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The transmission loss of sound through infinite orthogonally rib-stiffened double-panel structures

having cavity-filling fibrous sound absorptive materials is theoretically investigated. The propaga-

tion of sound across the fibrous material is characterized using an equivalent fluid model, and the

motions of the rib-stiffeners are described by including all possible vibrations, i.e., flexural dis-

placements, bending, and torsional rotations. The effects of fluid-structure coupling are account for

by enforcing velocity continuity conditions at fluid-panel interfaces. By taking full advantage of the

periodic nature of the double-panel, the space-harmonic approach and virtual work principle are

applied to solve the sets of resultant governing equations, which are eventually truncated as a finite

system of simultaneous algebraic equations and numerically solved insofar as the solution con-

verges. To validate the proposed model, a comparison between the present model predictions and

existing numerical and experimental results for a simplified version of the double-panel structure is

carried out, with overall agreement achieved. The model is subsequently employed to explore the

influence of the fluid-structure coupling between fluid in the cavity and the two panels on sound

transmission across the orthogonally rib-stiffened double-panel structure. Obtained results demon-

strate that this fluid-structure coupling affects significantly sound transmission loss (STL) at low

frequencies and cannot be ignored when the rib-stiffeners are sparsely distributed. As a highlight of

this research, an integrated optimal algorithm toward lightweight, high-stiffness and superior sound

insulation capability is proposed, based on which a preliminary optimal design of the double-panel

structure is performed. VC 2011 Acoustical Society of America. [DOI: 10.1121/1.3531947]

PACS number(s): 43.40.Dx, 43.55.Ti, 43.55.Rg [DF] Pages: 1919–1934

I. INTRODUCTION

Applications of lightweight, periodically rib-stiffened

structures are increasingly found in mechanical, aeronautics,

aerospace, and marine industries.1–8 When these structures

are applied as hulls or fuselages, external dynamic loadings

(e.g., dynamic impact, sound wave impingement, and turbu-

lent boundary layer excitation) are often encountered. The

dynamic responses, sound radiation/transmission, and other

relevant issues of structures have therefore been put forward

and attracted much attention.

Numerous researchers have studied the sound radiation

and transmission problems of periodical rib-stiffened struc-

tures.1–5,9–13 It has been established that the rib-stiffeners

play a significant role in the vibroacoustic behavior of the

whole structure, especially when the bending wave length is

comparable with the periodical spacing of the stiffeners.1,5

Consequently, the equivalent forces and moments of the

stiffeners should be carefully taken into account in theoreti-

cal modeling. Two different theoretical approaches have

been used to address the issue.

The first one is the Fourier transform technique. Lin and

Garrelick8 employed this technique to study the transmission

of sound through two infinite parallel plates connected by

identical periodically spaced frames. Subsequently, a range

of sound radiation problems associated with different struc-

tures, such as infinite single plates attached with identical

rib-stiffeners,1 with two different kinds of stiffeners (e.g.,

bulkheads and intermediate frames),2 or with orthogonally

distributed stiffeners3 were considered using the same

method, although only the equivalent forces of the stiffeners

were accounted for. As an extension of Mace’s work,1 Yin

et al.10 theoretically analyzed the acoustic radiation from a

point-driven laminated composite plate reinforced by doubly

periodic parallel stiffeners, wherein the plate was modeled

using the classical composite plate theory.

The other is the space-harmonic method, which is essen-

tially equivalent to the Fourier transform technique. This

approach was introduced by Mead and Pujara4,14 to describe

structural responses and acoustic pressures in terms of

space-harmonic series. Based upon Mead and Pujara’s

works, Lee and Kim5 developed an analytical method to

study the sound transmission characteristics of a thin plate

stiffened by equally spaced line stiffeners, with the resulting

governing equations solved by utilizing the virtual work

principle. Wang et al.9 extended this approach to lightweight

double-leaf partitions stiffened with periodically distributed

studs, and explored the underlying sound transmission mech-

anisms by incorporating the dispersion relation of the struc-

ture. Following the schemes of Wang et al., Legault and

Atalla11,12 analyzed the effect of structural links on sound

transmission across periodically rib-stiffened double-panel

structures.
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Existing studies on the vibroacoustic behavior of periodi-

cally rib-stiffened structures are often limited to one-dimen-

sional (1D) systems. Two-dimensional (2D) orthogonally

rib-stiffened double-panel structures received much less atten-

tion3,13,15 and have not been adequately addressed, not to men-

tion the even more complicated scenario when the cavity of

the double-panel is filled with fibrous sound absorptive materi-

als. With focus placed upon aircraft sidewalls made of rib-

stiffened structures having cavity-filling fiberglass, this

research proposes a relatively comprehensive theoretical

model for sound transmission through orthogonally rib-stiff-

ened double-panel structures with cavity absorption. The effect

of fibrous sound absorptive filling materials on sound trans-

mission is accounted for with an equivalent fluid model. As a

highlight, an integrated optimal algorithm toward the light-

weight, high-stiffness, and superior sound insulation capability

is presented. A relatively rough optimal design regarding key

structural geometry ratios is performed and general optimal

principles are presented. The optimal scheme suggests that the

integrated optimization of double-panel structures involving

various physical attributes is feasible.

II. VIBROACOUSTIC RESPONSE TO CONVECTIVE
HARMONIC FLUID-LOADED PRESSURE

A. Analytic formulation of panel vibration and sound
transmission

With reference to Fig. 1 where (x, y, z) denote the

Cartesian coordinates, consider two parallel infinite

Kirchhoff thin plates lying separately in the planes of

z¼ 0 and z¼ h1þ d and connected with periodically dis-

tributed rib-stiffeners along two orthogonal lines x¼mlx
and y¼ nly (m and n both being positive or negative inte-

ger). Let d denote the thickness of the rib-stiffeners (or,

cavity height), h1 denote the thickness of the upper plate,

and h2 that of the bottom plate; see Fig. 1. The cavities

in-between the two face plates and partitioned by the rib-

stiffeners are filled with fibrous sound absorptive materials

[see Fig. 1(b)]. The upper plate located at z¼ 0 is loaded

by a time-harmonic acoustic fluid p(r, t) with elevation

angle u and azimuth angle h

pðr; tÞ ¼ Ie�iðkxxþkyyþkzz�xtÞ: (1)

The wavenumber components in the x-, y-, and z-direc-

tions are determined by the elevation angle and azimuth

angle of the incident acoustic loading as

kx¼ k0 sinucosh; ky¼ k0 sinu sin h; kz¼ k0 cosu; (2)

where k0¼x=c0 is the acoustic wavenumber in air, x being

the angular frequency, and c0 the sound speed in air.

As a result of the acoustic loading, a distributed load

impinges on the upper plate, inducing vibration of the upper

plate which is then transmitted to the bottom plate via both

structure- and fluid-borne paths. The fluid-structure interac-

tion between the bottom plate and the nearby acoustic me-

dium causes the radiation of sound.

As shown in Fig. 1, the acoustic field is divided into

three main parts by the double-panel structure: upper field

occupying the half-space z< 0, middle field filling the space

h1< z< h1þ d (i.e., in-between the two face panels and par-

titioned periodically by the rib-stiffeners), and bottom field

occupying the other half-space z> h1þ h2þ d. The corre-

sponding acoustic pressure in the incident field pt(r, t) should

satisfy the scalar Helmholtz equation16

ð@2=@x2 þ @2=@y2 þ @2=@z2Þpi þ k2
0pi ¼ 0; z < 0: (3)

It is assumed that the cavities of the double-panel struc-

ture are filled with fibrous sound absorptive materials. As is

well known, the absorption of sound by a porous absorptive

material mainly arises from viscous drag forces and thermal

exchange loss when sound penetrates through it.17–20 With

the help of a well-developed equivalent fluid model21,22 for

such materials, the absorbent effect induced by viscous drag

force and thermal exchange between air and solid fibers is

accounted for by introducing a complex wavenumber kcav

and a complex density qcav. Both kcav and qcav are frequency

dependent in accordance with thermal exchange transition

with increasing frequency22 (i.e., isothermal process at low

frequency turning to adiabatic process at high frequency).

The complex wavenumber may be expressed as

ikicav¼C¼ aþ ib, wherein C is the wave propagation con-

stant, a is the attenuation, and b is the phase constant. The

corresponding acoustic pressure pcav(r, t) in the fibrous

sound absorptive material (i.e., in-between the two face

plates) obeys the equation11,23,24

FIG. 1. (Color online) Schematic illustration of sound pressure wave inci-

dent on an orthogonally rib-stiffened double-panel structure filled with, but

not necessarily limited to, fibrous sound absorptive materials: (a) global

view and (b) side view of (a).
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ð@2=@x2 þ @2=@y2 þ @2=@z2Þpcav þ k2
cavpcav ¼ 0;

h1 < z < h1 þ d; (4)

where kcav is closely related to the dynamic density pcav(x)

and dynamic bulk modulus Kcav(x) of the fibrous sound

absorptive materials as

kcav ¼ 2pf
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qcavðxÞ=KcavðxÞ

p
: (5)

Applying the Johnson–Champoux–Allard model for rigid

frame materials, one can obtain the dynamic density and the

dynamic bulk modulus as22,25

qcavðxÞ ¼ q0 1þ 1

i2p
r

q0f

� �
G1

q0f

r

� �� �
; (6)

KcavðxÞ

¼ csP0 cs�
cs�1

1þ 1=i8pNpr

� �
q0f=rð Þ�1G2 q0f=rð Þ

 !�1

; (7)

where G1ðq0f=rÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ipðq0f=rÞ

p
, G2 (q0f=r)¼G1[(q0f=r)

4Npr], r is the flow resistivity, cs is the specific heats ratio, P0 is

the air equilibrium pressure, and Npr is the Prandtl number. Note

that the above equivalent fluid model for filling absorbing materi-

als is valid for f/r smaller then 1.0 m3/kg.22 Generally, the flow

resistivity r of typical glass/rock wools is approximately 20 000

Nm/s4, and hence the equivalent fluid model works well for fre-

quencies below 20 kHz.

Finally, in the transmitted field, the acoustic pressure

pt(r, t) is also a solution of the scalar Helmholtz equation

ð@2=@x2 þ @2=@y2 þ @2=@z2Þpt þ k2
0pt ¼ 0;

z > h1 þ h2 þ d: (8)

Assuming that the fibrous material is in perfect contact

with the two plates, one can use the momentum equation to

ensure the equality of plate velocity and fluid velocity at the

fluid-plate interface, i.e., the continuity condition of fluid-

structure coupling8,26,27

½@pi=@z�z¼0 ¼ q0x
2w1; ½@pcav=@z�z¼h1

¼ qcavx
2w1; (9)

½@pcav=@z�z¼h1þd ¼ qcavx
2w2; ½@pt=@z�z¼h1þh2þd

¼ q0x
2w2: (10)

The complex density qcav of the fibrous material appear-

ing in Eqs. (9) and (10) is related to the complex wavenum-

ber kcav by23

k2
cav

k2
0

¼ cs/qcav

q0

; (11)

where cs is the ratio of specific heats, / is the porosity of the

fibrous material, and q0 is the air density.

The double-panel structure is driven by the difference of

acoustic pressure between the two sides of each face plate.

The resultant pressure imposed on the upper panel is the

pressure difference between pt(x, y, 0; t) in the incident side

and pcav(x, y, h1; t) in the fibrous material. Similarly, the bot-

tom panel bears the net pressure that is a subtraction of pcav(x,

y, h1þ d; t) in the fibrous material and pt(x, y, h1þ h2þ d; t)
in the transmitted side. Meanwhile, with the structural con-

straints of the orthogonal rib-stiffeners on the face plates duly

accounted for, the vibration of the plates is governed by

D1r4w1 þ m1

@2w1

@t2
¼
Xþ1

m¼�1

�
Qþy dðx� mlxÞ

þ @

@y

	
Mþy dðx� mlxÞ



þ @

@x

	
MþTydðx� mlxÞ


�

þ
Xþ1

n¼�1

�
Qþx dðy� nlyÞ þ

@

@x

	
Mþx dðy� nlyÞ




þ @

@y

	
MþTxdðy� nlyÞ


�
þ piðx; y; 0Þ � pcavðx; y; h1Þ; (12)

D2r4w2 þ m2

@2w2

@t2
¼ �

Xþ1
m¼�1

Q�y d x� mlxð Þ
h

þ @

@y
M�y d x� mlxð Þ
n o

þ @

@x
M�Tyd x� mlxð Þ
n o�

�
Xþ1

n¼�1
Q�x d y� nly

� �
þ @

@x
M�x d y� nly

� �� ��

þ @

@y
M�Txd y� nly

� �� ��
þ pcavðx; y; h1 þ dÞ � piðx; y; h1 þ h2 þ dÞ (13)

where !4¼ (@2=@x2þ @2=@y2)2, (w1, w2), (m1, m2), and

(D1, D2) are the displacements, surface mass density, and

bending stiffness of the upper and bottom panels, respectively,

and d(�) stands for the Dirac delta function. The material loss

factor gj(j¼ 1,2 for upper plate and bottom plate, respectively)

is introduced with the complex Young’s modulus as

Dj ¼
Ejh

3
j ð1þ igjÞ

12ð1� m2
j Þ
ðj ¼ 1; 2Þ; (14)

where E is the Young’s modulus and m the Poisson ratio of

the plate material.

Due to the consideration of inertial effects, the resultant

transverse forces, bending moments, and torsional moments

exerted on the upper and bottom plates are not identical,

denoted here separately as ðQþ;Mþ;MþT Þ and ðQ�;M�;M�T Þ.
Superscriptsþ and � denote separately the upper and bottom

plates, while subscripts x and y signify the terms arising from

the x- and y-wise rib-stiffeners, respectively. An illustration of

the present conventions for transverse forces, bending

moments and torsional moments is given in Fig. 2. Detailed

derivations of these quantities can be found in Appendix A.

B. Application of the periodicity of structures

Taking advantage of the periodical property of the

orthogonally rib-stiffened double-panel structures considered

here, one can simplify the theoretical formulations presented
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above to obtain analytical solutions of the problem. As men-

tioned in an earlier work,13 following the key conclusion of

Bloch or Floquet’s theorem28 for wave propagation in peri-

odic structures, the displacements w(x, y) of such a system at

the corresponding points in different periodic elements are

related by the periodicity condition as

wðxþ mlx; yþ nlyÞ ¼ wðx; yÞe�ikxmlx e�ikymly ;

� ðm; n being integersÞ: (15)

The space-harmonic expansion series can thence be

favorably applied to express the panel displacement wj(x, y;

t) as 3,4,13,29

wjðx;y; tÞ ¼
Xþ1

m¼�1

Xþ1
n¼�1

a1;mne�i½ðkxþ2mp=lxÞxþðkyþ2np=lyÞy�xt�

� ðj¼ 1;2Þ (16)

where j ¼1 for the upper panel, j¼ 2 for the bottom panel,

the (m, n)th harmonic wave has wavenumber components

(kxþ 2mp=lx, kyþ 2np=ly), illustrating its propagation direc-

tion in the structure and

aj;mn ¼
1

lxly

ðlx

0

ðly

0

w1ðx; y; tÞei½ðkxþ2mp=lxÞxþðkyþ2np=lyÞy�xt�

� dxdyðj ¼ 1; 2Þ: (17)

Due to sound pressure p(r, t)¼ Ie�i(k�r�xt) incident on

the double-panel, the set of sound pressures can be expressed

as13,29

pjðx; y; z; tÞ ¼ Ie�iðkxxþkyyþkzz�xtÞþ
Xþ1

m¼�1

Xþ1
n¼�1

�bmne�i½ðkxþ2mp=lxÞxþðkyþ2np=lyÞy�kz;mnz�xt�; (18)

pcavðx; y; z; tÞ

¼
Xþ1

m¼�1

Xþ1
n¼�1

emne�i½ðkxþ2mp=lxÞxþðkyþ2np=lyÞy�kz;cav;mnz�xt�

þ
Xþ1

m¼�1

Xþ1
n¼�1

fmne�i½ðkxþ2mp=lxÞxþðkyþ2np=lyÞy�kz;cav;mnz�xt�;

(19)

ptðx;y;z;tÞ¼
Xþ1

m¼�1

Xþ1
n¼�1

nmne�i½ðkxþ2mp=lxÞxþðkyþ2np=lyÞy�kz;mnz�xt�:

(20)

In the above expressions, I is the amplitude of incident

sound pressure, bmn and fmn are the (m, n)th space-harmonic

amplitude of negative-going wave in the incident field and

in the middle field, respectively, and emn and nmn are the

(m, n)th space-harmonic amplitude of positive-going wave in

the middle filed and in the transmitted field, respectively. Fur-

thermore, kz,mn and kz,cav,mn are the (m, n)th space-harmonic

wavenumbers in the z-direction (related separately to wave

propagation in air and fibrous absorptive material) which,

upon applying the Helmholtz equation, are given by9,11,12

kz;mn¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

0�a2
m�b2

n

q
; kz;cav;mn¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

cav�a2
m�b2

n

q
(21)

where the (m, n)th harmonic wavenumber components in the

x- and y-directions are expressed as

am ¼ kx þ 2mp=lx; bn ¼ ky þ 2np=ly: (22)

Given that the z-direction wavenumber component is

determined by Eq. (21), two different modes of sound propa-

gation in the transmitting field can be distinguished:13,30 (i)

non-radiating wave (i.e., subsonic wave) when a2
m þ b2

n > k2
0

and (ii) radiating wave (i.e., supersonic wave) when

a2
m þ b2

n < k2
0. Whilst the (m, n)th sound wave component

contributes only to the near field in the first case, it is able to

contribute to the far field in the second case.

Substitution of Eqs. (16) and (18)–(20) into Eqs. (9) and

(10) yields

�ikzIe
�iðkxxþkyyÞþ

Xþ1
m¼�1

Xþ1
n¼�1

ikmnbmn�q0x
2a1;mn

� �
� e�iðamxþbnyÞ ¼0; (23)

Xþ1
m¼�1

Xþ1
n¼�1

ikz;cav;mn �emne�ikz;cav;mnh1 þ fmneikz;cav;mnh1
� �

�qcavx
2a1;mn

" #

� e�iðamxþbnyÞ ¼ 0; (24)

Xþ1
m¼�1

Xþ1
n¼�1

ikz;cav;mn �emne�ikz;cav;mnðh1þdÞþfmneikz;cav;mnðh1þdÞ� �
�qcavx

2a2;mn

" #

�e�iðamxþbnyÞ¼0; (25)

Xþ1
m¼�1

Xþ1
n¼�1

�ikz;mnnmne�ikz;mnðh1þh2þdÞ � q0x
2a2;mn

h i
� e�iðamxþbnyÞ ¼ 0: (26)

Because Eqs. (23)–(26) hold for all possible values of x
and y, it can be shown that the relevant coefficients have the

following relationships:

b00 ¼ I þ x2q0a1;00

ikz
; (27)

bmn ¼
x2q0a1;mn

ikz;mn
; at m 6¼ 0jjn 6¼ 0; (28)

FIG. 2. Conventions for tensional forces, bending moments, and torsional

moments at the interface between upper plate and (a) x-wise stiffeners and

(b) y-wise stiffeners. The same apply at the interface between bottom plate

and x/y-wise stiffeners.

1922 J. Acoust. Soc. Am., Vol. 129, No. 4, April 2011 F. X. Xin and T. J. Lu: Transmission loss of rib-stiffened structures



emn ¼
x2qcav a1;mneikz;cav;mnðh1þdÞ � a2;mneikz;cav;mnh1

 �
2kz;cav;mn sinðkz;cav;mndÞ ; (29)

fmn¼
x2qcav a1;mne�ikz;cav;mnðh1þdÞ�a2;mne�ikz;cav;mnh1

 �
2kz;cav;mnsinðkz;cav;mndÞ ; (30)

nmn ¼ �
x2q0a2;mn

ikz;mn
eikz;mnðh1þh2þdÞ: (31)

Here, it is worth mentioning that the framing structures

are taken to be acoustically transparent, i.e., they do not

block acoustic wave in the cavity. In future studies, it will be

important to explore this aspect of the problem.

C. Solution by employing the virtual work principle

Since the double-panel structure considered here is spa-

tially periodic, the principle of virtual work4,5,9 can be uti-

lized to solve the theoretical formulations presented above

and thence obtain the values of coefficients a1,mn and a2,mn.

As close relationships exist between the coefficients of panel

displacements (i.e., a1,mn and a2,mn) and those of sound pres-

sure (i.e., bmn, emn, fmn, and nmn), the sound pressures can be

straightforwardly obtained once the former is determined.

To calculate the virtual work done by imposing the virtual

displacements,

dw�j ¼ daj;kle
�iðakxþblyÞ ðj ¼ 1; 2Þ; (32)

on the double-panel, only one periodical element needs to be

considered. The principle of virtual work states that the vir-

tual work of the system stemming from the virtual displace-

ments should be zero, from which the equilibrium equation

of system can be established as detailed below.

1. Virtual work of panel elements

The virtual work contributed solely by one periodical

element of each plate can be represented as

dPp1¼
ðlx

0

ðly

0

�
D1r4w1þm1

@2w1

@t2
�piðx;y;0Þþpcavðx;y;h1Þ

�

�dw1dxdy¼
�

D1ða2
kþb2

l Þ�m1x
2

�
a1;kl�

x2q0a1;kl

ikz;kl

	

þx2pcava1;kl cosðkz;cav;kldÞ�a2;kl�
kz;cav;kl sinðkz;cav;kldÞ



� lxlyda1;kl

�
ðlx

0

ðly

0

2le�iðkxxþkyyÞeiðakxþblyÞdxdy �da1;kl; (33)

dPp2 ¼
ðlx

0

ðly

0

D2r4w2 þm2

@2w2

@t2
� pcavðx; y;h1 þ dÞ

�

þpiðx; y;h1 þ h2 þ dÞ
�
�dw2dxdy

¼ D2ða2
k þ b2

l Þ �m2x
2

 �
a2;kl �

x2q0a2;kl

ikz;kl

	

�
x2pcav a1;kl � a2;kl cosðkz;cav;kldÞ

 �
kz;cav;kl sinðkz;cav;kldÞ

)
� lxlyda2;kl;

(34)

2. Virtual work of x-wise stiffeners

The virtual work contribution from the transverse force,

bending moment and torsional moment at the interface

between the x-wise stiffeners (aligned with y¼ 0) and upper

or bottom panel is given by13

dPx1¼�
ðlx

0

Qþx ðx;0Þþ
@

@x
Mþx ðx;0Þþ

@

@y
MþTxðx;0Þ

� �
�da1;kle

iakxdx

¼
Xþ1

n¼�1
½RQ1a1;kn�RQ2a2;knþia3

kð�RM1a1;knþRM2a2;knÞ

þiakblbnð�RT1a1;knþRT2a2;knÞ�lxda1;kl; (35)

dPx2¼
ðlx

0

Q�x ðx;0Þþ
@

@x
M�x ðx;0Þþ

@

@y
M�Txðx;0Þ

� �
�da2;kle

iakxdx

¼
Xþ1

n¼�1
�RQ2a1;knþRQ1a2;kn�ia3

kð�RM2a1;knþRM1a2;knÞ


�iakblbnð�RT2a1;knþRT1a2;knÞ�lxda2;kl; (36)

where
@MþTxðx;0Þ

@y ¼ @MþTxðx;yÞ
@y

���
y¼o

and
@M�Txðx;0Þ

@y ¼ @M�Txðx;yÞ
@y

���
y¼o

.

3. Virtual work of y-wise stiffeners

Likewise, the virtual work done by the transverse force,

bending moment, and torsional moment at the interface

between the y-wise stiffeners (aligned with x¼ 0) and upper

or bottom panel is13

dPy1 ¼ �
ðly

0

Qþy ð0; yÞ þ
@

@y
Mþy ð0; yÞ þ

@

@x
MþTyð0; yÞ

� �
� da1;kle

iblydy

¼
Xþ1

m¼�1

RQ3a1;ml � RQ4a2;ml þ ib3
l ð�RM3a1;ml þ RM4a2;mlÞ

þiakamblð�RT3a1;ml þ RT4a2;mlÞ

� �
�lyda1;kl; (37)
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dPy2 ¼
ðly

0

Q�y ð0; yÞ þ
@

@y
M�y ð0; yÞ þ

@

@x
M�Tyð0; yÞ

� �
� da2;kle

iblydy

¼
Xþ1

m¼�1

�RQ4a1;ml þ RQ3a2;ml � ib3
l ð�RM4a1;ml þ RM3a2;mlÞ

�iakamblð�RT4a1;ml þ RT3a2;mlÞ

� �
� lyda2;kl; (38)

where
@MþTyð0;yÞ

@x ¼ @MþTyðx;yÞ
@x

���
x¼o

and
@M�Tyð0;yÞ

@x ¼ @M�Tyðx;yÞ
@x

���
x¼o

.

4. Resultant equations for structure motions

It follows from the virtual work principle that

dPp1þdPx1þdPy1¼0; dPp2þdPx2þdPy2¼0: (39)

Substituting Eqs. (33)–(38) into Eq. (39) and noticing

that the virtual displacement is arbitrary, one obtains

D1ða2
k þ b2

l Þ
2 � m1x

2
h i

a1;kl �
x2q0a1;kl

ikz;kl

	

þ
x2qcav a1;kl cosðkz;cav;kldÞ � a2;kl

 �
kz;cav;kl sinðkz;cav;kldÞ



� lxly

þ
Xþ1

n¼�1
RQ1a1;kn � RQ2a2;kn þ ia3

kðRM2a2;kn � RM1a1;knÞ


þ iakbnblðRT2a2;kn � RT1a1;knÞ
�
� lx

þ
Xþ1

m¼�1
RQ3a1;ml � RQ4a2;ml þ ib3

l ðRM4a2;ml � RM3a1;mlÞ


þ iamakblðRT4a2;ml � RT3a1;mlÞ
�
� ly

¼
2Ilxly when k ¼ 0 and l ¼ 0

0 when k 6¼ 0jjl 6¼ 0

	
;

(40)

D2ða2
k þ b2

l Þ
2�m2x

2
h i

a2;kl�
x2q0a2;kl

ikz;kl

	

�
x2qcav a1;kl� a2;kl


cosðkz;cav;kldÞ�

kz;cav;kl sinðkz;cav;kldÞ



� lxly

þ
Xþ1

n¼�1
�RQ2a1;kn þRQ1a2;kn� ia3

kðRM1a2;kn�RM2a1;knÞ


� iakbnblðRT1a2;kn�RT2a1;knÞ
�
� lx

þ
Xþ1

m¼�1
�RQ4a1;mlþRQ3a2;ml


� ib3

l ðRM3a2;ml�RM4a1;mlÞ
� iamakblðRT3a2;ml�RT4a1;mlÞ

�
� ly ¼ 0: (41)

It should be mentioned that the consideration of virtual

work in any other periodical element of the double-panel

structure would have yielded an identical set of equations.

In order to separate the variables a1,kl and a2,kl, Eqs.

(40) and (41) are rewritten as:

D1ða2
k þ b2

l Þ
2 � m1x

2 � x2q0

ikz;kl
þ x2qcav cosðkz;cav;kldÞ

kz;cav;kl sinðkz;cav;kldÞ

� �

� lxlya1;kl �
x2qcav

kz;cav;kl sinðkz;cav;kldÞ
� lxlya2;kl

þ
Xþ1

n¼�1
RQ1 � ia3

kRM1 � iblakbnRT1

 �
� lxa1;kn

þ
Xþ1

n¼�1
�RQ2 þ ia3

kRM2 þ iblakbnRT2

 �
� lxa2;kn

þ
Xþ1

m¼�1
RQ3 � ib3

l RM3 � iakamblRT3

 �
� lya1;ml

þ
Xþ1

m¼�1
�RQ4 þ ib3

l RM4 þ iakamblRT4

 �
� lya2;ml

¼
2Ilxly when k ¼ 0 and l ¼ 0

0 when k 6¼ 0jjl 6¼ 0

	
; (42)

D2ða2
k þ b2

l Þ
2 � m2x

2 � x2q0

ikz;kl
þ x2qcav cosðkz;cav;kldÞ

kz;cav;kl sinðkz;cav;kldÞ

� �

� lxlya2;kl �
x2qcav

kz;cav;kl sinðkz;cav;kldÞ
� lxlya1;kl

þ
Xþ1

n¼�1
�RQ2 þ ia3

kRM2 þ iblakbnRT2

 �
� lxa1;kn

þ
Xþ1

n¼�1
RQ1 � ia3

kRM1 � iblakbnRT1

 �
� lxa2;kn

þ
Xþ1

m¼�1
�RQ4 þ ib3

l RM4 þ iakamblRT4

 �
� lya1;ml

þ
Xþ1

m¼�1
RQ3 � ib3

l RM3 � iakamblRT3

 �
� lya2;ml ¼ 0:

(43)

The infinite set of coupled algebraic simultaneous equa-

tion system of Eqs. (42) and (43) can be simplified as a finite

set of equations by applying a truncated series of the

assumed modes, insofar as the solution converges. In the

present study, the sum-indices (m, n) are restricted to have fi-

nite values, i.e., m ¼ �k̂ to k̂ and n ¼ �l̂ to l̂. Upon neces-

sary algebraic manipulations (Appendix B), the resultant

equation system that contains a finite number (i.e., 2KL,

where K ¼ 2k̂ þ 1, L ¼ 2l̂þ 1) of unknowns can be

expressed in matrix notation as

T11;kl T12;kl

T21;kl T22;kl

� �
2KL�2KL

a1;kl

a2;kl

	 

2KL�1

¼ Fkl

0

	 

2KL�1

: (44)
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Solving Eq. (44) one can obtain the vibration displace-

ments of the two face plates, with which the acoustic pres-

sures in different fields are readily determined. As an

assessment of sound energy penetrating through the struc-

ture, the transmission coefficient is defined here as the ratio

of the transmitted sound power to the incident sound power

as9,11,13

sðu; hÞ ¼

Pþ1
m¼�1

Pþ1
n¼�1

nmnj j2Re kz;mn

� �
Ij j2kz

; (45)

which is a function of sound incident angles u and h. The

diffuse sound transmission coefficient is taken in an aver-

aged form over all possible incident angles29 as

sdiff ¼
Ð p=4

0

Ð ulim

0
sðu; hÞ sin u cos ududhÐ p=4

0

Ð ulim

0
sin u cos ududh

: (46)

Finally, sound transmission loss (STL) is customarily

defined in decibel scale6,7 as

STL ¼ 10 log10

1

sðu; hÞ

� �
; (47)

which, intuitively, may be taken as a measure of the effec-

tiveness of the double-panel structure in insulating the sound

energy penetration.

III. PARAMETRIC INVESTIGATION AND DISCUSSION

In this section, the theoretical model developed above is

used to examine the vibroacoustic performance of the type of

double-panel structures shown in Fig. 1 and explore the physi-

cal mechanisms underlying the sound transmission process.

In subsequent numerical calculations, unless otherwise

specified, the following sets of system parameters are

adopted: the two face plates are identical, each having thick-

ness h1¼ h2¼ 0.002 m; the orthogonal rib-stiffeners have

depth d¼ 0.08 m, thickness tx¼ ty¼ 0.001 m, and periodicity

spacing lx¼ ly ¼ 0.2 m (Fig. 1). The face plates and the rib-

stiffeners are made of the same material, with Young’s modu-

lus E¼ 70 GPa, density q¼ 2700 kg=m3, Poisson ratio

m¼ 0.33, and loss factor g¼ 0.01. In the common situation of

normal temperature and atmospheric pressure, it can be

assumed that q0¼ 1.21 kg=m3, Npr¼ 0.702, cs¼ 1.4,

P0¼ 10 1320 N=m2, and c0¼ 343 m=s. The widely applied

fiberglass is selected as the cavity-filling fibrous material,

with porosity /¼ 0.95 and flow resistivity r¼ 24 000 Nm=s4.

Since the numerical results are calculated based on the

assumed space-harmonic series solution, a sufficiently large

number of terms should be applied to ensure the conver-

gence and accuracy of the solution. Following the conver-

gence check scheme that has been proposed in our previous

publication,13 a convergence check study for the present

absorptive material filling case is performed. It has been

obtained that the space-harmonic series solution needs at

least 1849 terms (m and n both ranging from �21 to 21) to

ensure the solution convergence at 10 kHz. The same num-

ber (1849 terms) is then adopted to calculate all STL values

below 10 kHz, which is sufficient to achieve accurate results

within the error bound of 0.01 dB.

A. Model validation

For validation, the present model predictions are com-

pared with the theoretical results and experimental measure-

ments of Legault and Atalla11 for 1D periodically rib-

stiffened double-panel structures, as shown in Fig. 3. Since

our model is developed for orthogonally rib-stiffened double-

panel structures, it can be favorably degraded to the 1D case.

As can be seen in Fig. 3, an overall agreement is

achieved. Especially, the experimentally observed two sig-

nificant resonance dips have been well captured by the pres-

ent model, i.e., the first dip at approximately 400 Hz arising

from the pass band characteristics of periodic structures, and

the other due to coincidence resonance11 at the critical fre-

quency of approximately 6200 Hz.

Since the diffuse sound transmission characteristics of

periodically rib-stiffened double-panel structure have been

well studied by Legault and Atalla,11 the focus of the present

study thus turns to the normal sound incident case so as to

explore more physical details. Moreover, in view of the fact

that the sound transmission behavior of three different dou-

ble-panel structures as considered below is quite similar with

dense peaks and dips at high frequencies, the frequency

range of 10–2000Hz is considered in all subsequent analy-

ses. As a result, the coincidence resonance dip is far beyond

the considered frequency range which, even if calculated,

would merge with the dense dips at high frequencies and

impossible to distinguish in single incidence STL results.

However, as shown in Fig. 3, the coincidence resonance dip

can be clearly identified in diffuse STL results after weighted

average operation [see Eq. (46)].

B. Effects of fluid-structure coupling on sound
transmission

Since the absorption of sound by fibrous materials (i.e.,

fiberglass) is characterized using the frequency-dependent

FIG. 3. (Color online) Diffuse (STL) plotted as a function of incident fre-

quency: comparison between present model predictions with experimental

measurements and theoretical results of Legault and Atalla.11
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dynamic density and bulk modulus, the fluid-structure cou-

pling effects (between fluid in the cavity and the two panels)

are exploited below. For comparison, the air cavity case and

the vacuum case are also considered to highlight the influ-

ence of the cavity-filling fiberglass.

Figures 4–6 plot the STL as a function of frequency for

the three different cases, with the periodic spacings selected

as lx¼ ly¼ 0.3, 0.4, and 0.5 m, respectively. The results of

Figs. 4–6 demonstrate that fluid-structure coupling can alter

the STL peaks and dips in the low frequency range and thus

affect sound transmission, especially when the rib-stiffeners

are sparsely distributed (e.g., lx¼ l¼ 0.5 m). In such cases,

the response of the face panels is significantly affected by the

fluid media confined in the cavities, since most of the panel

surfaces are in contact with the fluid and the rib-stiffeners

may only exert a local effect near the conjunctions. In other

words, when the rib-stiffener separation is sufficiently large,

fluid-structure coupling plays a role comparable to that of the

rib-stiffeners. Under such conditions, the fluid-structure cou-

pling effect can no longer be assumed negligible particularly

in the stiffness-controlled low frequency range.

As can be observed from the results of Figs. 4–6, the

three cases considered differ mainly in the low frequency

range where the fluid media confined in the partitioned cav-

ities act on the face panels through fluid-structure coupling

effect and work like pumping. That is, similar to elastic

springs, the fluid media have equivalent stiffness, which

affects significantly sound transmission in the stiffness-con-

trolled low frequency range whilst has almost no influence

in the mass-controlled high frequency range. As the stiffener

separation is increased, the equivalent stiffness of the fluid

media plays an increasingly important role in the transmis-

sion of sound, as the surface area of the face panels domi-

nated by fluid media increases whilst that controlled by the

rib-stiffeners decreases. With this duly considered, it is then

understandable that the divergences only exist in the low fre-

quency range, enlarging with increasing stiffener separation,

as demonstrated in Figs. 4–6.

As interpreted in our previous publication,9 the dips

appearing in the STL curves in Figs. 4–6 correspond to fre-

quencies at which the incident sound wave undergoes a kind

of resonance with the free wave propagation of vibration in

the panels. The effect is analogous to the familiar

“coincidence frequency,” but the spatial harmonics created

by wave reflection at the rib-stiffeners introduce multiple

possibilities for wavenumber matching and “coincidence.”

These dips in STL curves can be clearly explained by the

dispersion relation of the periodic structure, that is, the “pass

band” and “stop band” characteristics of wave propagation.

For more details one may refer to the interpretations given

for Figs. 9 (a)–9(c) in our previous publication.9 In addition,

similar explanations that the dips arise from the pass band

characteristics of periodic structures are also proposed by

Legault and Atalla.11

FIG. 4. (Color online) STL plotted as a function of incident frequency for

stiffener separations lx¼ ly¼ 0.3 m: comparison amongst three different

kinds of orthogonally rib-stiffened double-panels with cavities filled sepa-

rately with vacuum, air, and fiberglass.

FIG. 5. (Color online) STL plotted as a function of incident frequency for

stiffener separations lx¼ ly¼ 0.4 m: comparison amongst three different

kinds of orthogonally rib-stiffened double-panels with cavities filled sepa-

rately with vacuum, air, and fiberglass.

FIG. 6. (Color online) STL plotted as a function of incident frequency for

stiffener separations lx¼ ly¼ 0.5 m: comparison amongst three different

kinds of orthogonally rib-stiffened double-panels with cavities filled sepa-

rately with vacuum, air, and fiberglass.
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Furthermore, relative to the vacuum case, it is seen that

the first dips in Figs. 4–6 all shift to higher frequencies in the

air cavity as well as fiberglass filling cases. This is because

either air or fiberglass can work like springs and thus

increase the stiffness of the structure. As shown in Figs. 4–6,

the attenuation added by the fluid (i.e., fiberglass equivalent

fluid) is clearly exhibited by the smoother dips in the fiber-

glass filling case compared to the two other cases. Taking an

overall view of Figs. 4–6, one can observe that the dips shift

to lower frequencies when the stiffener separation is

increased. This is because the increment of stiffener separa-

tion changes the periodicity of the structure, resulting in the

alteration of its dispersion relation, eventually causing the

decrease of its natural frequencies.

C. STL combined with bending stiffness and structure
mass: Optimal design of double-panel

Due to high-stiffness-to-weight ratio, double-panel struc-

tures have been widely applied in aeronautics and aerospace

engineering, often providing acceptable sound insulation

capability. To draw general guidelines for the practical engi-

neering design of these weight-sensitive structures, an optimal

design scheme for multi-functional double-panels is presented

and implemented below, combining low structure mass with

high-stiffness and superior sound insulation requirements.

Since both the face panels and rib-stiffeners considered

in the present study have thin thickness compared with other

geometrical dimensions, such as core depth d and periodical

spacing lx (or ly), the most important structural geometry ra-

tio only leaves the non-dimensional variable lx=d (or ly=d).

For simplicity, assuming that lx¼ ly, then it only needs to

consider one variable (l=d) to seek for the optimal design of

the double-panel for combined high STL, large bending stiff-

ness and low structure mass. Although diffuse STL may be

of more interest for practical engineering, the normal sound

incident case is considered here to save computational

efforts. To this end, several dimensionless parameters should

be defined.

The first dimensionless parameter introduced is the nor-

malized mass of the double-panel (i.e., ratio of the mass for

one unit cell to that of the panel material filling the whole

volume of the unit cell)

�M ¼
q ðh1 þ h2Þlxly þ ðlxtx þ lytyÞd
 �

þ qcavlxlyd

qlxlyðd þ h1 þ h2Þ
: (48)

The above expression has accounted for the cavity-fill-

ing fiberglass. For the air cavity case, one only needs to

eliminate the fiberglass term.

For external load bearing, the bending stiffness of the

orthogonally rib-stiffened double-panel structure is impor-

tant, given by31,32

Dx ¼
2Eh3

12
þ Ehðd þ hÞ2

2
þ Ed3

12

tx
ly
;

Dy ¼
2Eh3

12
þ Ehðd þ hÞ2

2
þ Ed3

12

ty
lx
; (49)

which can be normalized as

�Dx ¼ Dx=Ed3; �Dy ¼ Dy=Ed3: (50)

For tx¼ ty and lx¼ ly as in the present study, �Dx ¼ �Dy

and hence one can use only one symbol �D to represent both
�Dx and �Dy. It should be pointed out that the fiberglass is

loosely filled into the partitioned cavity and not bonded to

the panels/rib-stiffeners, and hence has no contribution to

the structural rigidity �D.

Incorporating the above defined dimensionless parame-

ters �M, �D, and the sound insulation index STL, one may

define an integrated index for optimal design toward high-

stiffness-to-mass ratio and superior sound isolation capabil-

ity as

cSDM ¼
STL� �D

�M
: (51)

The larger the integrated index cSDM is the more supe-

rior the combined acoustic and structural performance of the

double-panel will be.

Figures 7 and 8 show the tendency plots of cSDM

versus frequency for orthogonally rib-stiffened double-

panel structures having cavities filled separately with air

and fiberglass. The influence of the key geometry ratio

l=d on the integrated index cSDM is explored by compar-

ing three typical cases, i.e., l=d¼ 1.0, 1.5, and 2.0. It is

observed from Figs. 7 and 8 that whilst l=d has negligi-

ble influence on cSDM at low frequencies (<300 Hz), it

causes significant changes of cSDM at relatively high

frequencies. This implies that the integrated performance

of the double-panel including mass, stiffness, and STL

can be designed and optimized by varying the key struc-

tural geometry ratio ld. Generally speaking, a larger l=d
will help the structure to achieve a higher integrated

index cSDM.

FIG. 7. (Color online) Tendency plot of cSDM versus frequency for orthogo-

nally rib-stiffened double-panel structures filled by air with selected struc-

tural geometry ratios: normal sound incident case.
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Relative to Fig. 7, the corresponding curves in Fig. 8

have slight alterations, resulting from the inclusion of fiber-

glass that induces changes in the parameters �M and STL. In

terms of the present optimal algorithm of Eq. (51), the

inclusion of fiberglass does not appear to present additional

benefits for the integrated performance. However, in ac-

cordance with different engineering requirements, the

weight of the three parameters STL, �D, and �M can be alter-

natively selected and thus different optimal designs may be

achieved.

IV. CONCLUSIONS

Focusing on lightweight composite double-panel struc-

tures commonly used as aircraft fuselages, we propose a

theoretical model to tackle with the sound transmission

problem of infinite orthogonally rib-stiffened double-panel

structures with fiberglass filled within the partitioned cav-

ities. The process of sound penetration across the fiberglass

is characterized by adopting the equivalent fluid model.

The effects of fluid-structure coupling are also fully

included by enforcing velocity continuity conditions at

fluid-panel interfaces. The space-harmonic approach and

the virtual work principle are applied to solve the resultant

governing equations of the whole system. For validity

check, the model predictions are compared with existing

theoretical and experimental results for a simplified version

of the double-panel structure, with good agreements

achieved.

The model is subsequently applied to examine the influ-

ence of the cavity-filling fiberglass on sound transmission

across the whole structure. It is demonstrated that the fluid-

structure coupling effects should be taken into account in

any theoretical attempt, especially when they play a role

comparable with that of the rib-stiffeners when the rib-stiff-

ener separations are sufficiently large. The inclusion of the

fiberglass leads to remarkable changes of the STL versus fre-

quency curves at low frequencies.

As a highlight of this research, an integrated optimal

algorithm toward lightweight, high-stiffness, and superior

sound insulation capability is proposed. With one key struc-

tural geometry ratio selected as the variable, a preliminary

optimal design of the double-panel structure is carried out. It

is found that the structural geometry ratio plays a significant

role in the integrated mechanical and acoustical performance

of the structure, providing, therefore, fundamental insight

into the multifunctional design of the structure.
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APPENDIX A: TENSIONAL FORCES, BENDING
MOMENTS AND TORSIONAL MOMENTS OF RIB-
STIFFENERS

Adopting the similar procedure of Takahashi’s beam

model33 for rib-stiffeners, taking the inertial effects of the

rib-stiffeners into consideration and applying the Hooke’s

law and the Newton’s second law, one can obtain the ten-

sional forces of the rib-stiffeners as13

Qþx ¼ �
KxðKx � mxx2Þ

2kx � mxx2
w1 þ

K2
x

2Kx � mxx2
w2 (A1)

Q�x ¼ �
K2

x

2Kx � mxx2
w1 þ

Kx Kx � mxx2ð Þ
2Kx � mxx2

w2; (A2)

Qþy ¼ �
Ky Ky � myx2
� �

2Ky � myx2
w1 þ

K2
y

2Ky � myx2
w2; (A3)

Q�y ¼ �
K2

y

2Ky � myx2
w1 þ

Ky Ky � myx2
� �

2Ky � myx2
w2; (A4)

where x is the circular frequency, Kx and Ky are the ten-

sional stiffness of half rib-stiffeners per unit length, and mx

and my are the line mass density of the x- and y-wise stiff-

eners, respectively.

Likewise, the bending moments of the rib-stiffeners can

be expressed as13

Mþx ¼
ExI�x ExI�x � qxIxx2

� �
2ExI�x � qxIxx2

@2w1

@x2

� E2
xI�2x

2ExI�x � qxIxx2

@2w2

@x2
; (A5)

M�x ¼
E2

xI�2x

2ExI�x � qxIxx2

@2w1

@x2

�
ExI�x ExI�x � qxIxx2

� �
2ExI�x � qxIxx2

@2w2

@x2
; (A6)

FIG. 8. (Color online) Tendency plot of cSDM versus frequency for orthogo-

nally rib-stiffened double-panel structures filled with fiberglass for selected

structural geometry ratios: normal sound incident case.
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Mþx ¼
EyI�y EyI�y � qyIyx2

� �
2EyI�y � qyIyx2

@2w1

@y2

�
E2

yI�2y

2EyI�y � qyIyx2

@2w2

@y2
; (A7)

M�y ¼
E2

yI�2y

2EyI�y � qyIyx2

@2w1

@y2

�
EyI�y EyI�y � qyIyx2

� �
2EyI�y � qyIyx2

@2w2

@y2
; (A8)

where ðExI�x ;EyI�y Þ are the bending stiffness of half rib-stiff-

eners per unit length and (qx, qy), (Ix, Iy) are the mass density

and polar moment of inertia of the stiffeners, respectively,

with subscripts x and y indicating the corresponding orienta-

tions of the stiffeners.

In a similar scheme, the torsional moments of the rib-

stiffeners are given by13

MþTx ¼
GxJ�x GxJ�x � qxJxx2

� �
2GxJ�x � qxJxx2

@2w1

@x@y

� G2
xJ�2x

2GxJ�x � qxJxx2

@2w2

@x@y
(A9)

M�Tx ¼
G2

xJ�2x

2GxJ�x � qxJxx2

@2w1

@x@y

�
GxJ�x GxJ�x � qxJxx2

� �
2GxJ�x � qxJxx2

@2w2

@x@y
; (A10)

MþTy ¼
GyJ�y GyJ�y � qyJyx2

� �
2GyJ�y � qyJyx2

@2w1

@y@x

�
G2

yJ�2y

2GyJ�y � qyJyx2

@2w2

@y@x
; (A11)

M�Ty ¼
G2

yJ�2y

2GyJ�y � qyJyx2

@2w1

@y@x

�
GyJ�y GyJ�y � qyJyx2

� �
2GyJ�y � qyJyx2

@2w2

@y@x
; (A12)

where ðGxJ�x ;GyJ�y Þ are the torsional stiffness of half rib-

stiffeners per unit length and (Jx, Jy) are the torsional

moments of inertia of the stiffeners.

To simplify Eqs. (A1)–(A12), the following sets of

specified characteristics are utilized to replace the coeffi-

cients of the general displacements.

(1) Replacement of tensional force coefficients

RQ1 ¼
Kx Kx � mxx2ð Þ

2Kx � mxx2
; RQ2 ¼

K2
x

2Kx � mxx2
; (A13)

RQ3 ¼
Ky Ky � myx2
� �

2Ky � myx2
; RQ4 ¼

K2
y

2Ky � myx2
: (A14)

(2) Replacement of bending moment coefficients

RM1 ¼
ExI�x ExI�x � qxIxx2

� �
2ExI�x � qxIxx2

; RM2 ¼
E2

xI�2x

2ExI�x � qxIxx2
;

(A15)

RM3 ¼
EyI�y EyI�y � qyIyx2

� �
2EyI�y � qyIyx2

; RM4 ¼
E2

yI�2y

2EyI�y � qyIyx2
:

(A16)

(3) Replacement of torsional moment coefficients

RT1 ¼
GxJ�x GxJ�x � qxJxx2

� �
2GxJ�x � qxJxx2

; RT2 ¼
G2

xJ�2x

2GxJ�x � qxJxx2
;

(A17)

RT3¼
GyJ�y GyJ�y�qyJyx2

� �
2GyJ�y�qyJyx2

; RT4¼
G2

yJ�2y

2GyJ�y�qyJyx2
: (A18)

In terms of space-harmonic series, the expressions of

the tensional forces, bending moments, and torsional

moments can be simplified as follows:

(1) Tensional forces

Qþx ¼
Xþ1

m¼�1

Xþ1
n¼�1

�RQ1a1;mn þ RQ2a2;mn

� �
e�iðamxþbnyÞ;

(A19)

Q�x ¼
Xþ1

m¼�1

Xþ1
n¼�1

�RQ2a1;mn þ RQ1a2;mn

� �
e�iðamxþbnyÞ;

(A20)

Qþy ¼
Xþ1

m¼�1

Xþ1
n¼�1

�RQ3a1;mn þ RQ4a2;mn

� �
e�iðamxþbnyÞ;

(A21)

Q�y ¼
Xþ1

m¼�1

Xþ1
n¼�1

�RQ4a1;mn þ RQ3a2;mn

� �
e�iðamxþbnyÞ:

(A22)
(2) Bending moments

Mþx ¼
Xþ1

m¼�1

Xþ1
n¼�1

�RM1a1;mnþRM2a2;mn

� �
a2

me�iðamxþbnyÞ;

(A23)

M�x ¼
Xþ1

m¼�1

Xþ1
n¼�1

�RM2a1;mnþRM1a2;mn

� �
a2

me�iðamxþbnyÞ;

(A24)

Mþy ¼
Xþ1

m¼�1

Xþ1
n¼�1

�RM3a1;mnþRM4a2;mn

� �
b2

ne�iðamxþbnyÞ;

(A25)

M�y ¼
Xþ1

m¼�1

Xþ1
n¼�1

�RM4a1;mnþRM3a2;mn

� �
b2

ne�iðamxþbnyÞ:

(A26)
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(3) Torsional moments

MþTx¼
Xþ1

m¼�1

Xþ1
n¼�1

�RT1a1;mnþRT2a2;mn

� �
ambne�iðamxþbnyÞ;

(A27)

M�Tx¼
Xþ1

m¼�1

Xþ1
n¼�1

�RT2a1;mnþRT1a2;mn

� �
ambne�iðamxþbnyÞ;

(A28)

MþTy¼
Xþ1

m¼�1

Xþ1
n¼�1

�RT3a1;mnþRT4a2;mn

� �
ambne�iðamxþbnyÞ;

(A29)

M�Ty¼
Xþ1

m¼�1

Xþ1
n¼�1

�RT4a1;mnþRT3a2;mn

� �
ambne�iðamxþbnyÞ:

(A30)

APPENDIX B: EERIVATION OF EQUATION (44)

The deflection coefficients of the two face panels are

fa1;klg ¼ ½ a1;11 a1;21 � � � a1;K1 a1;12 a1;22 � � � a1;K2 � � � a1;KL�TKL�1; (B1)

fa2;klg ¼ ½ a2;11 a2;21 � � � a2;K1 a2;12 a2;22 � � � a2;K2 � � � a2;KL�TKL�1: (B2)

The left-hand side of Eq. (44) represents the generalized

force, that is,

fFklg ¼ ½F11 F21 � � � FK1 F12 FF22 � � � FK2 � � � FKL�TKL�1; (B3)

Fkl ¼
2Ilxly at k¼ Kþ1

2
and l¼ Lþ1

2

0 at k 6¼ Kþ1
2
jj l 6¼ Lþ1

2

	
(B4)

k11;1
kl ¼ D1ða2

k þ b2
l Þ

2 � m1x
2 � w2q0

ikz;kl
þ x2qcavðkz;cav;kldÞ

kz;cav;kl sinðkz;cav;kldÞ

� �
: lxly; (B5)

T11;1 ¼ diag½ k11;1
11 k11;1

21 � � � k11;1
K1 k11;1

12 k11;1
22 � � � k11;1

K2 � � � k11;1
KL �KL�KL; (B6)

k11;2
KL ¼ lx�diag½RQ1 � la3

1RM1 RQ1 � ia3
2RM1 � � � RQ1 � ia3

KRM1

�
K�L

; (B7)

T11;2 ¼

k11;2
KL k11;2

KL � � � k11;2
KL

k11;2
KL k11;2

KL � � � k11;2
KL

..

. ..
. . .

. ..
.

k11;2
KL k11;2

KL � � � k11;2
KL

2
666664

3
777775

Kl�KL

; (B8)

k11;3
Kl;n ¼ lx � diag½ �ia1blbnRT1 �ia2blbnRT1 � � � iaKblbnRT1�K�L ; (B9)

T11;3 ¼

k11;3
K1;1 k11;3

K1;2 � � � k11;3
K1;L

k11;3
K2;1 k11;3

K2;2 � � � k11;3
K2;L

..

. ..
. . .

. ..
.

k11;3
KL;1 k11;3

KL;2 � � � k11;3
KL;L

2
666664

3
777775

Kl�KL

; (B10)

k11;4
K ¼ ly �

RQ3 � ib3
l RM3 RQ3 � ib3

l RM3 � � � RQ3 � ib3
l RM3

RQ3 � ib3
l RM3 RQ3 � ib3

l RM3 � � � RQ3 � ib3
l RM3

..

. ..
. . .

. ..
.

RQ3 � ib3
l RM3 RQ3 � ib3

l RM3 � � � RQ3 � ib3
l RM3

2
6664

3
7775

K�L

; (B11)

T11;4 ¼ diag½ k11;4
K1 k11;4

K2 � � � k11;4
KL �KL�KL

; (B12)
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k11;5
KL ¼ ly�

�ia1bla1RT3 �ia1bla2RT3 � � � �ia1blaKRT3

�ia2bla1RT3 �ia2bla2RT3 � � � �ia2blaKRT3

..

. ..
. . .

. ..
.

�iaKbla1RT3 �iaKbla2RT3 � � � �iaKblaKRT3

2
6664

3
7775

K�L

; (B13)

T11;5 ¼ diag½ k11;5
K1 k11;5

K2 � � � k11;5
KL �KL�Kl; (B14)

k12;1
kl ¼ �

x2qcav

kz;cav;kl sinðKz;cav:kldÞ
� lxly; (B15)

T12;1 ¼ diag½ k12;1
11 k12;1

21 � � � k12;1
K1 k12;1

12 k12;1
22 � � � k12;1

K2 � � � k12;1
KL �KL�KL; (B16)

k12;2
KL ¼ lx � diag½ �RQ2 þ ia3

1RM2 �RQ2 þ ia3
2RM2 � � � �RQ2 þ ia3

KRM2�K�L; (B17)

T12;2 ¼

k12;2
KL k12;2

KL � � � k12;2
KL

k12;2
KL k12;2

KL � � � k12;2
KL

..

. ..
. . .

. ..
.

k12;2
KL k12;2

KL � � � k12;2
KL

2
666664

3
777775

KL�KL

; (B18)

k12;3
Kl;n ¼ lx � diag½ ia1blbnRT2 ia2blbnRT2 � � � iaKblbnRT2�K�L ; (B19)

T12;3 ¼

k12;3
K1;1 k12;3

K1;2 � � � k12;3
K1;L

k12;3
K2;1 k12;3

K2;2 � � � k12;3
K2;L

..

. ..
. . .

. ..
.

k12;3
KL;1 k12;3

KL;2 � � � k12;3
KL;L

2
666664

3
777775

KL�KL

; (B20)

k12;4
Kl ¼ ly �

�RQ4 þ ib3
l RM4 �RQ4 þ ib3

l RM4 � � � �RQ4 þ ib3
l RM4

�RQ4 þ ib3
l RM4 �RQ4 þ ib3

l RM4 � � � �RQ4 þ ib3
l RM4

..

. ..
. . .

. ..
.

�RQ4 þ ib3
l RM4 �RQ4 þ ib3

l RM4 � � � �RQ4 þ ib3
l RM4

2
6664

3
7775

K�L

; (B21)

T12;4 ¼ diag½ k12;4
K1 k12;4

K2 � � � k12;4
KL
�KL�KL; (B22)

k12;5
K1 ¼ ly�

ia1bla1RT4 ia1bla2RT4 � � � ia1blaKRT4

ia2bla1RT4 ia2bla2RT4 � � � ia2blaKRT4

..

. ..
. . .

. ..
.

iaKbla1RT4 iaKbla2RT4 � � � iaKblaKRT4

2
66664

3
77775

K�L

;

(B23)

T12;5 ¼ diag½ k12;5
K1 k12;5

K2 � � � k12;5
KL
�KL�KL; (B24)

k21;1
kl ¼ �

x2qcav

kz;cav;kl sinðkz;cav;kldÞ
� lxly; (B25)

T21;1 ¼ diag½ k21;1
11 k21;1

21 � � � k21;1
K1 k21;1

12 k21;1
22 � � � k21;1

K2 � � � k21;1
KL �KL�KL

; (B26)
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k21;2
KL ¼ lx � diag½ �RQ2 þ ia3

1RM2 �RQ2 þ ia3
2RM2 � � � �RQ2 þ ia3

KRM2�K�L ; (B27)

T21;2 ¼

k21;2
KL k21;2

KL � � � k21;2
KL

k21;2
KL k21;2

KL � � � k21;2
KL

..

. ..
. . .

. ..
.

k21;2
KL k21;2

KL � � � k21;2
KL

2
6664

3
7775

KL�KL

; (B28)

k21;3
Kl;n ¼ lx � diag½ ia1blbnRT2 ia2blbnRT2 � � � iaKblbnRT2�K�L ; (B29)

T21;3 ¼

k21;3
K1;1 k21;3

K1;2 � � � k21;3
K1;L

k21;3
K2;1 k21;3

K2;2 � � � k21;3
K2;L

..

. ..
. . .

. ..
.

k21;3
KL;1 k21;3

KL;2 � � � k21;3
KL;L

2
66664

3
77775

KL�KL

; (B30)

k21;4
Kl ¼ ly �

�RQ4 þ ib3
l RM4 �RQ4 þ ib3

l RM4 � � � �RQ4 þ ib3
l RM4

�RQ4 þ ib3
l RM4 �RQ4 þ ib3

l RM4 � � � �RQ4 þ ib3
l RM4

..

. ..
. . .

. ..
.

�RQ4 þ ib3
l RM4 �RQ4 þ ib3

l RM4 � � � �RQ4 þ ib3
l RM4

2
6664

3
7775

K�L

; (B31)

T21;4 ¼ diag½ k21;4
K1 k21;4

K2 � � � k21;4
KL �KL�KL

; (B32)

k21;5
kl ¼ ly �

ia1bla1RT4 ia1bla2RT4 � � � ia1blaKRT4

ia2bla1RT4 ia2bla2RT4 � � � ia2blaKRT4

� � � � � � . .
. ..

.

iaKbla1RT4 iaKbla2RT4 � � � iaKblaKRT4

2
6664

3
7775

K�L

; (B33)

T21;5 ¼ diag½ k21;5
K1 k21;5

K2 � � � k21;5
KL �KL�KL

; (B34)

k22;1
kl ¼ D2ða2

k þ b2
l Þ

2 � m2x
2 � x2q0

ikz;kl
þ x2qcav cosðkz;cav;kldÞ

kz;cav;kl sinðkz;cav;kldÞ

� �
� lxly; (B35)

T22;1 ¼ diag½ k22;1
11 k22;1

21 � � � k22;1
K1 k22;1

12 k22;1
22 � � � k22;1

K2 � � � k22;1
KL �KL�KL

; (B36)

k22;2
KL ¼ lx � diag½RQ1 � ia3

1RM1 RQ1 � ia3
2RM1 � � � RQ1 � ia3

KRM1�K�L ; (B37)

T22;2 ¼

k22;2
KL k22;2

KL � � � k22;2
KL

k22;2
KL k22;2

KL � � � k22;2
KL

..

. ..
. . .

. ..
.

k22;2
KL k22;2

KL � � � k22;2
KL

2
6664

3
7775

KL�KL

; (B38)

k22;3
Kl;n ¼ lx � diag½ �ia1blbnbT1 �ia2blbnbT1 � � � �iaKblbnbT1�K�L ; (B39)

1932 J. Acoust. Soc. Am., Vol. 129, No. 4, April 2011 F. X. Xin and T. J. Lu: Transmission loss of rib-stiffened structures



T22;3 ¼

k22;3
K1;1 k22;3

K1;2 � � � k22;3
K1;L

k22;3
K2;1 k22;3

K2;2 � � � k22;3
K2;L

..

. ..
. . .

. ..
.

k22;3
KL;1 k22;3

KL;2 � � � k22;3
KL;L

2
66664

3
77775

KL�KL

; (B40)

k22;4
Kl ¼ ly �

RQ3 � ib3
l RM3 RQ3 � ib3

l RM3 � � � RQ3 � ib3
l RM3

RQ3 � ib3
l RM3 RQ3 � ib3

l RM3 � � � RQ3 � ib3
l RM3

..

. ..
. . .

. ..
.

RQ3 � ib3
l RM3 RQ3 � ib3

l RM3
..
.

RQ3 � ib3
l RM3

2
666664

3
777775

K�L

; (B41)

T22;4 ¼ diag½ k22;4
K1 k22;4

K2 � � � k22;4
KL
�KL�KL; (B42)

k22;5
Kl ¼ ly �

�ia1bla1RT3 �ia1bla2RT3 � � � �ia1blaKRT3

�ia2bla1RT3 �ia2bla2RT3 � � � �ia2blaKRT3

..

. ..
. . .

. ..
.

�iaKbla1RT3 �iaKbla2RT3 � � � �iaKblaKRT3

2
66664

3
77775

K�L

: (B43)

T22;5 ¼ diag½ k22;5
K1 k22;5

K2 � � � k22;5
KL
�KL�KL: (B44)

Using the definition of the sup-matrices presented above,

one obtains

T11 ¼ T11;1 þ T11;2 þ T11;3 þ T11;4 þ T11;5;

T22 ¼ T22;1 þ T22;2 þ T22;3 þ T22;4 þ T22;5;
(B45)

T12 ¼ T12;1 þ T12;2 þ T12;3 þ T12;4 þ T12;5;

T22 ¼ T22;1 þ T22;2 þ T22;3 þ T22;4 þ T22;5:
(B46)
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