0.37) 11.0668 (0.58) 11.7205 (0.83)
HSPSDT® 6.7323 (1.30) 8.5870 (0.29) 10.1090 (0.24) 11.0470 (0.40) 11.6926 (0.59)
[0°/90°/90°/0°] A 6.6815 8.2103 9.563 10.272 10.752
PSDT3 6.6494 (—0.48) 8.3223 (1.36) 9.8488 (3.02) 10.6980 (4.15) 11.3036 (5.13)
TSDT 6.6493 (—0.48) 8.3222 (1.36) 9.8486 (3.02) 10.6977 (4.14) 11.3032 (5.13)
HSSDT 6.6492 (—0.48) 8.3220 (1.36) 9.8482 (3.01) 10.6971 (4.14) 11.3023 (5.12)
HTPSDT? 6.6588 (—0.34) 8.3336 (1.50) 9.8663 (3.20) 10.7233 (4.39) 11.3376 (5.45)
HSPSDT? 6.6494 (—0.48) 8.3224 (1.37) 9.8489 (3.02) 10.6981 (4.15) 11.3038 (5.13)
HTPSDT® 6.7510 (1.04) 8.6537 (5.40) 10.2070 (6.76) 11.1631 (8.68) 11.8224 (9.96)
HSPSDT® 6.7483 (1.00) 8.6468 (5.31) 10.1924 (6.61) 11.1398 (8.45) 11.7900 (9.66)

" A: 3D elasticity solution [56]. Superscripts a and b denote the cases of including and neglecting the effect of thickness stretching for HTPSDT and HSPSDT, respectively. For
PSDT3, TSDT, and HSSDT, the effect of thickness stretching is included. Numbers in parentheses are percentage errors relative to 3D elasticity solutions.
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Table 5

Comparison of non-dimensional natural frequencies = wa?/h, /(p/E2)(AT = 0) of 5-
layer antisymmetric sandwich square plates [0°/90°/Core/0°/90°] with h./h; = 10
(Material 2).

Theory a/h
10 20 50 100

A 4.8594 8.5955 13.6899 15.5093
B 7.0473 11.2664 15.0323 15.9522
C 7.0473 11.2664 15.0323 15.5522
PSDT3 5.0032 8.9424 13.7946 15.5333
TSDT 5.0242 8.9455 13.8023 15.5356
HSSDT 5.0479 8.9891 13.8183 15.5403
HTPSDT 4.9720 8.9196 13.7851 15.5191
HSPSDT 4.9194 8.9162 13.8005 15.5324

" A: Results from Kant and Swaminathan [58] with 12 unknown variables; B:
Results from Reddy [27]; C: Results from Senthilnathan et al. [59].

where i = V=1, 2=mn/a, u=nn/b, and (Unn Vian, Wamn Wemn,
Zmn) are arbitrary parameters (to be determined) and o is the eigen-
frequency associated with the (m, n)th eigenmode. Upon substitut-
ing (56) into (49)(53), the dynamic equation can be expressed as the
following eigenvalue problem:

([K] — AT[Kg] — ?[M]){A} = {0} (57)

where [K] is the structural stiffness matrix, [K¢] is the geometric
stiffness matrix induced by initial in-plane thermal stresses, [M]

denotes the mass matrix, and {A} = {Unn, Vi, Womn, Womn, Zin b
for which the expressions are all presented in Appendix B. For sta-
bility analysis, Eq. (57) is reduced to:

(K] — AT[Kc]){A} = {0} (58)

Table 6
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For the present study, although all the eigenvalues and eigen-
vectors can be computed using the above method for each defor-
mation mode of m and n, the dominant -eigenvalues
corresponding to the lowest natural frequencies and minimum
critical temperature variations are of particular concern.

For CPT, SFDT and other higher-order theories without consid-
ering thickness stretching effect, the solution procedures are simi-
lar to those outlined above but are associated with less unknown
variables and hence are not shown here.

4. Numerical results and discussions
4.1. Validation studies

4.1.1. Comparison with literature results

In Tables 3-6, the natural frequencies and critical temperature
changes predicted by the present theories are compared with
existing results, with relevant material properties employed in this
subsection listed in Table 2. Tables 3 and 4 present dimensionless
natural frequencies of simply supported multilayered cross-ply
laminated composite square plates for selected modulus ratios
(E1/E2) and side-to-thickness ratios (a/h). Tables 5 and 6 present
dimensionless natural frequencies and critical temperature
changes of simply supported sandwich square plates with multi-
layered cross-ply laminated face sheets.

The results of Tables 3-6 demonstrate that, for all the parame-
ters considered, the frequency values and critical temperature
changes predicted by the present RSTs (i.e., PSDT3, TSDT, HSSDT,
HTPSDT, and HSPSDT) are in good agreement with those obtained
using 3D elasticity solutions [56,57] and other higher order shear
theories [58,59]. Nonetheless, the present RST models somewhat
overestimate the fundamental frequencies and critical

Comparison of non-dimensional critical temperature change AT :AToc£ for symmetric sandwich square plates with 10-layer cross-ply laminated face sheets

([0°/90°]5[Core][90° /0°]5, Material 3).

a/h Theory h¢ [h
0.025 0.05 0.075 0.1 0.15

10 A 0.3220 0.2737 0.2358 0.2072 0.1632
PSDT3 0.3379 (4.94) 0.2862(4.57) 0.2445 (3.69) 0.2144 (3.47) 0.1709 (4.72)
TSDT 0.3379 (4.94) 0.2861 (4.53) 0.2445 (3.69) 0.2144 (3.47) 0.1709 (4.72)
HSSDT 0.3377 (4.88) 0.2860 (4.50) 0.2444 (3.65) 0.2144 (3.47) 0.1710 (4.78)
HTPSDT 0.3384 (5.09) 0.2889 (5.55) 0.2474 (4.92) 0.2158 (4.15) 0.1691 (3.61)
HSPSDT 0.3381 (5.00) 0.2862 (4.57) 0.2445 (3.69) 0.2144 (3.47) 0.1709 (4.72)

20 A 0.0929 0.0855 0.0791 0.0726 0.0623
PSDT3 0.0971 (4.52) 0.0887 (3.74) 0.0812 (2.62) 0.0748 (3.03) 0.0651 (4.49)
TSDT 0.0971 (4.52) 0.0887 (3.74) 0.0812 (2.65) 0.0748 (3.03) 0.0651 (4.49)
HSSDT 0.0970 (4.41) 0.0886 (3.63) 0.0812 (2.62) 0.0748 (3.03) 0.0651 (4.49)
HTPSDT 0.0977 (5.17) 0.0895 (4.68) 0.0819 (3.54) 0.0753 (3.72) 0.0650 (4.33)
HSPSDT 0.0971 (4.52) 0.0887 (3.74) 0.0812 (2.62) 0.0748 (3.03) 0.0651 (4.49)

" A: 3D elasticity solutions [57]. Numbers in parentheses are percentage errors relative to 3D elasticity solutions.

Table 7
Mechanical properties of (a) foam and (b) base material of face sheets and corrugated panel.’

Material Density Young's modulus Shear modulus Poisson ratio Thermal expansion coefficient

(a) Foam py (glem®) E (MPa) - vy of (1075/K)

Rohacell 31 (R31) 0.031 36 —_ 0.2 37

Rohacell 51 (R51) 0.052 70 —_ 0.3 33

Rohacell 71 (R71) 0.075 105 — 0.25 30

Alporas (aluminum) 0.230 1000 — 0.15 22

(b) Base material o, (glcm?) Es (GPa) Gs (GPa) v a5 (107%/K)

304 stainless steel 7.9 210 - 0.3 12

Ti-6AI-4V 4.43 114 —— 033 8.6

T700/3234 composite 1.55 E; =110, Gz =4, 013 =0.32, o =042,

E, =8.7, Gi3 = Gy V13 = V12 o =28,
E3 = Ez 623 = 4, U3 = 0.3 o3 = 0l
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Table 8

Comparison of dimensionless natural frequencies @ = 100wa,/(p/E;), and critical
temperature changes AT, = AT 0l x 10° of R31 foam-filled composite corrugated
sandwich plates with 4-layer cross-ply laminated face sheets ([0°/90°],[Core]
[90°/0°],; for the corrugated core, t/l=0.05, b/a=1, 0 =45°, hy;/h=0.10, and
corrugation fiber is perpendicular to the prismatic direction).

a/h Methods @ with AT =0 AT,
24 FEM 17.984 29.955
HTPSDT 17.146 28.510
HSPSDT 17.146 28.525
48 FEM 9.025 7.544
HTPSDT 8.683 7.300
HSPSDT 8.687 7.306
72 FEM 5.862 3.323
HTPSDT 5.803 3.259
HSPSDT 5.805 3.262
T T T v T T T
40 - —a— T700/3234 composite
—ae— 304 stainless steel
—a— Ti-6Al-4V
30 -
e
< 2} -
10 -
0 1 1 1 1 1 1
0.0 0.5 1.0 15 2.0 25 3.0
bla
(a)
60 2 T : T 2 T s T T x T
AT =0
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—a— Ti-6Al-4V
40 | 4
IS 30 | .
20 | -
10 + e
@ & - .
o 1 1 1 1 1 1
0.0 0.5 1.0 1.5 2.0 2.5 3.0

temperature changes, since the assumed displacement field cannot
account for significant change of materials properties between
adjacent layers. Table 3 shows that the prediction error associated
with the present RSTs relative to 3D elasticity solutions increases
with increasing E;/E; and decreases with the increase in layer
number. Results obtained from the present RST models with effect
of thickness stretching taken into account are more or less the
same. The natural frequencies of cross-ply laminated composite
plates obtained by neglecting thickness stretching are slightly
overestimated in comparison with those calculated with thickness
stretching included, which is similar to the case of functionally
graded plates [60]. Moreover, the HSPSDT appears to yield better
predictions than HTPSDT. Unless otherwise stated, RST models
with thickness stretching included are employed in subsequent
discussions.

4.1.2. Finite element validation

It should be noted that at present there exists no study, either
theoretical or experimental, on the vibration and buckling
behaviors of foam-filled composite corrugated sandwich plates.

¥ 1
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Fig. 4. Effect of aspect ratio b/a on (a) critical temperature change AT, (b) nondimensional critical temperature change #, (c) natural frequency @, and (d) nondimensional

natural frequency ¢, for R31 foam-filled corrugated sandwich plates with face sheets and corrugation made of different materials (t/I =

0.05,b/a=1,0=45°, and

hy/h = 0.10). The T700/3224 composite corrugated sandwich ([0°/90°],[Core][90°/0°],) is made of 4-layer cross-ply laminated face sheets and unidirectional laminated

corrugation with fiber perpendicular to the prismatic direction.
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Fig. 5. Effect of side-to-thickness ratio a/h on (a) critical temperature change AT, (b) nondimensional critical temperature change 7, (c) natural frequency @, and (d)

nondimensional natural frequency ¢,

for R31 foam-filled corrugated sandwich plates with face sheets and corrugation made of different materials

(t/l=0.05,a/h = 50,0 = 45°, and h;/h = 0.10). The T700/3224 composite corrugated sandwich ([0°/90°],[Core][90°/0°],) is made of 4-layer cross-ply laminated face sheets
and unidirectional laminated corrugation with fiber perpendicular to the prismatic direction.

Therefore, to validate the current analysis, finite element (FE) sim-
ulations via commercially available FE code ABAQUS are carried
out. A 20-node brick element with parabolic basis function
C3D20R, which yields more accurate stresses than shell elements
in the thickness direction, is used to model the foam filler and face
sheets. Corrugated core members are modeled using an 8-node
second-order shell element S8R5 with reduced integration. The
embedded element technique is invoked to simulate the mutual
effect between foam matrix and corrugated members, where the
shell elements of corrugated panels (i.e. S8R5 as the embedded ele-
ments) are embedded in the solid elements of foam core (i.e.
C3D20R as the host elements). Perfect bonding is assumed at the
interfaces between the core and face sheets. Simply supported
boundary conditions are implemented using coupling constraints.
A linear perturbation analysis step is applied to extract the natural
frequency and critical buckling temperature change. For symmet-
ric polymer foam Rohacell 31-filled T700/3234 composite corru-
gated sandwich square plates (Table 7), the face sheets are made
of 4-layer cross-ply laminates, the corrugated members are made
of unidirectional laminates (with fiber perpendicular to the pris-

matic direction of core), and the side-to-thickness ratio a/h is var-
ied from 24 to 72, with t/I = 0.05, 6 = 45° and h;/h = 0.10.

As is shown in Table 8, good agreement between FEM simula-
tion results and theoretical predictions obtained from both the
HTPSDT and HSPSDT models is achieved. (Extra FEM simulations
have been carried out for the validation study, as shown in latter
Figs. 7 and 10.) The effectiveness of combining the homogenization
technique and the refined shear deformation plate theory is thus
demonstrated for foam-filled corrugated sandwich structures. Typ-
ically, the theoretical predictions are slightly smaller than the FEM
results, since errors in calculating the overall properties of the
equivalent continuum are inevitable. In the following section, the
HSPSDT model is employed to investigate systematically the per-
formance of foam-filled corrugated sandwich plates.

4.2. Parametric study of critical temperature change and natural
frequency

The effects of geometric and material parameters on the
thermal stability and free vibration of symmetric foam-filled
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Fig. 6. Effect of layer number of cross-ply laminated face sheets on dimensionless natural frequency and critical temperature change, with the stacking sequence classified
into symmetric type ([0°/90°],[0°]) and anti-symmetric type ([0°/90°]x): (a) b/a = 0.5 and (b) b/a = 2. Parameter K (ranging from 0 to 5) denotes layer number of face sheets.
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Fig. 7. Effect of face-to-thickness ratio hyh on critical temperature change and
natural frequency of symmetric T700/3234 laminated composite corrugated
sandwich plate having bja =1, a/h =50, t/l=0.05 and 0 = 45°. Solid symbols refer
to the theoretical predictions while hollow symbols denote the results from FEM.

corrugated sandwich plates are quantified. For convenience,
dimensionless natural frequency and critical buckling temperature
change are introduced, as:

@ =100wa,/(p/E1),, ATy = ATq0h x 10°

where the superscript/subscript | denotes laminated composite
(T700/3234). Further, to reveal the superiority of foam-filled corru-
gated sandwich plates over more conventional solid structures,
two nondimensional parameters are defined as:

n= ATcr/ATS7

(59)

{=w/ws (60)

where AT, and s are the critical temperature change and natural
frequency of a T700/3234 unidirectional laminated composite (fiber
along the x-direction) solid plate having the same weight, length,
width and boundary conditions as those of the present sandwich
plate. Then the thickness of the reference solid plate is:

h = (2hsp, + hep,)/py (61)

4.2.1. Effects of aspect ratio and side-to-thickness ratio

Figs. 4 and 5 show the effects of aspect ratio b/a and side-to-
thickness ratio a/h on the critical temperature change and natural
frequency of R31 foam-filled corrugated sandwich plates with face
sheets and corrugation made of different materials: T700/3234
graphite/epoxy laminated composite, 304 stainless steel, and Ti-
6Al-4V (Table 7). It is worth mentioning that the composite corru-
gated sandwich plate is made of cross-ply laminated face sheets
and unidirectional laminated corrugated panels.

As can be observed from Figs. 4a, c and 5 5a, ¢, the critical tem-
perature change and natural frequency decrease rapidly with
increasing b/a or a/h. The results of Figs. 4b, d and 5b, d demon-
strate that the T700/3234 composite corrugated sandwich plate
exhibits the highest structural efficiency due to the highest
stiffness-to-mass ratio of its parent material. In contrast, the sand-
wich plate made of 304 stainless steel is even inferior to the
T700/3234 composite solid plate, i.e., the reference plate. More-
over, the non-dimensional critical temperature # and frequency {
decrease as bj/a increases, but almost remain constant as a/h
increases. This implies that the structural efficiency of a foam-
filled corrugated sandwich plate decreases by increasing b/a, but
remains almost the same as a/h is varied.

Subsequent discussions are all limited to symmetric T700/3234
laminated composite corrugated sandwich plates having bj/a=1
and a/h = 50.

4.2.2. Effects of layer number and face-to-thickness ratio of cross-ply
laminated composite face sheets

Influence of layer number of cross-ply laminated composite
face sheets upon the natural frequency (plotted as a function of
temperature change) is presented in Fig. 6, for representative val-
ues of the aspect ratio b/a. The stacking sequence of the face sheets
is classified into symmetric type [0°/90°],[0°] and anti-symmetric
type [0°/90°],, where K denotes the layer number of face sheets.
It is seen from Fig. 6 that the natural frequency decreases mono-
tonically to zero when the temperature change is increased to
the critical buckling one, because the stiffness of the matrix
([K] — AT[K¢]) decreases rapidly as soon as the temperature change
reaches the critical one. It is also intriguing to find that square
sandwich plates (b/a=1) are insensitive to variations of K. In
contrast, for rectangular plates with b/a=0.5 (Fig. 6a), the critical
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Fig. 8. Effects of corrugation angle and fiber stacking direction of corrugation on (a) critical temperature change and (b) natural frequency of symmetric T700/3234 laminated
composite corrugated sandwich plate having b/a =1, a/h = 50, hy/h =0.10, and t/ = 0.05.

14 v T . r . - . T
Corrugation fiber parallel to PD
10 -
3
<
Corrugation fiber perpendicular to PD
6 4
—a— —aA— With thermal expansion of core
Without thermal expansion of core
2 1 1 1 1
0.00 0.05 0.10 0.15 0.20
t/1

(@

94 # T T T T
"
\ AT =0

—a— Corrugation fiber perpendicular to PD
86 L —a— Corrugation fiber parallel to PD |
IR78} \ -

\ —
70 .\ -

l\
-
\.
6.2 L 1 " 1 3 1 N 1
0.00 0.05 0.10 0.15 0.20
1/

(b)

Fig. 9. Effects of corrugation slenderness and fiber stacking direction of corrugation on (a) critical temperature change and (b) natural frequency of symmetric T700/3234
laminated composite corrugated sandwich plate having b/a =1, a/h = 50, hs/h = 0.10, and 0 = 45°. In Fig. 9a, the results obtained by neglecting the thermal expansion of foam-

filled corrugated core are included as reference.

temperature change and natural frequency increase as K is
increased. In general, sandwich plates with anti-symmetric face
sheets are superior to those with symmetric face sheets; however,
the tendency is reversed for plates with b/a = 2 (Fig. 6b).

The dependence of critical temperature change and natural fre-
quency upon face-to-thickness ratio hy/h is presented in Fig. 7. Both
initially increase and then gradually decrease as hyh is increased.
The value of hyh for maximal critical temperature change is differ-
ent from that causing maximal natural frequency.

4.2.3. Effects of geometric parameters and fiber stacking orientation of
corrugation

The effects of corrugation angle and corrugation slenderness on
critical temperature change and natural frequency are shown in
Figs. 8 and 9, respectively. Two cases of unidirectional corrugation
fiber perpendicular and parallel to the prismatic direction (PD) are
considered, defined as Case A and Case B, respectively. It is seen

from Fig. 8a that the critical temperature change increases mono-
tonically with increasing 0 for Case B, but increases first and then
decreases with increasing 0 for Case A. In contrast, the natural fre-
quency increases first and then decreases with 0, peaking at
0 = 45° for both cases (Fig. 8b). As shown in Fig. 9a, as the corruga-
tion slenderness increases from 0.01 to 0.2, the critical tempera-
ture change increases for Case B and decreases for Case A. For
comparison, the results obtained by neglecting the thermal expan-
sion of foam-filled corrugated core are also presented as gray lines
in Fig. 9a. The large deviation of the gray lines from the solid lines
indicates the significant influence of sandwich core thermal expan-
sion on critical temperature change. Moreover, with the increase of
corrugation slenderness, the density of the core increases, resulting
in higher structural weight but smaller natural frequency (Fig. 9b).
The results of Figs. 8 and 9 also imply that the critical temperature
change and natural frequency for Case B are generally larger than
those for Case A.
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Fig. 10. Effects of foam material on natural frequency as a function of temperature
change for the symmetric T700/3234 laminated composite corrugated sandwich
plate (b/a=1, a/h =50, hy /h=0.10, t/=0.05 and 0=45°) having the corrugation
fiber perpendicular to prismatic direction (PD). Solid symbols refer to the
theoretical predictions while hollow symbols denotes the results from FEM. For
brevity, only the FE calculated results of sandwich plates with empty and Alporas
foam-filled corrugated cores are added in the figure.

4.2.4. Effect of foam material

To explore the influence of foam filler, Fig. 10 plots the natural
frequency as a function of temperature change for the foam mate-
rials listed in Table 7. Let RC31, RC51, RC71 and AC denote compos-
ite corrugated sandwich plates filled with Rohacell 31 (R31),
Rohacell 51 (R51), Rohacell 71 (R71), and aluminum foam (Alpo-
ras), respectively, and let Empty denote un-filled corrugated sand-
wiches. It is striking to find that foam filling slightly reduces the
natural frequency and critical temperature change of corrugated
sandwich plates by 2.4-13.7%. A stiffer foam leads to smaller nat-
ural frequency and critical temperature change, because the foam
filling contributes little to the structural stiffness but increases
the structural weight and thermal expansion coefficient. However,
the tendency may be reversed, or at least the difference between
sandwiches with and without foam-filling may be smaller in
higher frequencies due to the occurrence of local vibration modes.
Extra FE simulations (not shown here for brevity) reveal that foam
filling can effectively suppress local buckling and local vibration.

5. Conclusions

Free vibration and buckling of foam-filled composite corrugated
sandwich plates under uniform thermal loading are investigated
theoretically. The refined shear and normal deformation theory
incorporating two kinds of combinations of hyperbolic and
parabolic shear shape functions is employed, with the foam-filled

corrugated core treated as homogeneous continuum with equiva-
lent material properties. The main conclusions are summarized
as follows:

1) The present theoretical predictions are in good agreement
with the results from literature and FE simulations, validat-
ing the effectiveness of the refined shear deformation theory
with combined hyperbolic and parabolic shape functions
and the thermo-elastic homogenization procedure of foam-
filled composite corrugated sandwich cores.

2) The combined hyperbolic-sin and polynomial shear defor-
mation theory predicts better than the combined
hyperbolic-tangent and polynomial shear deformation
theory.

3) T700/3234 composite corrugated sandwich plates have the
highest structural efficiency due to the highest stiffness-to-
mass ratio of the carbon fiber-reinforced composite, com-
pared with those made of Ti-6Al-4V and 304 stainless steel.

4) Aspects including the aspect ratio, side-to-thickness ratio,
layer number and face-to-thickness ratio of cross-ply lami-
nated face sheets, together with the geometric parameters
and fiber stacking orientation of unidirectional composite
corrugation affect significantly the natural frequency and
critical temperature change of foam-filled composite corru-
gated sandwich plates. Corrugation fiber parallel to the pris-
matic direction with corrugation angle of 0 = 45° leads to
the highest natural frequency and moderately higher critical
temperature change.

5) Foam filling slightly decreases the global natural frequency
and critical temperature change of corrugated sandwich
plates by 2.4%~13.7%.

6) The present study provides an efficient approach of vibration
and stability analysis for foam-filled composite sandwich
plates subjected to mechanical and thermal loadings, and
can be extended to cover other types of sandwich or multi-
layer plate s.
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Appendix A. Detailed expressions of the thermal loads

By substituting Eq. (23) into Eq. (40), the thermal loads
N;i(i=1,2,3,4) are obtained as:

N, Azldnuo + ZAE dialio JrA)T,]dzzuo +A,€2dmwb + ZAzjdnsz +A;2d122Wb JrA?des + ZA:ygdnst +A}T,3d122Ws

N, B Azldn Vo + ZAE dipvo + A;] dyp v + Azzdnzwb + ZAEdlzzwb + A;zdzzzwb + A?dnzws + 2A§y3d122Ws + A}T,3d222Ws (A1)
N3 A;f] d]]Wb + ZAZ(; d]sz +A§] dzsz +AZ;] d]]Ws -+ ZA)];; d]zWS +A§1 dzst +A§4d]] ©»,+ ZAS,ld]z(pz +A§4d22 @, .
N4

AI4dHWb + ZAI;dqu +A§4d22Wb +A§4d11Ws + ZAI;ans +A;4d22Ws +A§5d11 ¢, + ZA:;dn(/)z +A§5d22 0,
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AL <Qn—3—;;>ocx+(qu—flggzs>oc +(Qus -
Ay (=20 | Fi@)) (@i — %220+ Qa2 ~ §2)% + (Qas -
Ti n=1 -1
A (Qra — B322)00, + (Qzy — Qg—gn)owm

The functions F;(z) (i=1,2,..,5) are expressed by:

{F1(2),F2(2),F3(2),F4(2), Fs(2)} = {1,2.f(2),8(2),8°(2)} (A3)
Appendix B. Elements of [K], [K;] and [M] matrices
The structural stiffness matrix is:
k11 kl,z k1,3 kia kl,s
ka2 k2,3 k2,4 kz,s
K] = kss Kksa kss (B.1)
symmetric kaa Kas
ks,s
where
kit =Ani® +Assp? ko = (Arp +As3) 2,
kis = —[Bi1/% + (Biz + 2B33) 1],
kia = —[By; 2 + (B, +2B33) )2, kis = —LiZ,
ka2 = As3i? + Api® ka3 = —[(B1z + 2Bs3) 4% + By 2],
kya = —[(B}, +2B33) 2" + By [Pl ks = —Lopt,
k33 = D112* + (2D1y +4D33) /2 % + Dy i,
ksa = Dy, 2% + (2D, + 4D55) 22 2 + Dy, pi?,
k35 = Lb;» +L2,Ll s
kaa = Hj 2% + (QHS, + 4H3) 2 12 + Ha, 1t + A3, 72 + Ay 12,
kas = (L3 +Ajp) 22 + (L + A% 12,
kss = A}, 2% + A2 + R (B.2)

The geometric stiffness matrix induced by initial in-plane ther-
mal stresses is:

ki ki, ki3 kiy ki
k3i k3, ki3 k34 K3
Kol = | k5, k5, k5, ki, k (B.3)
kf.] k&> kfa ka kf,s
KE, kS, K&, kE, KE
where
ki, =AY 2+ A 2 kS, = 0,kEy = —(A7P 22 + A 1i2),
ks = —(AC 72 + A7 1) ks = Oksy =0,
k3 = ki1 ks = ~(AP + ATZ.“ VK3 4 = ~(A# +A,T,3ﬂ2)/17
ks =0kS, =0,k5, =0,ki5 = ki ki, = ki,
k§s =AU 22+ AT 2 ke = kS, (i=1,2,...,5)ki; = 0,ks, =0,
kEs = K§s. kS = kis ks = A2 +A,T,5ﬂ (B.4)
The mass matrix is:
myq my M3 Myg Mys
myo Mmp3 Mg Mys
(M] = M33 M3g M3s (B.5)
symmetric Maga Mas
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Q13Q34)a
Q253Q34)ocxy dz, (i=1,2,...,5) (A2)
)y
where
Mg =l,My=0, miz=-hi ma=-I4i, mMs=0,
Myy =My, Myz=—DLU, Mys=-Lyyu, mys=0,
Msz =1 + 02+ 12), mag=1 +I5(2>+12), mss =1,
Mya = +1s(22 + (), Mys =mss,
Mss =Ig
(B.6)
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