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Abstract The deformation of capsules (i.e., cells, bacte-

rial) in microscale flows plays an important role in biofluid

flows such as blood flow in capillaries and cell manipula-

tion in microfluidics. In previous studies on capsule

deformation in microscale flows, the inertia effect was

often assumed to be negligible and thus omitted. However,

this assumption may not reflect real situations, as indicated

by recent studies of inertial microfluidics. As such, we

aimed to study the inertia effect on capsule deformation in

microscale flows and to determine under which conditions

this effect may be omitted. Using a collocated grid pro-

jection scheme, we developed a finite difference-front

tracking method, and investigated the deformation of vis-

coelastic capsules in microscale flows for Reynolds number

(Re) ranging from 0.01 to 10 as seen in vitro and in vivo.

The results showed that the transient and steady-state

deformation of capsules was significantly affected by

inertia, and the flow structure varied considerably when Re

was varied from 0.1 to 10. No significant changes were

found for Re ranging from 0.01 to 0.1, and hence the inertia

effect on capsule deformation in the microscale flows can

be omitted when Re is less than 0.1. These findings

improve the current understanding of the mechanism

underlying cell movement in capillaries and can be applied

to optimize the conditions for cell manipulation and sep-

aration in microfluidic devices.

Keywords Inertia � Capsules � Deformation �
Microscale flows � Microfluidics

1 Introduction

Fluid flows with suspending capsules (i.e., cells, bacterial)

are common in both biological processes and bioengi-

neering microfluidics, such as blood flow in capillaries

(Popel and Johnson 2005; McWhirter et al. 2009), cell

migration and adhesion during inflammations (Ley et al.

2007), as well as cell manipulation and separation in

microfluidic devices (Didar and Tabrizian 2010). For flow

occurring at a microscale level, the deformation of capsules

becomes extremely important for flow characteristics. For

example, the high deformability of red blood cells renders

them the capability to flow through capillaries (Eggleton

and Popel 1998; Bagchi 2007), and the deformation of

leukocytes increases their contact area with endothelial

cells, strengthening cell adhesion to vascular wall (Dong

et al. 1999; Jadhav et al. 2005; Luo et al. 2011a). Besides,

cell sorting microfluidic devices have been developed
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based on cell deformability (Beech et al. 2012; Hou et al.

2010; Hur et al. 2011). However, as the mechanisms

underlying capsule deformation in microscale flows are not

yet completely clear, the understanding of relevant bio-

logical processes and the development of bioengineering

microfluidic devices are restricted. Investigations on the

mechanisms of capsule deformation are therefore essential

to further studies on biological processes and bioengi-

neering microfluidics.

Since it is challenging to precisely control microscale

flow conditions and image minute changes in experiments,

theoretical modeling has been widely employed in capsule

deformation studies (Ramanujan and Pozrikidis 1998;

Pozrikidis 2001; Lac and Barthes-Biesel 2005; Yue et al.

2005b; Sui et al. 2007; Chung et al. 2008; Foessel et al. 2011;

Luo et al. 2011b; Abkarian and Viallat 2008). However, the

inertia effect on capsule deformation was often neglected,

which may not reflect real situations of biological processes

and bioengineering microfluidics. In fluid mechanics, inertia

is defined as the resistance to changes of fluid motion, which

is usually quantified by the Reynolds number Re (the ratio of

inertial forces to viscous forces). As the Reynolds number

associated with microscale flows is typically low (\1),

inertia is generally assumed to have little or no contribution

to microfluidic phenomena including capsule deformation

(Di Carlo 2009). Further, accounting for the inertial effect on

capsule deformation will remarkably increase the com-

plexity of theoretical modeling. However, results from

recent studies on inertial microfluidics indicate that inertia

may affect fluid velocity around capsules in microscale

flows, thus affect capsule deformation and migration (Di

Carlo et al. 2007; Di Carlo 2009; Wu et al. 2009). For

instance, inertia can significantly promote the deformation of

Newtonian capsules (a Newtonian fluid surrounded by an

elastic membrane) (Sui et al. 2009) and liquid drops (a

Newtonian fluid without an elastic membrane) (Sheth and

Pozrikidis 1995) for moderate Reynolds numbers (between 1

and 100). Since the Reynolds number in microscale flows

in vitro and in vivo is often less than 1 (Stone and Kim 2001;

Squires and Quake 2005), whether and when the inertial

effect on capsule deformation may be omitted in microscale

flows remains unknown.

In this study, we developed a mathematical model to

investigate the conditions under which the inertial effect on

capsule deformation in microscale flows may be omitted

within the physiologically meaningful Re range of 0.01–10.

To this end, a finite difference-front tracking method was

employed, in which a collocated grid projection scheme

was used to solve the full Navier–Stokes equations. Pre-

dictions from this model showed that the inertial effect on

capsule deformation may be omitted only when Re was less

than 0.1. This study provides new insights into microscale

flows with suspending capsules, furthering the current

understanding of biological processes and design of bio-

engineering microfluidic devices.

2 Computational method

2.1 Flow configuration

With reference to Fig. 1, a linear shear flow was employed

to investigate the inertia effect on capsule deformation,

which has been extensively used in previous theoretical

modeling of capsule deformation (Eggleton and Popel

1998; Ramanujan and Pozrikidis 1998; Lac and Barthes-

Biesel 2005; Yue et al. 2005b; Chung et al. 2008; Foessel

et al. 2011). An initially spherical viscoelastic capsule with

radius R is placed in the center of a computational domain

having length L and height H. The upper and bottom

boundaries (plates) of the domain are moved in opposite

directions with constant velocity U, generating a linear

shear flow with shear rate k = 2U/H. The viscoelastic

capsule is composed of a viscous fluid (density q1 and

viscosity l1) and the surrounding elastic membrane (stiff-

ness Eh, E being the shear modulus of elasticity and h the

thickness of the membrane). The capsule is immersed in a

Newtonian fluid such as plasma of density q0 and viscosity

l0, and the fluid flow is taken as incompressible.

2.2 Governing equations

The incompressible fluid flow is governed by mass and

momentum conservation equations, given by:

Fig. 1 Schematic diagram of viscoelastic capsule deformation under

linear shear flow. The viscoelastic capsule was modeled as visco-

elastic fluid (density q1 and viscosity l1) surrounded by an elastic

membrane (stiffness Eh). Surrounding fluid is Newtonian with density

q0 and viscosity l0. Deformation of the capsule is characterized by

dimensionless deformation index D and orientation angle h
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r � u ¼ 0 ð1Þ
o quð Þ

ot
þr � quuð Þ ¼ r � sþ F ð2Þ

where u is the velocity vector, q and t are the density and

time, F is the body force generated from the elastic

membrane, and s is the total stress tensor calculated by:

s ¼ �pIþ ls ruþ ruð ÞT
� �

þ Tp ð3Þ

Here, p and I are the pressure and unit tensor, ls is the

solvent viscosity (the Newtonian part of the fluid), and Tp

is the extra stress tensor (or viscoelastic stress) from the

non-Newtonian part, which is governed by the Oldroyd-B

constitutive equation (Boger 1977; Bird and Wiest 1995):

k
oTp

ot
þ ðu � rÞTp � Tp � ðruÞ � ðruÞT � Tp

� �

þ Tp ¼ lp½ruþ ruð ÞT � ð4Þ

where k and lp are the relaxation time and polymeric

viscosity of the non-Newtonian part. The total viscosity of

the viscoelastic fluid is the sum of the solvent viscosity and

the polymeric viscosity.

2.3 Numerical implementation

Initially, the spherical viscoelastic capsule is placed in the

center of the computational domain, where the initial flow

is a linear shear flow characterized by velocity field

u = (ky – U, 0); see Fig. 1. Initially, zero value of the

extra stress tensor Tp is set for the Oldroyd-B constitutive

equation. Non-slip boundary condition is imposed at the

upper and bottom boundaries. The slip lengths are reported

experimentally in the range of molecular lengths to hun-

dreds of nanometers (Lauga et al. 2007). It is appropriate to

assume non-slip boundary conditions at solid–liquid

boundaries when typical dimensions of systems are larger

than tens of micrometers (Worner 2012). In our system, the

typical dimension is 30–160 lm and thus it is reasonable to

use the non-slip boundary condition. Periodic boundary

condition is applied for x-direction (flow direction)

boundaries. At all the boundaries of the computational

domain, the fluid is Newtonian and the extra stress is

always zero, and thus no special boundary conditions are

needed for the extra stress.

The moving interface (i.e., the elastic membrane) is

tracked using the front tracking method developed by

Tryggvason and co-workers (Unverdi and Tryggvason

1992; Tryggvason et al. 2001). In this method, the velocity

field and the extra stress of the two-phase flow (capsule and

surrounding fluid) are solved by a single set of equations

(i.e., Eqs. 1, 2 and 4), with changing properties across

the interface (i.e., density, solvent viscosity, polymeric

viscosity and relaxation time) similar to that in single-

phase systems. An indicator function I(x, t), with value 1

inside the capsule and 0 outside, is constructed for the

changing properties, as:

/ðx; tÞ ¼ /0 þ ð/1 � /0ÞIðx; tÞ ð5Þ

where / represents the changing properties including q, ls,

lp and k. The indicator function is obtained by solving the

Poisson equation (Unverdi and Tryggvason 1992; Sarkar

and Schowalter 2000) given below:

r2Iðx; tÞ ¼ r �
X

l

Dðx� xðlÞÞn lð ÞDs lð Þ

" #

ð6Þ

where n(l), x(l) and Ds(l) are the unit normal vector, centroid

and length of a discrete line segment l of the membrane,

and D is the delta distribution function defined in Eq. 7.

The elastic force on the membrane is distributed onto

Eulerian grids and introduced as a source of body force

using the distribution function as (Peskin 1977; Unverdi

and Tryggvason 1992):

Dðx� x0Þ ¼
1

4h
1þ cos

pðx� x0Þ
2h

� �� �
for x� x0j j � 2h

0 for x� x0j j[ 2h

8
><

>:

ð7Þ

where x0 is the position of an arbitrary point on the elastic

membrane and h is the Eulerian grid size.

To obtain the elastic force on the surrounding elastic

membrane, the classical Hooke’s law is employed as the

constitutive equation of the elastic membrane for its sim-

plicity and ability to effectively capture the general fea-

tures of the capsule membrane (Jadhav et al. 2005). More

complex constitutive equations for the membrane can be

easily implemented into the present model. Then, the ten-

sion Te on a one-dimensional (1D) elastic membrane in 2D

simulation may be calculated as (Bagchi et al. 2005;

Bagchi 2007):

Te ¼ Eh e3=2 � e�3=2
� 	

ð8Þ

where e is a stretch ratio of undeformed length to deformed

length of a line segment that connects two adjacent

Lagrangian grid points on the membrane.

A second order projection method based on the collo-

cated grid system is used to solve the governing equations.

In this method, the solution procedure includes three steps,

as follows:

u� � un

Dt
¼ Convective unð Þ þ Stress unð Þ þ Bodyforce unð Þ

ð9Þ

r2p ¼ r � u
�

Dt
ð10Þ
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unþ1 ¼ u� � Dt � rp: ð11Þ

An intermediate velocity field u* is first solved (Eq. 9)

to decouple the pressure computation into the second step

(Eq. 10). The velocity field in the next step un?1 is then

obtained by correcting the intermediate velocity field u*

using the pressure (Eq. 11).

The staggered grid system traditionally employed to

ensure full coupling between pressure and velocity is com-

plicated, since the pressure and velocity need to be calculated

on different grid nodes. In contrast, with the collocated grid

scheme, the pressure and velocity are calculated on the same

grid nodes, thus much easier to be implemented than the

staggered grid scheme. However, insufficient pressure–

velocity coupling in projection methods using the collocated

grid system may induce checkerboard oscillations and thus

limit their application. To address this challenge, we devel-

oped a pressure-weighted interpolation instead of the tradi-

tional linear interpolation for fluxes interpolation that

determines the pressure–velocity coupling, as:

Fu
iþ1=2;j ¼

uiþ1;j þ ui;j

2
� Dt

piþ1;j � pi;j

Dx

Fv
i;jþ1=2 ¼

vi;jþ1 þ vi;j

2
� Dt

pi;jþ1 � pi;j

Dy

ð12Þ

The projection method ensures a second order temporal

accuracy for unsteady flow. The Crank–Nicholson semi-

implicit technique is employed to update the diffusion term

for stability, whilst the Adams–Bashforth method is used to

update other terms including advection, pressure, body

force and membrane advection equation. The pressure

Poisson equation is solved by using the alternating

direction implicit scheme and multi-grid techniques. The

standard central difference scheme is employed to spatially

discretize the governing equations except the constitutive

equation. The first order upwind scheme is used to

discretize the convective term of the constitutive term for

convergence (Sarkar and Schowalter 2000).

2.4 Non-dimensionalization

The non-dimensional parameters include: Reynolds num-

ber Re = q0kR2/l0, dimensionless stiffness G = l0kR/Eh,

Deborah number De = kk, density ratio kq = q1/q0, sol-

vent viscosity ratio kls = ls1/ls0, ratio of polymeric vis-

cosity to solvent viscosity for viscoelastic fluid inside the

capsule b1 = lp1/ls1. For simplicity and focusing on the

inertia effect on capsule deformation, we fix kq = kls =

b1 = 1. The Taylor parameters (deformation index D and

orientation angle h) are used to characterize the capsule

deformation, with D = (Lmax-Lmin)/(Lmax ? Lmin) where

Lmax and Lmin are the maximum and minimum axis of the

capsule and h is the angle between the maximum axis of

the capsule and the x-axis (Fig. 1).

3 Results

3.1 Convergence and validation

In the previous section, a computational model based on a

finite difference-front tracking method has been developed to

investigate the inertia effect on capsule deformation in

microscale flows. To ensure the accuracy of our code, a con-

vergence study was implemented including eliminating the

effects of computational domain size and grid resolution on

capsule deformation. For this purpose, we tested three com-

putational domain sizes (L = H = 12R, 16R and 20R) and

three Eulerian grid systems (10, 20 and 30 grids for one cap-

sule having radius 1R). The predicted temporal evolution of

deformation index D and orientation angle h for these three

computational domain sizes and three grid systems was shown

in Fig. 2. The steady-state deformation (Ds and hs) for capsule

deformation attained small numerical errors: (Ds
20R - Ds

16R)/

Ds
16R = 0.032 %, (hs

20R - hs
16R)/hs

16R = 0.63 %, (Ds
30 -Ds

20)/

Ds
20 = 0.13 %, (hs

30 - hs
20)/hs

20 = -0.41 % at Re = 1, G =

0.12. Therefore, the computational domain size of 16R and

Eulerian grid system of 20 grids for 1R were used for all later

computations. Besides, the ratio of Lagrangian grid length to

Eulerian grid length is fixed at 0.5 for all computations,

which was validated to be sufficient for capturing important

features of capsule deformation (Sui et al. 2009).

We next validated our model by comparing its prediction

on capsule deformation with other theoretical modeling

efforts. Firstly, the deformation of Newtonian capsule (a

Newtonian fluid surrounded by an elastic membrane) in linear

shear flow was simulated to validate the model for the elas-

ticity of capsule membrane. The predicted steady-state

deformation (Ds and hs) versus dimensionless stiffness G was

compared with Breyiannis’s (Breyiannis and Pozrikidis 2000)

and Sui’s (Sui et al. 2009) simulations (Fig. 3a). We predicted

higher values of Ds than Breyiannis’s results and lower values

than Sui’s results. But the largest discrepancy between our

results and Breyiannis’s as well as Sui’s results was separately

4.6 and 2.8 % for all the range of G, which validated our code

for the case of capsule membrane elasticity. To validate our

code for the viscoelasticity of the fluid inside the capsule, we

simulated the deformation of a viscoelastic drop (a visco-

elastic fluid surrounded by an interface with constant surface

tension r) in Newtonian fluid matrix under linear shear flow.

We compared our results with Chinyoka’s numerical results

(Chinyoka et al. 2005) for capillary numbers Ca = 0.24 and

Ca = 0.6 (Ca = l0kR/r), while keeping all other parameters

(Re, Ca, kq, kls, klp and b1) equivalent to those used by

Chinyoka. The time evolution of drop shape and deformation

index D was accurately reproduced (Fig. 3b). The difference

of deformation index D at t = 3 between our results and

Chinyoka’s was only 2.74 and 1.03 % for G = 0.24 and

G = 0.6, respectively.
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3.2 Transient deformation

The transient deformation of a capsule reflects its response

to the change of external fluid flow, which is common in

microscale flows in vivo and in vitro. So we firstly studied

the transient deforming process of a viscoelastic capsule

(Fig. 4). Undershoot of the orientation angle h and over-

shoot of the deformation index D were presented in our

simulations, which was also observed in previous studies

on the deformation of viscoelastic drops (Yue et al.

2005a). However, we found this trend of capsule transient

deformation was strongly dependent upon inertia. For

Fig. 2 Numerical performance. a, b is temporal evolution of deformation index D and orientation angle h under various computational domain

sizes; c, d is temporal evolution of deformation index D and orientation angle h under various grid resolutions

Fig. 3 Validation of our code for viscoelastic capsule deformation.

a Comparison of steady-state deformation parameters (D and h) for

Newtonian capsules between our results and (Breyiannis and

Pozrikidis 2000) and (Sui et al. 2009); b comparison of transient

deformation D for viscoelastic drops between our results and

Chinyoka’s numerical results (Chinyoka et al. 2005)
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viscoelastic capsules deformed under flow conditions with

low Reynolds numbers (Re = 0.01 and 0.1), the deforma-

tion parameters (D and h) changed monotonically until the

capsule achieved the steady state. However, as the Rey-

nolds number was increased (Re = 1 and 10), damped

oscillations of the deformation parameters (D and h) were

observed. Such oscillation of transient deformation was

also observed in the deformation of Newtonian capsules

(Sui et al. 2009) and drops (Sheth and Pozrikidis 1995; Lee

and Pozrikidis 2006), only when the inertia effect was

considered. As shown in our simulations, the number of

oscillation cycles, oscillation time and amplitude signifi-

cantly increased as the Reynolds number was increased

from 1 to 10. These results indicated the transient defor-

mation of capsules was significantly affected by inertia

when Re was varied from 0.1 to 10.

To quantify the effect of inertia on the transient defor-

mation of capsules, a steady time ts for a viscoelastic

capsule of an initially spherical shape to reach steady state

was defined. The capsule deformation reached the steady

state, when the difference between the transient deforma-

tion index D and its steady value Ds was less than 1 %. The

steady time ts and the error of ts compared to its value at

Re = 0.01 versus the Reynolds number was presented in

Fig. 5. As the Reynolds number was increased from 0.01 to

10, the value of ts significantly increased from 5.1 to 48.9

for G = 0.12 (and from 2.4 to 28.8 for G = 0.009375).

However, for a capsule with dimensionless stiffness

G = 0.009375, the steady time ts at Re = 0.1 was only

4.2 % higher than that at Re = 0.01, while its value at

Re = 1 was sharply increased, 108 % higher than that at

Re = 0.01 (Fig. 5b). Similar trend for a capsule with

dimensionless stiffness G = 0.12 was observed (Fig. 5b).

These results indicated that when the Reynolds number

became higher than 0.1, inertia effect on the transient

deformation of viscoelastic capsules cannot be omitted due

to the presence of damped oscillations, and vice versa.

3.3 Steady-state deformation

A steady state (values of Ds and hs remain constant) in the

deformation of viscoelastic capsules was presented in our

simulations (Fig. 4), consistent with previous studies on the

deformation of Newtonian capsules (Eggleton and Popel

1998; Ramanujan and Pozrikidis 1998) and viscoelastic

drops (Pillapakkam and Singh 2001; Yue et al. 2005b) in

linear shear flow. The steady-state deformation parameters

(Ds and hs) plotted as functions of the Deborah number De

Fig. 4 Effects of inertia on transient deformation of viscoelastic capsules. a, b is temporal evolution of deformation index D and orientation

angle h for G = 0.12 and De = 1.0; c, d is temporal evolution of deformation index D and orientation angle h for G = 0.009375 and De = 1.0
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showed the effect of fluid viscoelasticity inside capsules, at

four Reynolds numbers (Re = 0.01, 0.1, 1 and 10) (Fig. 6).

At relatively low Reynolds numbers of 0.01 and 0.1, the

steady-state deformation index Ds decreased (as De was

increased from 0 to 1) and then increased (as De was

increased from 1 to 3), which was also observed for vis-

coelastic drop deformation at Re = 0 (Chung et al. 2008).

However, when Re was within 1 and 10, the variation of De

had no obvious influence on Ds (Fig. 6a, c). In comparison,

the orientation angle hs monotonically increased with

increasing De for all values of Re. It is noteworthy that the

effect of De on hs increased as Re was reduced from 10 to

0.1, but had no significant change when Re was decreased

further from 0.1 to 0.01. These results showed the influence

of De on the steady-state deformation of viscoelastic cap-

sules sharply decreased when the inertia effect became

larger (Re = 1 and 10).

The influence of inertia upon the steady-state deformation

of viscoelastic capsules was next presented, for Reynolds

numbers ranging from 0.01 to 10, with the Deborah number

De fixed at 1.0 (Fig. 7). The deformation index Ds and ori-

entation angle hs sharply increased as the Reynolds number

Fig. 5 Effects of inertia on the time ts (taken for the viscoelastic capsule to reach steady state). a ts versus Re; b errors of ts compared to the value

of ts at Re = 0.01 (ts = 5.1 for G = 0.12 and ts = 2.4 for G = 0.009375) versus Re

Fig. 6 Variation of steady-state deformation of viscoelastic capsules with De at selected Reynolds numbers. a, b is for G = 0.009375; c, d is for

G = 0.12
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Re increased from 0.1 to 10, but changed little when Re

varied in the low range, from 0.01 to 0.1. For instance, for a

capsule with dimensionless stiffness G = 0.12, compared to

the case of Re = 0.01, whilst the values of Ds and hs at

Re = 0.1 were only 2.6 and 7.7 % larger, the corresponding

values at Re = 1 sharply increased to 20.7 and 39.2 % larger

(Fig. 7a, b). Besides, inertia significantly affected the steady-

state shape of the viscoelastic capsule( Fig. 7c, d). When the

Reynolds number was relatively high (Re = 1 and 10), both

sides of the capsule became flat even concave into the cap-

sule inside, other than convex into the capsule outside at

Re = 0.01 and 0.1. Nevertheless, the steady-state shape of

the capsule changed little when Re was increased from 0.01

to 0.1, maintaining the elliptical shape for all the low values

of Re (e.g., Re = 0.01 and 0.1), especially for capsules with

high membrane stiffness (e.g., G = 0.009375). These results

showed that the inertia effect on the steady-state deformation

of viscoelastic capsules became significant when the Rey-

nolds number became larger than 0.1, and vice versa.

3.4 Flow structure

The kinematic structure of flow around and inside a vis-

coelastic capsule is essential in several research areas, e.g.,

shear stress distribution for the function of subcellular

components, mass transport across the capsule membrane

for drug delivery, and shear forces on the capsule for cell

manipulation. As the Reynolds number was increased from

0.1 to 10, the flow structure inside and around the visco-

elastic capsule was significantly affected by inertia

(Fig. 8). Previous simulations on the deformation of

Newtonian capsules (Sui et al. 2009) and drops (Sheth and

Pozrikidis 1995) for Reynolds numbers ranging between 1

and 100 also revealed a strong inertia effect on flow

structure. The orientation angle of the internal streamlines

decreased as Re was increased from 0.1 to 10, which may

be the reason for increasing capsule orientation angle with

increasing Re. In addition, when Re became as large as 10,

the streamline around the capsule exhibited bent shape

instead of parallel to capsule membrane observed for

smaller values of Re (e.g., 0.01, 0.1 and 1). This bent

streamline may change the process of mass transport across

the capsule membrane as well as the shear force acting on

the capsule. Besides, the flow intensity inside the capsule

decreased as Re was increased from 0.1 to 10 (Fig. 8b–d),

which may decrease the magnitude of the shear stress and

change its distribution inside the capsule. However, when

Re was increased from 0.01 to 0.1, the flow structure

Fig. 7 Effects of inertia on steady-state deformation of viscoelastic

capsules. a, b is D and h (values and errors compared to the value at

Re = 0.01) at steady state when De = 1.0; c, d is steady-state shape

of initially spherical capsule at G = 0.12 and G = 0.009375 when

De = 1.0
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around and inside the capsule maintained the same pattern,

and the flow intensity inside the capsule exhibited no sig-

nificant change (Fig. 8a, b). These results demonstrated

that the inertia effect on flow structure around and inside

viscoelastic capsules cannot be neglected when the Rey-

nolds number became higher than 0.1.

3.5 Cell deformation in microchannel

In the microcirculation, the in vivo microscale flow often

happens in the microvessel with diameter less than 100 lm

(Popel and Johnson 2005). The microchannel height is also

typically around 100 lm in microfluidics for cell manipu-

lation and separation (Stone and Kim 2001; Squires and

Quake 2005). Thus, we studied capsule deformation in a

microchannel with the height H = 4R to investigate how

the channel wall affects the inertia effect. Besides, material

properties of actual cells (e.g., leukocytes) may be in an

enormous range (Tsai et al. 1993; Chien et al. 1987), so we

also investigated the inertia effect on the deformation of

leukocytes in microscale flows. Parameter values for actual

leukocyte deformation are listed in Table 1.

Capsule deformation was found to increase with

decreasing microchannel height for Reynolds numbers

ranging from 0.01 to 1, consistent with previous studies on

drop deformation for Re = 0 (Chung et al. 2008). For

example, the deformation index Ds increased from 0.34 to

0.42 as the microchannel height H was decreased from

16R to 4R for Re = 0.01 (Figs. 3a, 9a). Nevertheless, the

inertia effect on capsule deformation in the microchannel

with the height of 4R was still significant for Reynolds

numbers ranging from 0.1 to 10, but this effect was small at

low Re (Re = 0.01 and 0.1). For instance, compared to the

case of Re = 0.01, whilst hs at Re = 0.1 was only 0.91 %

larger, the corresponding value of hs at Re = 1 sharply

increased to 9.3 % larger (Fig. 9a, b). Besides, leukocyte

Fig. 8 Velocity vectors and stream patterns around viscoelastic capsule at steady state for G = 0.12 and De = 1.0, with dashed line
representing capsule membrane. a Re = 0.01; b Re = 0.1; c Re = 1; d Re = 10
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deformation in the microchannel with the height of 30 lm

was also significantly affected by inertia at high Re

(Re = 0.1 and 10), but had little change as Re was

increased from 0.01 to 0.1 (Fig. 9c, d). The deformation

index Ds had no significant changes (0.0240 for Re = 0.01

to 0.0252 for Re = 1) because of the high viscosity ratio

(kl = 3530) of cytoplasm to plasma. However, the incli-

nation angle hs significantly affected by inertia, i.e.,

Table 1 Parameter values used

for leukocyte deformation in a

microchannel

Parameter Definition Value used References

R (lm) Cell radius 5 (Luo et al. 2011b; Chien et al. 1987;

Popel and Johnson 2005)

H (lm) Channel height 30 (Stone and Kim 2001; Popel and Johnson

2005; Squires and Quake 2005; N’Dri

et al. 2003; Pappu et al. 2008)

k (s-1) Shear rate 40–40,000 (Stone and Kim 2001; Popel and Johnson

2005; Squires and Quake 2005)

q0 (kg/m3) Extracellular fluid density 1,000 (Luo et al. 2011a, b)

l0 (mPa s) Extracellular fluid viscosity 1.0 (Luo et al. 2011a, b)

q1 (kg/m3) Cytoplasmic density 1.08 (Luo et al. 2011a, b)

l1 (mPa s) Cytoplasmic viscosity 3,530 (Chien et al. 1987)

k1 (s) Cytoplasmic relaxation time 0.176 (Khismatullin and Truskey 2004; Chien

et al. 1987)

Eh (lN/m) Membrane stiffness 40 (Jadhav et al. 2005; Pappu et al. 2008)

Fig. 9 Effects of inertia on the deformation of a leukocyte in

microscale flows. a, b is temporal evolution of deformation index

D and orientation angle h of a capsule in a microchannel with the

height of 4R when G = 0.12, De = 0.5; c, d is temporal evolution of

deformation index D and orientation angle h of a leukocyte in a

microchannel, and parameter values used for the leukocyte is listed in

Table 1
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compared to the case of Re = 0.01, the value of hs at

Re = 1 was 19.0 % larger, whilst the corresponding value

at Re = 0.1 was only 1.7 % larger. These results indicated

that the inertia effect on leukocyte deformation in the

microchannel cannot be omitted when the Reynolds number

is higher than 0.1.

4 Discussion

By employing a finite difference-front tracking method, we

established a mathematical model in which inertia was

considered, and hence the inertia effect on capsule defor-

mation in microscale flows can be investigated. A projec-

tion method based on a collocated grid system was

developed to solve the full Navier–Stokes equations, which

is easier to implement than previous models of capsule

deformation based on a staggered grid system. Whilst Neo-

Hookean constitutive law and Oldroyd-B constitutive

equation were applied separately to model the elastic

membrane and the internal viscoelastic fluid, other con-

stitutive equations can be easily added into our model. To

simplify the model, all the simulations were presented in a

two-dimensional (2D) form which has been verified to

share common features with three-dimensional (3D) sim-

ulations (Zhou and Pozrikidis 1995; Breyiannis and

Pozrikidis 2000; Afkhami et al. 2009). Thus, this study

greatly facilitates further theoretical modeling on micro-

scale flows with suspending capsules in vitro and in vivo.

Our finding may provide great help to guide the selec-

tion of models for microscale flows when considering

capsule deformation. To include the inertia effect on cap-

sule deformation, the full Navier–Stokes equations that

include unsteady and convective terms for inertia have to

be solved. If the inertia effect on capsule deformation is

negligible, the Stokes equations without unsteady and

convective terms will be employed, in which we may

considerably simplify the models and save the computing

time. However, there is only a qualitative rule of Re �1 in

previous studies (Foessel et al. 2011; Misbah 2006; Danker

et al. 2009), under which inertia can be neglected. In this

study, we derived a quantitative rule of Re \0.1, under

which the inertia effect on capsule deformation is negli-

gible. Thus, in further theoretical studies on microscale

flows with suspending capsules, the methods neglecting

inertia [e.g., boundary element method (Ramanujan and

Pozrikidis 1998; Pozrikidis 2001)] may be used if Re\0.1.

By contrast, the methods including unsteady and convec-

tive terms in governing equations for inertia [e.g., front

tracking method (Eggleton and Popel 1998; Li and Sarkar

2008; Bai et al. 2012)] are required when Re [0.1.

This study may also provide great help on inertia-

based microfluidic applications for cell manipulation and

separation. Applications of inertial effects [e.g., inertial

migration of particles (Di Carlo et al. 2007) and deform-

able capsules (Hur et al. 2011)] in microfluidics have been

recently increasingly appreciated to develop label-free

techniques, which have potential to reduce the complexity

and cost of clinical microfluidic applications (Di Carlo

2009). However, the conditions (e.g., flow rate, micro-

channel size), under which inertial effects may be useful

for cell manipulation and separation, are yet completely

clear (Di Carlo et al. 2007; Di Carlo 2009). Our finding

provided a quantitative guidance of Re [ 0.1 for the design

of inertia microfluidics based on capsule deformation,

because inertia was found to have a little effect on capsule

deformation when Re becomes less 0.1. More importantly,

our model may be easily implemented to study other inertia

effects on microscale flows with suspending capsules, e.g.,

inertial migration and ordering of capsules (Hou et al.

2010; Hur et al. 2011), inertial lift force on deformable

capsules and cells (Zhao and Sharp 1999; Di Carlo 2009;

Di Carlo et al. 2007). This theoretical modeling has

potential to explore new system designs and to optimize the

conditions for cell manipulation and separation in micro-

fluidic devices.

It should be noted that we used the particle Reynolds

number (Rep = q0UR2/l0H, including parameters for both

the capsule and the microchannel flow) instead of the

channel Reynolds number (Rec = q0UH/l0, only including

parameters for the channel flow). The particle Reynolds

number has been widely used in studies related to capsules

suspending in flow (Di Carlo et al. 2007; Li and Sarkar

2008; Doddi and Bagchi 2008; Sui et al. 2009; Tan et al.

2012), because capsule deformation and motion are also

dependent on the capsule size. We emphasize that all the

simulations were focused on the deformation of single

capsule in the linear shear flow, which has been greatly

appreciated as being a prerequisite to that of general

understanding of microscale flows with suspending cap-

sules in vitro and in vivo (Abkarian and Viallat 2008; Di

Carlo 2009). However, effects of inertia on capsule

deformation and migration in parabolic flows, which is a

typical flow pattern in microvessels and microfluidics, are

also important and need future investigations. Besides, the

cells of interest are quite dense both in physiological

conditions and in vitro microfluidic applications, e.g., 1 lL

of whole blood may contain millions of erythrocytes and

thousands of leukocytes (Mittal et al. 2012). The collisions,

aggregation and even steric interactions between these

dense cells are likely to occur. The dynamic interactions

between cells have significant effects on both individual

cell deformation and macroscopic rheological properties.

Therefore, there is an unmet need to study inertia effect on

dynamic interactions between cells and to determine under

which conditions this effect may be omitted. This study
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provides a model which could be further developed to

study inertia effect on dynamic interactions of suspending

cells in microscale flows.

5 Conclusion

We developed a mathematical model considering inertia in

microscale flows. Using this model, we investigated the

inertia effect on the deformation of viscoelastic capsules in

microscale flows with the Reynolds numbers varying in the

physiological range of 0.01–10. It was demonstrated that,

when the Reynolds number was increased from 0.1 to 10,

inertia significantly affected several important features of

capsule deformation including: (1) rapid increase in the

time and amplitude of the transient deformation; (2) sig-

nificant enhancement in the deformation index and orien-

tation angle of the capsule in steady state; (3) considerable

alteration of the flow structure around and inside the cap-

sule. However, all these features of capsule deformation

exhibited no significant change when the Reynolds number

was varied between 0.01 and 0.1. These results revealed

that the inertia effect on viscoelastic capsule deformation in

microscale flows may be neglected when Reynolds num-

bers is smaller than 0.1. Our findings are beneficial to

further study both the mechanism of biological processes

and the design of microfluidic devices for bioengineering

applications, when inertial effects in microscale flows are

involved.
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