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Abstract. The thickness-shear modes in a circular cylindrical piezoelectric transformer considering the effect of an epoxy-
bonded layer are analyzed, and an exact solution is obtained from the equations of the linear theory of piezoelectricity. Sys-
tematic parametric studies are subsequently carried out to quantify the effects of the epoxy-bonded layer upon the transformer
performance, including its thickness, elastic coefficient and mass density. It is demonstrated that whilst the thickness and elastic
coefficient of the layer affect significantly the resonance frequencies, transforming ratio, power density, admittance and effi-
ciency, and its mass density has negligible influence. On condition that the thickness of the epoxy layer is vanishingly small so
that it degenerates into the solution by the classical shear-lag model. Upon comparing with the predictions obtained by employ-
ing the traditional shear-lag model, it is found that the interface viscous damping is absolutely due to the elastic coefficient of
the epoxy layer, and the present structure model is found to be more accurate especially when the thickness of the epoxy layer
can not be neglected.
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1. Introduction

As a class of smart structures, piezoelectric transformer has been successfully made into many elec-
tronic devices, such as computer backlights, florescent ballast, portable electronic chargers, ignition of
gas-discharge lamps, and compact ac/dc and dc/dc converters, etc., which are used to raise or lower a
voltage [1–3]. All of these devices are based on the strong coupling property between electric and me-
chanical constitutive behavior. Many transformer investigations have been carried on theoretically and
experimentally [4–7], and more other references can be found in a review article [8]. Most of the work
is focused on perfect bonding. To the authors’ best knowledge, few work has been carried out so far
to discuss the effect of imperfect interface on the behavior of a piezoelectric transformer. However, it
has been recently pointed out that imperfect bonding does exists in devices, and this is significant for
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Fig. 1. A cylindrical piezoelectric ceramic transformer with an epoxy-bonded layer.

the design of high quality electronic devices. Therefore, the present contribution is concentrated on the
influence investigation of imperfect interface in piezoelectric transformers.

The transformers mentioned above contain at least two working components, i.e., input and output
parts. Very often a gluing substance, e.g., epoxy, is applied to connect the two portions and form an
interface [9]. Sometimes, micro-defect, diffusion impurity and damage take place inevitably during the
production of these devices, which will lead to the imperfectly bonded interface at the joint. Besides,
the interface may be damaged under harsh conditions, which would in turn affect the electromechanical
behaviors of the piezoelectric sensors [10]. For instance, compared with the perfectly bonded case,
the imperfect interface can lower the frequency of the resonator [11], induce the localization of some
particular waves [12], make the material distribution around the joint inhomogeneous [10], change the
wave dispersion properties [13], and so on.

Researchers have developed imperfect interface models with different levels of sophistication [11–
16]. The simplest description is to treat it as a layer which possesses elasticity and interface elastic strain
energy, but geometrically has a zero thickness, e.g., a shear-lag model [13–15]. Mechanical and electrical
properties and behaviors of weak interfaces described by different models have been widely studied
theoretically [13–16] and experimentally [17,18]. More references about the imperfect interface can be
found in a few review articles [19,20]. It has been proved that an interphase or transition with thickness
typically in the range of 30–240 nm does exist across the interface [21,22]. However, the references
which have ignored the thickness of the interface layer may produce unavoidable error, especially for
the smart structures with only several micro-meters thick. The accuracy of the model predictions has
therefore an issue of concern, although this is yet quantified.

In the present study, an epoxy-bonded layer structure is proposed for investigating the effect of an
epoxy layer on the thickness-shear modes in a circular cylindrical piezoelectric transformer. Built upon
the solutions obtained, the effects of the thickness, elastic coefficient and mass density of the epoxy layer
are quantified. Subsequently, with the assumption that the thickness of the middle layer is vanishingly
small, the epoxy-bonded layer structure is used to characterize piezoelectric transformers having imper-
fectly bonded interfaces. Finally, the present model predictions are compared with those obtained using
the traditional shear-lag model and some conclusions can be drawn.

2. Theoretical analysis of the cylindrical piezoelectric transformer with an epoxy layer

Consider a piezoelectric circular cylinder of polarized ceramics (see Fig. 1) with the z axis being the
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poling direction or the six-fold axis. Usually, the epoxy glue is used to splice two different portions.
For instance, Wu et al. have used the epoxy glue to made copper-layer and aluminum-substrate SAW
devices [9,23]. Here we assume that this epoxy bonded layer exists at r = c with its thickness h.
The piezoelectric ceramics is unbounded in the z direction. A polar coordinate system is defined by
x = r cos θ and y = r sin θ. The inner and outer faces at r = a, b are traction-free. There are four
electrodes at r = a, c, c + h, b. The electrodes at r = c and r = c+ h are grounded as a reference.

Usually, time-harmonic driving voltage V1 is applied across the electrodes at r = b, c + h. Due to
the particular material orientation, the cylinder is driven into axial thickness-shear vibration, and an
output voltage V2 can be picked up across the electrodes at r = c, a which are joined by a load circuit
whose impedance is Z . In present contribution, we only consider the effect of epoxy layer. Hence, the
thickness of the middle layer is small compared with that of piezoelectric input and output portions.
If the thickness is considerable, the structure in Fig. 1 can be used to simulate the effect of energy
transmission through a wall [24], which will not be discussed in this text. Since the material tensors of
crystals of 6 mm symmetry have the same structures as polarized ceramics, our analysis is also valid for
6 mm piezoelectric crystals. This includes widely used materials like ZnO and AlN [25,26].

The displacement vector u and electrical potential function ϕ of axial thickness-shear modes which
belongs to anti-plane or shear horizontal (SH) motions can be described as [27]

ux = uy = 0, uz = u(x, y, t) = u(r, θ, t), ϕ = ϕ(x, y, t) = ϕ(r, θ, t). (1)

Considering the axisymmetric motions independent of θ, which means uz = u(r, t) and ϕ =
ϕ(r, t) [24,28], ∇2 = ∂2

∂r2 + 1
r

∂
∂r can be obtained. For harmonic motions we use the complex nota-

tion

[u, ϕ, Trz ,Dr, I1, V1, Q1, I2, V2, Q2] = Re
{(

U,Φ, T,D, Ī1, V̄1, Q̄1, Ī2, V̄2, Q̄2

)
exp(iωt)

}
. (2)

So the governing equations can be obtained for the piezoelectric materials occupying a < r < c and
c+ h < r < b [24](

∂2

∂r2
+

1

r

∂

∂r
+ ξ2

)
U = 0, (3a)

(
∂2

∂r2
+

1

r

∂

∂r

)
Ψ = 0. (3b)

Where the wavenumber satisfies ξ = ω√
c̄44/ρ0

with the effective piezoelectric stiffness c̄44 = c44 +
e215
ε11

,

and the auxiliary function is Ψ = Φ− e15
ε11

U [29]. c44, e15, ε11 and ρ0 stand for the elastic constant, piezo-
electric, dielectric permittivity coefficients and mass density of the piezoelectric material, respectively.
Meanwhile, the governing equation of the elastic middle layer occupying c < r < c+ h is(

∂2

∂r2
+

1

r

∂

∂r
+ ζ2

)
U = 0. (4)

In which the wavenumber satisfies ζ = ω√
μ/ρ

. μ and ρ are the elastic constant and mass density of the

epoxy-bonded layer.
The corresponding boundary and continuity conditions are

r = a : T (a) = 0,Φ(a) = V̄2. (5a)
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r = c : T (c+) = T (c−), U(c+) = U(c−),Φ(c) = 0. (5b)

r = c+ h : T
[
(c+ h)+

]
= T

[
(c+ h)−

]
, U

[
(c+ h)+

]
= U

[
(c+ h)−

]
,Φ(c+ h) = 0. (5c)

r = b : T (b) = 0, Φ(b) = V̄1. (5d)

The solutions can be obtained as follows [24]

U =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

A1J0(ξr) +A2Y0(ξr), a < r < c

C1J0(ζr) + C2Y0(ζr), c < r < c+ h

B1J0(ξr) +B2Y0(ξr), c+ h < r < b

(6a)

Φ =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

e15
ε11

[A1J0(ξr) +A2Y0(ξr)] +A3 ln r +A4, a < r < c

0, c < r < c+ h

e15
ε11

[B1J0(ξr) +B2Y0(ξr)] +B3 ln r +B4, c+ h < r < b

(6b)

T =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−c̄44ξ [A1J1(ξr) +A2Y1(ξr)] + e15
A3

r
, a < r < c

−μζ [C1J1(ζr) + C2Y1(ζr)] , c < r < c+ h

−c̄44ξ [B1J1(ξr) +B2Y1(ξr)] + e15
B3

r
, c+ h < r < b

(6c)

D =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−ε11
A3

r
, a < r < c

0, c < r < c+ h

−ε11
B3

r
, c+ h < r < b

(6d)

Where J0 and Y0 are zero-order Bessel functions of the first and second kind. A1, A2, A3, A4, C1, C2,
B1, B2, B3 and B4 are undermined coefficients. Substituting Eq. (6) into Eq. (5) gives

⎧⎪⎪⎨
⎪⎪⎩
−c̄44ξ [A1J1(ξa)+A2Y1(ξa)] +e15

A3

a
= 0,

e15
ε11

[A1J0(ξa)+A2Y0(ξa)]+A3 ln a+A4 = V̄2.

(7a)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−c̄44ξ [A1J1(ξc)+A2Y1(ξc)]+e15
A3

c
= −μζ [C1J1(ζc)+C2Y1(ζc)] ,

A1J0(ξc)+A2Y0(ξc) = C1J0(ζc)+C2Y0(ζc),

e15
ε11

[A1J0(ξc)+A2Y0(ξc)] +A3 ln c+A4 = 0.

(7b)
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⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−c̄44ξ [B1J1(ξc+ξh)+B2Y1(ξc+ξh)] +e15
B3

c+h
=−μζ [C1J1(ζc+ζh)+C2Y1(ζc+ζh)] ,

B1J0(ξc+ξh)+B2Y0(ξc+ξh) = C1J0(ζc+ζh)+C2Y0(ζc+ζh),

e15
ε11

[B1J0(ξc+ξh)+B2Y0(ξc+ξh)]+B3 ln(c+h)+B4 = 0.

(7c)

⎧⎪⎪⎨
⎪⎪⎩
−c̄44ξ [B1J1(ξb)+B2Y1(ξb)]+e15

B3

b
= 0,

e15
ε11

[B1J0(ξb)+B2Y0(ξb)]+B3 ln b+B4 = V̄1.

(7d)

Formally, Eq. (7) contains ten equations for A1, A2, A3, A4, C1, C2, B1, B2, B3 and B4, but the output
voltage V̄2 is unknown. The additional equation needed is the output circuit. The charge can be obtained
at r = a:

Q̄2 =

∫ 2π

0
D|r=aadθ = −2πε11A3. (8)

Owning to the fact I2 = −Q̇2, the relationship between the complex output voltage and current can be
written as

V̄2 = Ī2Z = 2πiωε11ZA3. (9)

Equations (7) and (9) contain eleven equations with eleven undetermined coefficients A1, A2, A3, A4,
C1, C2, B1, B2, B3, B4 and V̄2, by which the output voltage ratio m =

∣∣V̄2/V̄1

∣∣ can be calculated easily
by MATLAB software. Similarly with output voltage and current, I1 = Q̇1 can be easily obtained at
r = b, and the input current satisfied

Ī1 = iω

∫ 2π

0
− D|r=bbdθ = 2πiωε11B3. (10)

With the complex notation for harmonic motions, the input electrical power is given by

P1 =
1

4

(
Ī1V̄

∗
1 + Ī∗1 V̄1

)
, (11)

where an asterisk represents complex conjugate. Meanwhile, the input admittance is

S1 =
∣∣Ī1/V̄1

∣∣ . (12)

Similarly, the output electrical power is

P2 =
1

4
(Ī2V̄

∗
2 + Ī∗2 V̄2). (13)

The efficiency of the transformer is defined as

η = P2/P1. (14)

Another quantity of practical interest is the power per unit volume (power density). In Fig. 1, z direction
is infinite. During the following discussion, we assumed that the thickness is one unit. Hence, p2 has the
dimensional of W/m2, which in our case may be calculated from

p2 =
P2

πa2
. (15)
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Fig. 2. The first three resonances of the (a) transforming ratio m, (b) power density p2, (c) admittance S1 and (d) efficiency η
versus the driving frequency for some selected h.

3. The effect of the epoxy-bonded layer on the transformer

As a numerical example, consider a ceramic cylinder of PZT-5H with c44 = 2.3 × 1010 N/m2, e15 =
17 C/m2, ε11 = 1.506 × 10−8 F/m, and ρ0 = 7500 kg/m3 [28,30]. However, the characteristics of
the epoxy-bonded layer, such as the elastic constant and the density, can not be obtained directly. The
inverse method with the help of experimental data can be used to determine the properties of this thin
layer using laser-generated Love surface waves [22] or Rayleigh waves [9,23]. In present paper, we
adopt the material coefficient as follows: μ = 1.3117 × 109 N/m2 and ρ = 1150 kg/m3, which has been
verified by experiment in Ref. [23].

Considering the viscous damping, in our calculations μ is replaced by μ (1+ iQ−1), where Q is a large
and real number with the magnitude order of 102 to 103. We fixed Q = 100. a = 10 mm, c = 20 mm,
b = c + h + c − a. Meanwhile, the fundamental thickness-shear frequency of shell ω0 = π

2(b−a)

√
c̄44
ρ ,

impedance Z0 = 1
iωC0

, and static capacitance C0 = 2πε11
ln(b/c) are introduced for convenience [24,28]. The

additional load is fixed as Z = (1−i)Z0 during the following simulation.
In this text, we mainly focus on the effect of the properties of epoxy-bonded layer on the transformer,

including the thickness, elastic coefficient and mass density. Here we assume that the elastic coefficient
and mass density of the thin layer are homogeneous when we focus on the effect of the thickness, and
the same method can be used to deal with the elastic coefficient and mass density.
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Fig. 3. The first few resonances of the (a) transforming ratio m,(b) power density p2, (c) admittance S1 and (d) efficiency η
versus the driving frequency for some selected μ when the thickness of epoxy-bonded layer h = (c− a)/100.

Figures 2(a)–(d) respectively show the first three resonances of the transforming ratio m, power den-
sity p2, admittance S1 and efficiency η versus the driving frequency for some selected h. It can be seen
from Fig. 2 that the transforming ratio assumes its maxima at resonant frequencies as expected. Mean-
while, at the same resonances the input admittance and output energy flux also assume their maxima,
which means the transformer is a resonant device operating at a particular frequency [24,28]. When
there is no epoxy-bonded layer, the first resonance has the highest transforming ratio, output energy flux
and input admittance, which owns to the fact that the higher corresponding modes have nodal points and
some voltage cancellation usually occurs along the radius direction [1,24,28]. However, the thickness h
changes its performance. The increasing thickness lowers both the first resonance frequency and mag-
nitude of these values. For the second modes, the peak value of m, p2 and S1 raise with the increasing
thickness. To the pointed, the efficiency η is equal to unit and keeps constant versus the driving frequency
when h = 0. The viscous damping depends directly on the elastic coefficient of the epoxy-bonded layer.
Hence, no viscous damping consumes at the circumstance of no thin layer. Totally, the thickness of the
epoxy-bonded layer has a great influence on the behavior of the transformer.

To demonstrate more closely the effect of the soft middle layer, Figs 3(a)–(d) respectively plot the first
three resonances of the transforming ratio m, power density p2, admittance S1 and efficiency η versus
the driving frequency for some selected μ. Here, we assumed that the thickness of epoxy-bonded layer
is h = (c − a)/100, and the elastic coefficient μ changes from −50% to 50% of the initial value. The
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Table 1
The values of transforming ratio m, power density p2, admittance S1 and efficiency η for the first three resonance frequencies
when the density of epoxy-bonded layer shifts

ρ (kg/m3) m p2 (W/m2) S1(1/Ω) η

ω = 1.623ω0 575 4.73790 733.59719 0.49789 0.96896
862.5 4.73891 733.90865 0.49798 0.96896
1150 4.73991 734.21927 0.49807 0.96895
1437.5 4.74091 734.52904 0.49816 0.96894
1725 4.74192 734.83797 0.49824 0.96893

ω = 3.719ω0 575 2.43650 444.74236 0.33421 0.99250
862.5 2.43597 444.55376 0.33378 0.99250
1150 2.43543 444.36112 0.33336 0.99251
1437.5 2.43488 444.16445 0.33293 0.99251
1725 2.43701 443.96377 0.33250 0.99252

ω = 5.059ω0 575 1.16233 137.62328 0.16783 0.97936
862.5 1.16252 137.66725 0.16788 0.97935
1150 1.16270 137.71127 0.16794 0.97934
1437.5 1.16289 137.75532 0.16800 0.97933
1725 1.16308 137.79941 0.16805 0.97932

tendency of these curves is similar with Fig. 2 except for the energy efficiency η. Larger μ leads to
more energy dissipation and then lowers energy efficiency. The elastic coefficient of the epoxy-bonded
layer also makes a big difference on the performance of the transformer. To the pointed, this kind of
effect is based on the fact that the thickness of the middle layer is not zero. If there does not exist the
epoxy-bonded layer, the influence is also null.

The first three peak values of the transforming ratio m, power density p2, admittance S1 and efficiency
η when the mass density shifts from −50% to 50% are shown in Table 1. It is clear from these results
that the mass density of the epoxy layer has a negligible influence on the performance in the present
structure.

4. A cylindrical piezoelectric ceramic transformer with an imperfect interface

Consider next a structure consisting of two transversely piezoelectric layers, the input ceramics and
output one occupying the regions c < r < b and a < r < c respectively, with the interface imperfectly
bonded, as shown in Fig. 4. The solutions for thickness-shear modes in the regions have already been
given in Eq. (6) by the present epoxy-bonded layer structure. Here, alternative solutions are exploited
by applying the shear-lag model. The predictions from the two different models will be compared in the
next section using theoretical analysis and numerical examples.

The boundary conditions in Fig. 4 at r = a and r = b are the same as Eqs (5a) and (5b), and the
additional output circuit condition is just Eq. (8). For simplicity and as an approximation, the interface
may be characterized using the shear-lag model, i.e., its tangential displacement is allowed to be different
from both sides of the interface [12,13,15,16]. For the imperfectly bonded interface r = c as shown in
Fig. 4, the shear-lag model dictates that:

r = c : T (c+) = T (c−) = K
[
U(c+)− U(c−)

]
,Φ(c+) = Φ(c−) = 0. (16)

Where K (N/m3) is the interfacial elastic constant describing how well the interface is bonded, with
K = ∞ for perfect bonding and K = 0 for no bonding. Meanwhile, we use a complex interface stiffness
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whose imaginary part describes interface damping. Consider K = K0+ iK1, where both K1 and K2 are
real. Substitution of Eq. (6), into Eqs (5a), (5d), (9) and (16) can lead to nine algebraic equations for the
unknown constants A1, A2, A3, A4, B1, B2, B3, B4 and V̄2, in which the boundary conditions at r = a

and r = b are the same as Eqs (7a) and (7b), and the additional output circuit condition is the same as
Eq. (9). However, at r = c:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−c̄44ξ [A1J1(ξc) +A2Y1(ξc)] + e15
A3

c
= −c̄44ξ [B1J1(ξc) +B2Y1(ξc)] + e15

B3

c

= K [−A1J0(ξc)−A2Y0(ξc) +B1J0(ξc) +B2Y0(ξc)] ,

e15
ε11

[A1J0(ξc) +A2Y0(ξc)] +A3 ln c+A4 = 0,

e15
ε11

[B1J0(ξc) +B2Y0(ξc)] +B3 ln c+B4 = 0.

(17)

If the interface is perfect, i.e., K = ∞, Eqs (7a), (7d), (9) and (17) possess exactly the same expres-
sions obtained in the work by Yang [28], which validates to some extent the accuracy of the theoretical
derivation. Furthermore, these equations mentioned above can be simplified as

{
k2e [J0 (ξa)− J0 (ξc)] + aξ ln

(a
c

)
J1 (ξa)

(
1− Z

Z0

)}
A1

+

{
k2e [Y0 (ξa)− Y0 (ξc)] + aξ ln

(a
c

)
Y1 (ξa)

(
1− Z

Z0

)}
A2 = 0,

(18a)

−
[a
c
J1(ξa)− J1(ξc)

]
A1 −

[a
c
Y1(ξa)− Y1(ξc)

]
A2

+

[
b

c
J1(ξb)− J1(ξc)

]
B1 +

[
b

c
Y1(ξb)− Y1(ξc)

]
B2 = 0,

(18b)
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Fig. 6. The first few resonances of the (a) transforming ratio m, (b) power density p2, (c) admittance S1 and (d) efficiency η
versus the driving frequency for the perfect and imperfect interfaces.

−
{
J0(ξc) +

c̄44ξ

K

[a
c
J1(ξa)− J1(ξc)

]}
A1 −

{
Y0(ξc) +

c̄44ξ

K

[a
c
Y1(ξa)− Y1(ξc)

]}
A2

+J0(ξc)B1 + Y0(ξc)B2 = 0,

(18c){
k2e [J0 (ξb)− J0 (ξc)] + bξ ln

(
b

c

)
J1 (ξb)

}
B1

+

{
k2e [Y0 (ξb)− Y0 (ξc)] + bξ ln

(
b

c

)
Y1 (ξb)

}
B2 =

e15
c̄44

V̄1.

(18d)

Where k2e = e215
ε11 c̄44

is the electromechanical coupling constant. Equation (18) can be used to solve
A1, A2, B1 and B2. Once they are solved, the output voltage ratio

∣∣V̄2/V̄1

∣∣ can be obtained.
In order to compare Figs 1 and 4, Eqs (7) and (9) also can be reduced as the expression about
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Fig. 7. The comparison between the epoxy layer structure and shear-lag model for the first resonance of the (a) transforming
ratio m, (b) power density p2 and (c) admittance S1 when the thickness of epoxy-bonded layer shifts.

A1, A2, B1 and B2 as follows:

{
k2e [J0 (ξa)− J0 (ξc)] + aξ ln

(a
c

)
J1 (ξa)

(
1− Z

Z0

)}
A1

+

{
k2e [Y0 (ξa)− Y0 (ξc)] + aξ ln

(a
c

)
Y1 (ξa)

(
1− Z

Z0

)}
A2 = 0,

(19a)

{
−M

[a
c
J1(ξa)− J1(ξc)

]
+

μζ

c̄44ξ

J0(ξc)

J0(ζc)
[J1(ζc+ ζh)−MJ1(ζc)]

}
A1

+

{
−M

[a
c
Y1(ξa)− Y1(ξc)

]
+

μζ

c̄44ξ

Y0(ξc)

J0(ζc)
[J1(ζc+ ζh)−MJ1(ζc)]

}
A2

+

[
b

c+ h
J1(ξb)− J1(ξc+ ξh)

]
B1 +

[
b

c+ h
Y1(ξb)− Y1(ξc+ ξh)

]
B2 = 0,

(19b)
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Table 2
The comparison between the epoxy layer structure and shear-lag model for the first resonance of the efficiency η when the
thickness of epoxy-bonded layer shifts

ω/ω0 1.1 1.3 1.5 1.7
Case 1: h = (c− a)/20 0.84513 0.85085 0.85737 0.86495
Case 2: K0 = 2.6234 × 1012 N/m3 0.84496 0.85075 0.85746 0.86506
Case 1: h = (c− a)/50 0.93161 0.93439 0.93758 0.94116
Case 2: K0 = 6.5585 × 1012 N/m3 0.93162 0.93443 0.93765 0.94127
Case 1: h = (c− a)/100 0.96459 0.96609 0.9678 0.96971
Case 2: K0 = 1.3117 × 1013 N/m3 0.9646 0.9661 0.96782 0.96975

Table 3
The comparison between the epoxy layer structure and shear-lag model for the first resonance of the efficiency η when the
elastic coefficient of epoxy-bonded layer shifts and h = (c− a)/100

ω/ω0 1.3 1.5 1.7 1.9
Case 1: μ = 0.65585 GPa 0.93441 0.93761 0.94121 0.94517
Case 2: K0 = 6.5585 × 1012N/m3 0.93443 0.93765 0.94127 0.9718
Case 1: μ = 1.3117 GPa 0.96609 0.9678 0.96971 0.9718
Case 2: K0 = 1.3117 × 1013 N/m3 0.9661 0.96782 0.96975 0.97186
Case 1: μ = 1.96755 GPa 0.97713 0.9783 0.9796 0.98102
Case 2: K0 = 1.96755 × 1013 N/m3 0.97714 0.97832 0.97963 0.98106

−
{
J0(ζc+ ζh)

J0(ξc)

J0(ζc)
+

c̄44ξ

μ/h

N

M2ζh

[a
c
J1(ξa)− J1(ξc)

]
− J1(ζc)

J0(ξc)

J0(ζc)

N

M2

}
A1

−
{
J0(ζc+ ζh)

Y0(ξc)

J0(ζc)
+

c̄44ξ

μ/h

N

M2ζh

[a
c
Y1(ξa)− Y1(ξc)

]
− J1(ζc)

Y0(ξc)

J0(ζc)

N

M2

}
A2

+J0(ξc+ ξh)B1 + Y0(ξc+ ξh)B2 = 0,

(19c){
k2e [J0 (ξb)− J0 (ξc+ ξh)] + bξ ln

(
b

c+ h

)
J1 (ξb)

}
B1

+

{
k2e [Y0 (ξb)− Y0 (ξc+ ξh)] + bξ ln

(
b

c+ h

)
Y1 (ξb)

}
B2 =

e15
c̄44

V̄1.

(19d)

Where
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

M =
M1

M2
=

J1(ζc+ ζh)
Y0(ζc)

J0(ζc)
− Y1(ζc+ ζh)

J1(ζc)
Y0(ζc)

J0(ζc)
− Y1(ζc)

,

N = Y0(ζc+ ζh)− J0(ζc+ ζh)
Y0(ζc)

J0(ζc)
.

(20)

Upon comparing Eqs (18) and (19), one may conclude that when the thickness of the epoxy-bonded
layer are diminishingly small, i.e., h → 0, N → 0 and M → 1 can be obtained. Based on the fact that

N
M2ζh

→ 1 for thin middle layer (Fig. 5), if K = μ/h is assumed, Eqs (18) and (19) have the same
expression. Under such conditions, in addition to the description of the shear-lag model, the imperfect
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(c)

Fig. 8. The comparison between the epoxy layer structure and shear-lag model for the first resonance of the (a) transforming ratio
m, (b) power density p2 and (c) admittance S1 when the elastic coefficient of epoxy-bonded layer shifts and h = (c− a)/100.

interface may be regarded as an epoxy-bonded layer and hence the solutions obtained in the previous
sections apply. Therefore, we can conclude that the interface viscous damping absolutely comes from
the viscoelasticity, i.e., the elastic coefficient of the epoxy-bonded layer.

K = K0 + iK1 =
μ(1 + iQ−1)

h
=

μ

h
+ i

μQ−1

h
(21)

Meanwhile, if h → ∞, K approaches zero, which is the case of no bonding. Equation (21) provides a
theoretical relationship between the epoxy-bonded layer structure and shear-lag model. Figures 6(a)–(d)
respectively show the first few resonances of the transforming ratio m, power density p2, admittance S1

and efficiency η versus the driving frequency for the perfect and imperfect interfaces using the shear-lag
model. These curves have the same varying patterns as Fig. 2, which corrects our theoretical analysis
from the point of numerical simulations.

Figure 7 presents the comparison between the epoxy-bonded layer structure and shear-lag model for
the first resonance of the transforming ratio m, power density p2 and admittance S1 when the thickness
of epoxy-bonded layer shifts. Case 1 is the outcomes calculated by the epoxy-bonded layer structure,
i.e., Eq. (19), and Case 2 is the corresponding shear-lag results at the same interface conditions, i.e.,
Eq. (18). Meanwhile, the comparison results about the energy efficient η are shown in Table 2. It is seen
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from Fig. 7 and Table 2 that the difference between the two cases is evident. Especially when the epoxy
layer is relatively large, the calculation by the shear-lag model will leads to deviation, which must be
noticed in the device application. To a certain degree, this kind of error can be explained by the value of

N
M2ζh

in Fig. 5. For larger h, this value does not approach to unit any more.
Similarly, Fig. 8 and Table 3 simultaneously provide the comparison between the epoxy-bonded layer

structure and shear-lag model of the first resonance of the transforming ratio m, power density p2,
admittance S1 and efficient η for fixed thickness h = (c− a)/100 when the elastic coefficient of epoxy-
bonded layer μ shifts. At this condition, the difference between the two cases is also evident. However,
this deviation calculated by the shear-lag model will not be enlarged with the changing of the elastic
coefficient of epoxy-bonded layer.

5. Conclusion

The presence of an epoxy-bonded layer and its influence on the performance of the piezoelectric
transformers has been investigated theoretically and numerically from the equations of the linear theory
of piezoelectricity. Systematic parametric studies are carried out to quantify the effects of the epoxy-
bonded layer, including its thickness, elastic coefficient and mass density. The proposed epoxy-bonded
layer structure is also employed to investigate the influence of imperfectly bonded interface in the piezo-
electric transformer and the predictions are compared with those obtained using the traditional shear-lag
model. The following conclusions are drawn:

(1) The thickness and elastic coefficient of the epoxy-bonded layer affect significantly the properties
of the piezoelectric transformer, including its resonance frequencies, transforming ratio, power
density, admittance and efficiency, whilst the mass density has negligible influence.

(2) For the piezoelectric transformer with an imperfectly bonded interface between the input and
output portions, the calculated results obtained from the epoxy-bonded layer structure has the
same expression as that from the shear-lag model if the thickness of the middle layer approaches
zero, which means that the imperfect interface may be modeled as a thin epoxy-bonded layer.

(3) The interface coefficient in the shear-lag model is equal to the elastic coefficient divided by the
thickness of the epoxy-bonded layer, which explains to certain degree that the interface viscous
damping absolutely comes from the viscoelasticity, i.e., the elastic coefficient.

(4) For imperfectly bonded piezoelectric transformers, the predictions considering the present epoxy-
bonded layer are more accurate than those from the shear-lag model especially when the thickness
of the middle layer is not relatively small.

The theoretical and numerical results can provide guidance in the design of circular cylinder piezo-
electric transformer when an imperfect interface appears, especially for the small smart piezoelectric
devices with only several micro-meters thick.
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