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Abstract
The effect of functional graded piezoelectric materials on the propagation of thickness-twist
waves is investigated through equations of the linear theory of piezoelectricity. The elastic and
piezoelectric coefficients, dielectric permittivity, and mass density are assumed to change in a
linear form but with different graded parameters along the wave propagation direction. We
employ the power-series technique to solve the governing differential equations with variable
coefficients attributed to the different graded parameters and prove the correction and
convergence of this method. As a special case, the functional graded middle layer resulting
from piezoelectric damage and material bonding is investigated. Piezoelectric damaged
material can facilitate energy trapping, which is impossible in perfect materials. The increase
in the damaged length and the reduction in the piezoelectric coefficient decrease the resonance
frequency but increase the number of modes. Higher modes of thickness-twist waves appear
periodically along the damaged length. Moreover, the displacement of the center of the
damaged portion is neither symmetric nor anti-symmetric, unlike the non-graded plate. The
conclusions are theoretically and practically significant for wave devices.

(Some figures may appear in colour only in the online journal)

1. Introduction

Thickness-twist vibration modes are anti-plane or shear
horizontal (SH) modes in plates that are often used as the
operating modes for resonators, filters, and acoustic wave
sensors made from quartz and polarized ceramics [1, 2]. The
frequencies of such waves are mainly determined by the plate
thickness, which is the smallest dimension of the plate [3].
When a sixfold axis of a 6 mm crystal is parallel to the major
surface of a plate, thickness-twist waves can propagate in both
a homogeneous piezoelectric plate [4] and an inhomogeneous
piezoelectric plate [5, 6].

In the 1980s, a new kind of material called functionally
graded material (FGM) was proposed to solve the problems
that arise in the thermal-protection systems of aerospace
structures. Since then, the FGM structure has increasingly
attracted the attention of scientists and engineers. FGM
continues to be used in thermal-protection systems [7] as well
as in electronics and in most advanced integrated systems
for vibration control and health monitoring [8]. Since 1991,
functionally graded piezoelectric material (FGPM) has been
manufactured [9] and applied to surface acoustic wave devices
for efficiency and sensitivity improvement. For example,
functional graded piezoelectric transducers have been found
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to generate an ultrasonic wave with a broader frequency
spectrum than conventional transducers [10].

However, during material manufacture and application,
the possible defects of impurity, cavities, and micro-cracks as
well as the corrosive environment and fatigue under periodic
mechanical or thermal loading result in the subsurface damage
of the piezoelectric materials [11]. This process makes the
material coefficients inhomogeneous, thus transforming the
original material into an FGPM.

The effect of FGPM on wave propagation, including
the Love, Bleustein–Gulyaev, Rayleigh, and Lamb waves,
has been extensively investigated. Collet et al consid-
ered Bleustein–Gulyaev waves in a functionally graded
piezoelectric half-space [12]. Du et al discussed the
features of Love waves in a layered functionally graded
piezoelectric structure [13]. Similarly, the propagation of
this kind of SH waves near the interface between two
functionally graded piezoelectric half-spaces under electroded
and unelectroded conditions has been investigated [14].
The assumption that all material coefficients change in
the same exponential function variation is usually adopted
for analytical simplification [12–16]. However, this kind
of variation pattern is almost impossible in actuality. For
other material patterns, the main methods include the
inhomogeneous layer element method [17], multilayered
approximation [18], Wentzel–Kramers–Brillouin asymptotic
approximation technique [19–21], Legendre polynomial
approach [22, 23], equivalent network representation [24],
homotopy analysis method [25], etc. Other matrix methods
such as the state-vector formulation [26], stiffness matrix
method [27], and reverberation-ray matrix method [28] can
also be used to calculate waves in FGPM, based on the
multilayered approximation. The power-series technique has
recently been used for the asymptotic analytical derivation of
the governing equation of a transverse surface wave [29].

Among all aforementioned FGPMs, the material coeffi-
cients shift along the thickness direction [12–29]. FGPMs in
which the material changes along the length or width direction
has not been widely investigated despite its possible use in
device applications. For example, the stress concentration
at actuator edges can be significantly reduced or essentially
removed in FGPM actuators by changing their material
characteristics in the length direction [30].

In this paper, we discuss the effect of FGPM, which
is located in the middle region of an inhomogeneous
plate, on thickness-twist wave propagation. The material
coefficients change linearly but with different parameters
in the length direction. This linear pattern can be used to
simulate the effect of FGPM induced by internal temperature
variations [24]. The power-series technique is adopted to
solve this problem. Moreover, correction and convergence are
proven theoretically. As a special case, the FGPM attributed
to piezoelectric damage as well as an FGPM buffer layer is
discussed. Considering that the material tensors of crystals
with 6 mm symmetry possess the same structures as polarized
ceramics, our analysis is also valid for 6 mm piezoelectric
crystals such as ZnO and AlN.

Figure 1. Inhomogeneous transversely piezoelectric plate with a
functionally graded piezoelectric layer in the central portion.

2. Governing equations and propagating wave
solutions

The propagation of thickness-twist waves in an inhomo-
geneous piezoelectric plate of 6 mm crystals or polarized
ceramics with a depth of 2h is considered, as shown in
figure 1. The plate comprises a FGPM in the region 0 < x1 <

H and two different transversely piezoelectric materials in the
outer portions x1 < 0 and x1 > H. All piezoelectric materials
are poled in the x3 direction determined by the right-hand
rule from the x1 and x2 axes. The material coefficients of the
point change along the wave propagation direction, i.e., the x1
direction, not the depth direction, which differs from previous
works [12–29].

The thickness-twist mode can be represented by the
displacement component u and electrical potential function ϕ
as follows [1, 5, 6]:

u1 = u2 = 0, u3 = u(x1, x2, t),

ϕ = ϕ(x1, x2, t)
(1)

where u is the displacement vector and ϕ is the electric
potential function. The linear piezoelectric constitutive
equations can be expressed as [31]

σij = cijkluk,l + elijϕ,l

Di = eikluk,l − εilϕ,l
(2)

where σij and Di are the stress tensors and the electrical
displacement vector, respectively; and cijkl, elij, and εil are
the elastic and piezoelectric coefficients, and dielectric
permittivity, respectively. An index after a comma denotes a
partial differentiation with respect to the coordinate.

2.1. Solutions for the left region x1 < 0

In this work, we use the ‘∗’ and ‘′’ symbols to distinguish
the different parameters associated with the outer portions
x1 < 0 and x1 > H, respectively. In the left region x1 < 0,
the governing equations for u∗ and ϕ∗ are [13, 14]

c∗44∇
2u∗ + e∗15∇

2ϕ∗ = ρ∗ü∗

e∗15∇
2u∗ − ε∗11∇

2ϕ∗ = 0
(3)

where ∇2
= ∂2/∂x2

1+ ∂
2/∂x2

2 is the Laplace operator, and the
dot refers to time differentiation. The solutions for the trapped
thickness-twist waves in the x1 direction can be expressed

2
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as [5]

u∗ = A∗1eξ
∗

1 x1 cos(ξ2x2) exp(−iωt)

ϕ∗ =

(
e∗15

ε∗11
A∗1eξ

∗

1 x1 + B∗1eξ2x1

)
cos(ξ2x2) exp(−iωt)

(4)

where A∗1 and B∗1 are undetermined constants; ξ∗1 and ξ2
are wavenumbers in the x1 and x2 directions, respectively;
ξ2 =

mπ
2h (m = 0, 2, 4, . . .); ω is the wave frequency; and

i2 = −1. Similarly, the corresponding anti-symmetric modes
in the x2 direction can be obtained using sin(ξ2x2) and ξ2 =
mπ
2h (m = 1, 3, 5, . . .). Generally speaking, m = 0 is called the

face-shear wave, and m > 0 is related to the thickness-twist
wave [5, 6]. In particular, the face-shear mode, i.e., m = 0,
will not be considered in the following discussion, and only
the symmetric thickness-twist modes in the x2 direction, i.e.,
where m is even number, is discussed in present contribution
for simplification. Inserting equation (4) into (3) yields

ξ∗1 =

√
ξ2

2 −
ρ∗ω2

c̄∗44
=

1
c∗sh

√
ω∗2m − ω

2 (5)

where c∗sh =
√

c̄∗44/ρ
∗ and ω∗m =

(mπ
2h

)
c∗sh are respectively

the bulk shear wave velocity and the corresponding cut-off
frequency of the thickness-twist waves for the piezoelectric
material occupying x1 < 0. Substituting equation (4) into (2),
the stress component T∗31, and electrical displacement D∗1 can
be obtained as

T∗31 = (c̄
∗

44ξ
∗

1 A∗1eξ
∗

1 x1 + e∗15ξ2B∗1eξ2x1)

× cos(ξ2x2) exp(−iωt)

D∗1 = −ε
∗

11ξ2B∗1eξ2x1 cos(ξ2x2) exp(−iωt).

(6)

2.2. Solutions for the right region x1 > H

Similarly to the left portion, the governing equations for u′

and ϕ′ of the right portion x1 > H are [20]

c′44∇
2u′ + e′15∇

2ϕ′ = ρ′ü′

e′15∇
2u′ − ε′11∇

2ϕ′ = 0.
(7)

The symmetric modes in the x2 direction for the trapped
thickness-twist waves propagating in the x1 direction can also
be expressed as [6]

u′ = A′1e−ξ
′

1(x1−H) cos(ξ2x2) exp(−iωt)

ϕ′ =

[
e′15

ε′11
A′1e−ξ

′

1(x1−H)
+ B′1e−ξ2(x1−H)

]
× cos(ξ2x2) exp(−iωt)

(8)

where A′1 and B′1 are undetermined constants, and ξ ′1 is
wavenumber in the x1 direction. Inserting equation (8) into
(7) yields

ξ ′1 =

√
ξ2

2 −
ρ′ω2

c̄′44
=

1
c′sh

√
ω′2m − ω

2 (9)

where c′sh =

√
c̄′44/ρ

′ and ω′m =
(mπ

2h

)
c′sh are respectively

the bulk shear wave velocity and the corresponding cut-off

frequency for the right region x1 > H. Based on these
solutions, the stress and electrical displacement components
are

T ′31 = [−c̄′44ξ
′

1A′1e−ξ
′

1(x1−H)
− e′15ξ2B′1e−ξ2(x1−H)

]

× cos(ξ2x2) exp(−iωt)

D′1 = ε
′

11ξ2B′1e−ξ2(x1−H) cos(ξ2x2) exp(−iωt).

(10)

2.3. Solutions for the FGPM region 0 < x1 < H

In the FGPM layer, regardless of the variation that facilitates
material parameter changes along the x1 direction, such
changes can be theoretically expressed into the power function
using Taylor’s series expansion

c44 =

∞∑
n=0

c(n)44

(x1

H

)n
, e15 =

∞∑
n=0

e(n)15

(x1

H

)n
,

ε11 =

∞∑
n=0

ε
(n)
11

(x1

H

)n
, ρ =

∞∑
n=0

ρ(n)
(x1

H

)n
.

(11)

In this work, only the two terms are retained for all
the material coefficients, i.e., the elastic, piezoelectric, and
dielectric coefficients as well as the mass density of the FGPM
are all assumed to change linearly in the x1 direction:

c44 = c0
44

(
1− α

x1

H

)
, e15 = e0

15

(
1− β

x1

H

)
,

ε11 = ε
0
11

(
1− γ

x1

H

)
, ρ = ρ0

(
1− η

x1

H

) (12)

where the coefficients α, β, γ , and η indicate the profile of
the corresponding material gradient along the x1-axis, and
the quantities with superscript ‘0’ are the values of these
parameters at x1 = 0. This linear pattern can be used to
calculate the effect of FGPM induced by internal temperature
variations [24]. The investigation and understanding of
the effect of the graded factor on the characteristics of
thickness-twist wave propagation is of great importance.

The displacement u and electrical potential ϕ in the
FGPM middle layer 0 < x1 < H can be expressed as

u = U(x1) cos(ξ2x2) exp(−iωt)

ϕ = 8(x1) cos(ξ2x2) exp(−iωt).
(13)

Thus, the governing equations are [21, 22]

c44

(
d2U

dx2
1

− ξ2
2 U

)
+ e15

(
d28

dx2
1

− ξ2
28

)
+

dc44

dx1

dU

dx1
+

de15

dx1

d8
dx1
= ρÜ

e15

(
d2U

dx2
1

− ξ2
2 U

)
− ε11

(
d28

dx2
1

− ξ2
28

)
+

de15

dx1

dU

dx1
−

dε11

dx1

d8
dx1
= 0.

(14)

Equation (14) contains two second-order partial differential
equations with variable coefficients with respect to U and
8. Solving the equations directly is a difficult task. In this
work, an asymptotic numerical solution can be obtained

3
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from the power function expansion technique along the x1

direction [11, 29, 32]

U(x1) =

∞∑
n=0

an

(x1

H

)n
, 8(x1) =

∞∑
n=0

bn

(x1

H

)n
. (15)

Substituting equations (12) and (15) into (14) yields

c0
44

(
1− α

x1

H

) ∞∑
n=0

[(n+ 2)(n+ 1)an+2 − (ξ2H)2an]

(x1

H

)n

+ e0
15

(
1− β

x1

H

) ∞∑
n=0

[(n+ 2)(n+ 1)bn+2

− (ξ2H)2bn]

(x1

H

)n
−

∞∑
n=0

(n+ 1)(c0
44αan+1

+ e0
15βbn+1)

(x1

H

)n
+ ρ0

(
1− η

x1

H

)
ω2H2

×

∞∑
n=0

an

(x1

H

)n
= 0, (16a)

e0
15

(
1− β

x1

H

) ∞∑
n=0

[(n+ 2)(n+ 1)an+2

− (ξ2H)2an]

(x1

H

)n
− ε0

11

(
1− γ

x1

H

)
×

∞∑
n=0

[(n+ 2)(n+ 1)bn+2 − (ξ2H)2bn]

(x1

H

)n

−

∞∑
n=0

(n+ 1)(e0
15βan+1 − ε

0
11γ bn+1)

(x1

H

)n
= 0. (16b)

By equating the coefficients of
( x1

H

)n in equation (16) to
zero, we can obtain two cases for the corresponding recursive
relationships of an and bn:

a2 =
1
2

[(
c0

44

c̄0
44

α + k2
eβ

)
a1 +

e0
15

c̄0
44

(β − γ )b1

+

(
1−

ω2

ω2
m

)
(ξ2H)2a0

]
,

b2 =
1
2

[
c0

44

c̄0
44

e0
15

ε0
11

(α − β)a1 +

(
c0

44

c̄0
44

γ + k2
eβ

)
b1

−
e0

15

ε0
11

ω2

ω2
m
(ξ2H)2a0 + (ξ2H)2b0

]
(17a)

an+3 =
1

(n+ 3)(n+ 2)

[
(n+ 2)2

(
c0

44

c̄0
44

α + k2
eβ

)
an+2

+ (n+ 2)2
e0

15

c̄0
44

(β − γ )bn+2 +

(
1−

ω2

ω2
m

)
(ξ2H)2an+1

−

(
c0

44

c̄0
44

α + k2
eβ − η

ω2

ω2
m

)
(ξ2H)2an

−
e0

15

c̄0
44

(β − γ )(ξ2H)2bn

]
,

bn+3 =
1

(n+ 3)(n+ 2)

{
(n+ 2)2

c0
44

c̄0
44

e0
15

ε0
11

(α − β)an+2

+ (n+ 2)2
(

c0
44

c̄0
44

γ + k2
eβ

)
bn+2

−
e0

15

ε0
11

ω2

ω2
m
(ξ2H)2an+1 + (ξ2H)2bn+1

−
e0

15

ε0
11

[
c0

44

c̄0
44

(α − β)− η
ω2

ω2
m

]
(ξ2H)2an

−

(
c0

44

c̄0
44

γ + k2
eβ

)
(ξ2H)2bn

}
(17b)

where ωm =
(mπ

2h

)
c0

sh, k2
e =

e0 2
15

ε0
11c̄0

44
, c̄0

44 = c0
44+

e0 2
15
ε0

11
, and c0

sh =√
c̄0

44/ρ
0 are the respective cut-off frequency, electrome-

chanical coupling constant, effective piezoelectric stiffness,
and bulk shear wave velocity when the middle layer
is homogeneous. n ≥ 0. a0, a1, b0, b1 are undetermined
coefficients. Once these parameters are calculated, an and
bn (n > 1) can be obtained using equation (17). Based on the
given solutions, the solutions for the FGPM middle layer are

u =
∞∑

n=0

an

(x1

H

)n
cos(ξ2x2) exp(−iωt)

ϕ =

∞∑
n=0

bn

(x1

H

)n
cos(ξ2x2) exp(−iωt).

(18)

Similarly, the stress and electrical displace components are

T31 =
1
H

∞∑
n=0

(n+ 1)
[
c0

44

(
1− α

x1

H

)
an+1

+ e0
15

(
1− β

x1

H

)
bn+1

] (x1

H

)n
cos(ξ2x2) exp(−iωt)

D1 =
1
H

∞∑
n=0

(n+ 1)
[
e0

15

(
1− β

x1

H

)
an+1

− ε0
11

(
1− γ

x1

H

)
bn+1

] (x1

H

)n
cos(ξ2x2) exp(−iωt).

(19)

2.4. Boundary conditions and the frequency equation

• For unelectroded and traction-free surfaces at x2 = ±h
[5, 6]

T∗32 = T32 = T ′32 = 0, D∗2 = D2 = D′2 = 0. (20)

• The continuity conditions at x1 = 0 and H are

T∗31(0, x2) = T31(0, x2), D∗1(0, x2) = D1(0, x2),

u∗(0, x2) = u(0, x2), ϕ∗(0, x2) = ϕ(0, x2)

T31(H, x2) = T ′31(H, x2),

D1(H, x2) = D′1(H, x2),

u(H, x2) = u′(H, x2), ϕ(H, x2) = ϕ
′(H, x2).

(21)

4
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Table 1. Frequencies (106 s−1) of the plate for the homogeneous middle layer (α = β = γ = η = 0) by using the power function
expansion method.

n 15 20 25 30 35

H = 4 mm 3.513 887 98 3.513 167 48 3.513 171 98 3.513 171 98 3.513 171 98

n 30 35 40 45 50

H = 8 mm 3.419 222 48 3.420 125 48 3.420 116 98 3.420 116 98 3.420 116 98
3.590 959 48 3.587 845 48 3.587 873 98 3.587 873 98 3.587 873 98

n 50 55 60 65 70

H = 12 mm 3.390 914 98 3.390 935 48 3.390 935 48 3.390 935 48 3.390 935 48
3.484 472 98 3.484 395 48 3.484 395 98 3.484 395 98 3.484 395 98
3.626 357 98 3.626 508 98 3.626 507 98 3.626 507 98 3.626 507 98

n 65 70 75 80 85

H = 16 mm 3.378 487 98 3.378 424 48 3.378 424 98 3.378 424 98 3.378 424 98
3.436 604 48 3.436 849 48 3.436 847 98 3.436 847 98 3.436 847 98
3.530 517 98 3.529 992 48 3.529 996 48 3.529 996 48 3.529 996 48
3.649 370 48 3.650 192 98 3.650 186 48 3.650 186 98 3.650 186 98

Table 2. Frequencies (106 s−1) of the plate for some special cases by using the power function expansion method (H = 4 mm).

n 15 20 25 30 35

α = 0.5 3.211 213 51 3.211 240 01 3.211 238 51 3.211 238 51 3.211 238 51
β = γ = η = 0 3.659 678 01 3.664 782 51 3.664 741 51 3.664 741 51 3.664 741 51

β = 0.5 3.299 378 82 3.298 076 32 3.298 081 32 3.298 081 32 3.298 081 32
α = γ = η = 0 3.695 769 32 3.694 405 32 3.694 366 82 3.694 366 82 3.694 366 82

γ = 0.5 3.633 582 48 3.633 785 98 3.633 784 98 3.633 784 98 3.633 784 98
α = β = η = 0

η = 0.5 3.720 828 98 3.721 538 48 3.721 535 48 3.721 535 48 3.721 535 48
α = β = γ = 0

α = 0.25 3.379 698 79 3.379 058 29 3.379 062 29 3.379 062 29 3.379 062 29
β = γ = η = 0

α = β = 0.25 3.245 416 64 3.244 902 64 3.244 906 14 3.244 906 14 3.244 906 14
γ = η = 0 3.672 685 14 3.675 575 14 3.675 581 14 3.675 580 64 3.675 580 64

α = β = γ = 0.25 3.313 585 54 3.313 234 04 3.313 236 54 3.313 236 54 3.313 236 54
η = 0 3.709 990 54 3.710 465 04 3.710 465 54 3.710 465 54 3.710 465 54

α = β = γ = η = 0.25 3.523 126 48 3.522 632 98 3.522 635 98 3.522 635 98 3.522 635 98

• The attenuation conditions at x1 →±∞ are

u∗(−∞, x2)→ 0, ϕ∗(−∞, x2)→ 0

u′(∞, x2)→ 0, ϕ′(∞, x2)→ 0.
(22)

Equations (4), (8), and (18) satisfy the unelectroded
and traction-free surface and attenuation conditions, i.e.,
equations (20) and (22). Substituting the displacement and
electrical potential expressions equations (4), (8), and (18),
as well as their corresponding stress and electric displacement
components equations (6), (10), and (19), into the continuity
condition equation (21) yields eight linear homogeneous
algebraic equations for coefficients A∗1,B∗1, a0, a1, b0, b1,A′1,
and B′1:

c̄∗44(ξ
∗

1 H)A∗1 + e∗15(ξ2H)B∗1 = c0
44a1 + e0

15b1,

−ε∗11(ξ2H)B∗1 = e0
15a1 − ε

0
11b1,

A∗1 = a0,
e∗15

ε∗11
A∗1 + B∗1 = b0,

∞∑
n=0

(n+ 1)[c0
44(1− α)an+1 + e0

15(1− β)bn+1]

= − c̄′44(ξ
′

1H)A′1 − e′15(ξ2H)B′1,
∞∑

n=0

(n+ 1)[e0
15(1− β)an+1 − ε

0
11(1− γ )bn+1]

= ε′11(ξ2H)B′1,
∞∑

n=0

an = A′1,
∞∑

n=0

bn =
e′15

ε′11
A′1 + B′1.

(23)

Non-trivial solutions can only exist when the determinant
of the coefficient matrix of equation (23) is equal to
zero, which yields the frequency equation of thickness-

5
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Table 3. Values of Pij.

i

j

3 4 5 6

5 −17 994 091 379 838.766 −2866 100 456 582.2344 22 710.925 588 1967 3614.581 280 0306
6 22 710.925 588 1967 3614.581 280 0306 −0.000 028 7672 −0.000 004 5785
7 −0.350 095 1655 0.485 729 4185 0.0 0.0
8 −211 655 413 144.116 73 −33 258 311 017.704 235 267.746 761 4837 42.612 923 3742

Table 4. Values of Qij (n = 35).

i

j

3 4 5 6

5 −17 994 091 379 838.715 −2866 100 456 582.2319 22 710.925 588 1967 3614.581 280 0306
6 22 710.925 588 1967 3614.581 280 0306 −0.000 028 7672 −0.000 004 5785
7 −0.350 095 1655 0.485 729 4185 0.0 0.0
8 −211 655 413 144.116 58 −33 258 311 017.704 224 267.746 761 4837 42.612 923 3742

twist wave propagation in the inhomogeneous piezoelectric
plate [11, 29]

|Qij| = 0,

(i = 1, 2, 3, . . . , 8; j = 1, 2, 3, . . . , 8) (24)

where

Q11 = −c̄∗44(ξ
∗

1 H), Q12 = −e∗15(ξ2H),

Q14 = c0
44, Q16 = e0

15, Q22 = ε
∗

11(ξ2H),

Q24 = e0
15, Q26 = −ε

0
11, Q31 = −1,

Q33 = 1, Q41 = −
e∗15

ε∗11
,

Q42 = −1, Q45 = 1,

Q5k =

∞∑
n=0

(n+ 1)[c0
44(1− α)an+1 + e0

15(1− β)bn+1],

Q57 = c̄′44(ξ
′

1H), Q58 = e′15(ξ2H),

Q6k =

∞∑
n=0

(n+ 1)[e0
15(1− β)an+1 − ε

0
11(1− γ )bn+1],

Q68 = −ε
′

11(ξ2H), Q7k =

∞∑
n=0

an,

Q77 = −1, Q8k =

∞∑
n=0

bn,

Q87 = −
e′15

ε′11
, Q88 = −1

(25)

in which k = 3–6 and all the other terms are equal to zero.

3. Numerical simulation and discussions

Equation (24) is a transcendental equation wherein frequency
cannot be solved using an explicit expression. Thus, we adopt
an iterative procedure for the numerical computations [33].
For an initial value of ω, we evaluate the determinant, which
is presented in the left side of equation (24), for the various
values of the unknown quantity. A fixed but small increment
is added each time to this unknown quantity until the value of

Figure 2. Frequency ω of different modes as a function of the
length H of the middle layer when α = β = γ = η = 0.

the determinant changes its sign. Then, the ‘bisection method’
is applied to locate the root correct to a chosen number of
decimal places.

We take h = 2 mm and m = 2 as a numerical example.
To study the thickness-twist waves in the structure and to
show the effect of the functionally graded piezoelectric middle
layer on the resonance frequency graphically, the following
material system is considered: a semi-infinite PZT-5H in the
left portion x1 < 0 and PZT-4 in the right portion x1 >

H [34, 35]. For PZT-5H, c∗44 = 2.30 × 1010 N m−2, e∗15 =

17.0 C m−2, ε∗11 = 1.506 × 10−8 C V−1 m−1, and ρ∗ =

7500 kg m−3. For PZT-4, c′44 = 2.56 × 1010 N m−2, e′15 =

12.7 C m−2, ε′11 = 6.46 × 10−9 C V−1 m−1, and
ρ′ = 7500 kg m−3. Therefore, the corresponding cut-off
frequencies are ω∗m = 3.7256 × 106 s−1 and ω′m = 4.0787 ×
106 s−1. For the trapped thickness-twist modes, we select
PZT-7 for the non-graded piezoelectric middle layer, i.e.,
c0

44 = 2.50 × 1010 N m−2, e0
15 = 13.5 C m−2, ε0

11 = 1.71 ×
10−8 C V−1 m−1, ρ0

= 7800 kg m−3, and ωm = 3.3585 ×
106 s−1 [34, 35].

6
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Figure 3. Frequency ω with different graded coefficients
(H = 4 mm): (a) α or β shifts (γ = η = 0); (b) γ or η shifts
(α = β = 0).

Figure 4. Frequency shift 1ω attributed to the graded middle layer
with different graded coefficients.

3.1. Convergence of the power series

First, we examined the convergence of the series. Tables 1
and 2 show the frequencies of the plate for some special

Figure 5. Frequency ω of different modes as a function of the left
damaged parameter β for some selected H: (a) H = 4 and 8 mm;
(b) H = 12 mm.

cases using the power function expansion method. The change
of graded parameters α, β, γ , and η does not affect the
convergence of this series, which can be obtained from table 2.
However, the numerical precision is closely related to the
length H, which can be obtained from table 1. In the present
text, the length of graded middle layer is no more than 15 mm,
therefore 100 terms in the series are sufficient to ensure
acceptable accuracy in the following simulation.

3.2. Verification of the power series

Second, we compared the results calculated using the power
function expansion method with the theoretical results to
correct the power series. For the homogeneous middle layer,
i.e., α = β = γ = η = 0, the theoretical solutions can easily
be derived as [20]

u = [A1 cos(ξ1x1)+ A2 sin(ξ1x1)] cos(ξ2x2) exp(−iωt)

ϕ =

{
e0

15

ε0
11

[A1 cos(ξ1x1)+ A2 sin(ξ1x1)]

7
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Figure 6. Frequency ω of different modes as a function of the damaged length H of the left material for some selected piezoelectric graded
coefficients β: (a) β = 0.25; (b) β = 0.50; (c) β = 0.75; and (d) β = 1.0.

+ [B1 cosh(ξ2x1)+ B2 sinh(ξ2x1)]

}
× cos(ξ2x2) exp(−iωt)

(26)

T31 = {c̄
0
44ξ1[−A1 sin(ξ1x1)+ A2 cos(ξ1x1)]

+ e0
15ξ2[B1 sinh(ξ2x1)+ B2 cosh(ξ2x1)]}

× cos(ξ2x2) exp(−iωt)

D1 = −ε
0
11ξ2[B1 sinh(ξ2x1)

+ B2 cosh(ξ2x1)] cos(ξ2x2) exp(−iωt).

(27)

Similarly, substituting equations (4), (6), (8), (10), (26),
and (27) into the continuity condition equation (21) yields
eight linear, homogeneous algebraic equations for coefficients
A∗1,B∗1,A1,A2,B1,B2,A′1, and B′1:

c̄∗44ξ
∗

1 A∗1 + e∗15ξ2B∗1 = c̄0
44ξ1A2 + e0

15ξ2B2,

−ε∗11ξ2B∗1 = −ε
0
11ξ2B2, A∗1 = A1,

e∗15

ε∗11
A∗1 + B∗1 =

e0
15

ε0
11

A1 + B1,

c̄0
44ξ1[−A1 sin(ξ1H)+ A2 cos(ξ1H)]

+ e0
15ξ2[B1 sinh(ξ2H)+ B2 cosh(ξ2H)]

= −c̄′44ξ
′

1A′1 − e′15ξ2B′1,

−ε0
11ξ2[B1 sinh(ξ2H)+ B2 cosh(ξ2H)] = ε′11ξ2B′1,

A1 cos(ξ1H)+ A2 sin(ξ1H) = A′1,

e0
15

ε0
11

[A1 cos(ξ1H)+ A2 sin(ξ1H)] + [B1 cosh(ξ2H)

+ B2 sinh(ξ2H)] =
e′15

ε′11
A′1 + B′1.

(28)

Non-trivial solutions can exist only when the determinant
of the coefficient matrix of equation (28) is equal to zero.
To maintain alignment with equation (23), we transformed
some rows of the coefficient matrix to determine the frequency
equation for the non-graded middle layer:

|Pij| = 0,

(i = 1, 2, 3, . . . , 8; j = 1, 2, 3, . . . , 8) (29)

where

P11 = −c̄∗44(ξ
∗

1 H), P12 = −e∗15(ξ2H),

P14 = c0
44, P16 = e0

15,

P22 = ε
∗

11(ξ2H), P24 = e0
15, P26 = −ε

0
11,

P31 = −1, P33 = 1,

P41 = −
e∗15

ε∗11
, P42 = −1, P45 = 1,

8
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Figure 7. Relative displacement component u of different modes along the x1 direction at x2 = 0 for left material damage when
H = 12 mm and β = 1: (a) first mode (ω = 2.913 430× 106 s−1); (b) second mode (ω = 3.145 628× 106 s−1); (c) third mode
(ω = 3.370 581× 106 s−1); and (d) fourth mode (ω = 3.584 704× 106 s−1).

P53 = −c̄0
44(ξ1H) sin(ξ1H)−

e0 2
15

ε0
11

(ξ2H) sinh(ξ2H),

P54 = c̄0
44 cos(ξ1H)−

e0 2
15

ε0
11

cosh(ξ2H),

P55 = e0
15(ξ2H) sinh(ξ2H),

P56 = e0
15 cosh(ξ2H),

P57 = c̄′44(ξ
′

1H), P58 = e′15(ξ2H),

P63 = e0
15(ξ2H) sinh(ξ2H),

P64 = e0
15 cosh(ξ2H),

P65 = −ε
0
11(ξ2H) sinh(ξ2H),

P66 = −ε
0
11 cosh(ξ2H), P68 = −ε

′

11(ξ2H),

P73 = cos(ξ1H), P74 =
sin(ξ1H)

ξ1H
,

P75 = P76 = 0, P77 = −1,

P83 =
e0

15

ε0
11

[cos(ξ1H)− cosh(ξ2H)],

P84 =
e0

15

ε0
11

[
sin(ξ1H)

ξ1H
−

sinh(ξ2H)

ξ2H

]
,

P85 = cosh(ξ2H),

P86 =
sinh(ξ2H)

ξ2H
, P87 = −

e′15

ε′11
,

P88 = −1.

(30)

All other components of Pij are equal to zero. Comparing
equation (30) with (25), we find that P and Q have the same
expression, except for Pij and Qij (i = 5–8, j = 3–6). Tables 3
and 4 respectively provide the values of Pij and Qij when
H = 4 mm. Pij is calculated using the theoretical solution,
whereas Qij is obtained using the power function expansion
method. The values are almost the same even for a few relative
terms, as shown in tables 3 and 4. This condition indicates that
the power series has high precision and can be used to solve
the propagation of thickness-twist waves in a functionally
graded piezoelectric plate.

3.3. Effect of graded coefficient on resonance frequency

Numerical analysis results show the basic properties of
thickness-twist wave propagation in the inhomogeneous plate.
The variation pattern of frequency ω as a function of the

9
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Figure 8. Relative displacement component u of fundamental mode
along the x1 direction at x2 = 0 for some selected H and β under left
material damage: (a) for some selected H and (b) for some
selected β.

length H of the middle layer when α = β = γ = η = 0,
i.e., the homogeneous middle layer, is shown in figure 2. The
frequencies of all the trapped modes initiate at the cut-off
frequency of the left region ω∗m and approach the cut-off
frequency of the non-graded middle layer ωm as the length H
increases. In device applications, H is an important parameter
for determining Bechmann’s number [36], which is related
to the ratio of the plate thickness and length when only one
trapped mode exists in the plate. On one hand, the first mode
exists only when the length achieves some value, i.e., H ≥
0.9 mm. On the other hand, the modes appear periodically
at approximately 1H = 4.2 mm. For instance, the first mode
appears at H = 0.9 mm, the second at H = 5.1 mm, the
third at H = 9.2 mm, and the fourth at H = 13.4 mm. This
phenomenon is explained by equation (30), which contains
the periodical terms, such as the sin and cos functions, in
Pij (i = 5–8, j = 3–6). The power series is as precise as the
theoretical results, which leads to the periodic appearance of
the modes.

Figure 9. Frequency ω of different modes as a function with the
right damaged parameter β for some selected H: (a) H = 4 and
8 mm; (b) H = 12 mm.

We next investigate the effect of graded coefficients
on the thickness-twist wave propagation. We assume that
the piezoelectric coefficient, dielectric permittivity, and mass
density of the middle layer are homogeneous, i.e., β = γ =
η = 0, when we focus on the effect of the elastic coefficient.
The same method can be used in addressing the piezoelectric
coefficient, dielectric permittivity, and mass density. Figure 3
presents the resonance frequency with the change of the
graded parameter as α, β, γ , and η, respectively. Changes
in the material coefficient increase or decrease the number
of trapped modes. For example, only one mode exists for
the homogeneous layer H = 4 mm. The reduction of the
elastic and piezoelectric coefficients, i.e., the increase in the
values of α and β, enables higher modes to appear but
reduces resonance frequency. However, dielectric permittivity
and mass density have opposite effects especially because no
trapped modes exist when η > 0.58.

To study the effect of the graded parameter on wave
propagation further, the frequency shift is defined as 1ω =
ω − ω0, where ω is the frequency of the plate when
only one material parameter changes, and ω0 represents the

10
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Figure 10. Frequency ω of different modes as a function of the damaged length of the right material H for some selected damage
parameters β: (a) β = 0.50; (b) β = 0.75; and (c) β = 1.0.

frequency of the plate with the non-graded middle layer. The
frequency shift 1ω attributed to the graded middle layer with
different graded coefficients α, β, γ , or η is shown in figure 4
for comparison. The increase in elastic and piezoelectric
parameters decelerates the thickness-twist wave, whereas the
increase in dielectric permittivity and mass density hastens
its propagation. The effect of the elastic coefficient is more
evident than that of the piezoelectric constant. The absolute
value of the frequency shift attributed to the change in
mass density is larger than that attributed to dielectric
permittivity. These conclusions can be used to estimate the
effects of graded coefficients and of the thickness-twist wave
characteristics on the functionally graded piezoelectric plate.

4. The trapped modes attributed to piezoelectric
damage

Defect during material manufacture as well as a corrosive
environment and fatigue under periodic mechanical or thermal
loading during device operation usually result in material
damage to the piezoelectric wafer. For instance, a small
flaw or hole may exist in the plate during the production
or the piezoelectric damage phenomenon may occur near
the bonding interface during device application [5]. Given

that such a flaw or hole has faint effects, this kind of
fault and piezoelectric damage does not affect the elastic,
dielectric, and density properties of materials. However, the
piezoelectric coefficient may change, which makes the plate
inhomogeneous. In this section, we investigate the effect of
FGPM on thickness-twist waves that can be attributed to the
piezoelectric damage that occurs at the interface, i.e., α = γ =
η = 0 and β 6= 0.

4.1. Piezoelectric damage attributed to the left region
material

The functionally graded middle layer is assumed to occur
because of piezoelectric damage to the left region material
x1 < 0, i.e., c0

44 = c∗44, e0
15 = e∗15, ε

0
11 = ε

∗

11, ρ
0
= ρ∗, where

H is the damage length. Considering that the piezoelectric
coefficient can be zero, β changes from 0 to 1. Figures 5
and 6 respectively show the frequency ω of different modes
as a function of the piezoelectric graded coefficient β and the
damaged length H in some special cases.

Figures 5 and 6 also show that all frequencies of
trapped modes initiate the cut-off frequency of the left
region material ω∗m, and both the piezoelectric graded
coefficient β and damaged length H reduce resonance

11
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Figure 11. Relative displacement component u of different modes along the x1 direction at x2 = 0 for right material damage when
H = 12 mm and β = 1: (a) first mode (ω = 3.087 268× 106 s−1); (b) second mode (ω = 3.349 852× 106 s−1); and (c) third mode
(ω = 3.601 114× 106 s−1).

frequency. For convenience, we define ω̄∗m = (mπ
2h )c̄

∗

sh =

(mπ
2h )

√
1
ρ∗
[c∗44 +

e∗215(1−β)
2

ε∗11
] as the limit cut-off frequency for

the left material with piezoelectric damage, which is the lower
limit of the frequencies.

No piezoelectric damage, i.e., H = 0 or β = 0, indicates
that no modes are trapped in the plate, as shown in figures 5
and 6. Therefore, the piezoelectric damage facilitates the
energy-trapping phenomenon. Increasing values of β and H
result in an increase in the number of the trapped modes.
Comparing figures 5 and 6, we can conclude that the higher
modes appear periodically with increasing damaged length H.
In the case of β = 0.25, the period is 1H = 6.8 mm; for
β = 0.50,1H is approximately 4.3 mm; for β = 0.75,1H =
3.5 mm; and for β = 1.0,1H = 3 mm. The expansion of the
damaged length leads to the earlier appearance of new modes.
However, this kind of periodic characteristic does not exist
with the increase in piezoelectric parameter β.

Four modes exist when H = 12 mm and β = 1, as
shown in figure 6(d). Figure 7 gives the relative displacement
component of these modes along the x1 direction at x2 = 0
when A∗1 = 1 m. The value of the displacement component

is normalized such that the maximal displacement at the
damage layer is equal to one [37]. Therefore, the displacement
u in figure 7 is a physically non-dimensional number. The
value is nearly zero when x1 > 1.5H or x1 < −0.5H,
which suggests that the energy mainly concentrates on the
region of −0.5H ≤ x1 ≤ 1.5H, which explains ‘energy
trapping’. Given the inhomogeneous damaged layer, the
displacement is neither symmetric nor anti-symmetric at
approximately x1 = 0, which differs from that of the
homogeneous middle layer. For example, the maximum
displacement of the fundamental mode occurs at x1 =

0.8083H in the damaged plate, not at x1 = 0.50H. Comparing
the value of displacement at x1 = 0 and H, we can
deduce that the thickness-twist waves trap faster at the left
region.

We present the relative displacement distribution of the
fundamental mode to compare the effects of the damaged
parameter β and the damaged length H on the amplitude of
resonance. This distribution is the usual operating mode of
a resonator and is widely used in device applications as in
figure 8, which shows that a larger damaged length H and
parameter β trap more energy in the damaged region.

12
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Figure 12. Relative displacement component u of fundamental
mode along the x1 direction at x2 = 0 for some selected H and β
under right material damage: (a) for some selected H and (b) for
some selected β.

4.2. Piezoelectric damage attributed to the right region
material

Similarly, we assume that the functionally graded middle
layer occurs because of the piezoelectric damage of right
region material x1 > H, which means c0

44 = c′44, e0
15 =

e′15, ε
0
11 = ε

′

11, ρ
0
= ρ′, and H is the damaged length. The

same parameter ω̄′m = (
mπ
2h )c̄

′

sh = (
mπ
2h )

√
1
ρ′
[c′44 +

e′215(1−β)
2

ε′11
]

can be defined as the limit cut-off frequency for the right
material with piezoelectric damage. Figures 9 and 10 give
the frequency ω of different modes as a function of the right
damaged parameter β for some selected H and with damaged
length H for some damage parameter β, respectively. All
the frequencies of the trapped modes also initiate the cut-off
frequency of the left portion material ω∗m. Furthermore, the
increasing of β and H expectedly increases the number of
modes but reduces the resonance frequency. The higher modes
also appear periodically with H, but the period is longer
than that for left material damage. The effect of left material

Figure 13. The frequency ω of different modes as a function with
the length H of the transition layer.

damage on thickness-twist waves is more evident than that of
right material damage. On one hand, the number of modes
is greater than that with right material damage. For example,
five modes exist in β = 1 as shown in figure 6(d), but
only four modes exist when the right material is damaged
as shown in figure 10(c). No modes exist for β = 0.25
in this case. On the other hand, right material damage
facilitates the later appearance of a higher mode compared
with left material damage. For instance, the fundamental
mode emerges until β = 0.47 when H = 4 mm, which can
be seen from figure 10(a). However, the value is 0.10 under
the same conditions.

We can forecast the left material piezoelectric damage
in some particular frequency spectrum ranges based on the
change of resonance frequency when the plate is damaged. In
figures 6(d) and 10(c) for instance, ω̄∗m = 2.7508×106 s−1 and
ω̄′m = 2.9021× 106 s−1 for β = 1.0. Therefore, the damaged
region is x1 < 0 if the frequency satisfies ω̄∗m < ω < ω̄′m.

Given the inhomogeneous damage layer, the displace-
ment is neither symmetric nor anti-symmetric at approxi-
mately x1 = 0, as shown in figure 11, which is similar to
figure 7. Greater damaged length H and parameter β trap more
energy in the damage region as shown in figure 12.

In conclusion, left or right piezoelectric material damage
facilitates the energy trapping, which is impossible for
perfect materials. With the increase in piezoelectric damaged
length and the reduction of the piezoelectric coefficient,
the resonance frequency decreases but higher modes of
thickness-twist waves appear. The modes periodically appear
along the damage length. Moreover, the displacement is
neither symmetric nor anti-symmetric at approximately the
center of the damaged portion, which differs from the
non-graded plate.

5. FGPM transition layer between left and right
piezoelectric materials

From the perspective of material manufacture, an FGPM
can sometimes be designed as a buffer layer to avoid the
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Figure 14. Relative displacement component u of different modes along the x1 direction at x2 = 0 with the transition layer length
H = 12 mm: (a) first mode (ω = 3.743 958 38× 106 s−1); (b) second mode (ω = 3.917 376 38× 106 s−1); and (c) third mode
(ω = 4.065 363 38× 106 s−1).

stress discontinuity of the interface [38]. Furthermore, the
material characteristics in the neighborhood of the bonding
interface must be influenced by two different materials if
these materials have been bonded for a long time. A transition
FGPM layer exists physically, thus changing the middle layer
smoothly and steadily. In this paper, we assume that the
FGPM middle layer in figure 1 is such a buffer layer, which
indicates c0

44 = c∗44, e0
15 = e∗15, ε

0
11 = ε

∗

11, and ρ0
= ρ∗ at x1 =

0, whereas c0
44(1− α) = c′44, e0

15(1− β) = e′15, ε
0
11(1− γ ) =

ε′11, and ρ0(1 − η) = ρ′ at x1 = H. We continue to adopt
the same materials above, and the graded parameters can
be calculated as α = −0.1130, β = 0.2529, γ = 0.5710, and
η = 0.

The resonance frequencies of the higher modes comprise
the initial cut-off frequency ω′m of the right region but the
fundamental mode is not, and all modes approach the cut-off
frequency ω∗m of the left region, as shown in figure 13.
Moreover, the wave is not fully completely trapped modes.
For instance, figures 14 and 15 show that the amplitude of
relative displacement does not approach zero at the left region
x1 < 0, which can be attributed to the fact that the resonance
frequency ω is larger than ω∗m and that the wave is harmonic

without exponential attenuation. At the right region x1 < H,
the wave decays to zero because ω < ω∗m, and the lower
modes attenuate faster than the higher ones. A larger transition
length makes this kind of attenuation more evident and has a
significant effect on the displacement component in the left
region x1 < 0.

6. Conclusions

In summary, the power-series technique was used to solve the
propagation governing equation of a thickness-twist wave in
an inhomogeneous plate with an FGPM middle layer in the
center portion. The good convergence and high precision of
these series have been illustrated. Some numerical examples
were provided to illustrate the detailed effect of the graded
factors on the frequencies and the displacement components
of the thickness-twist waves in a structure (figure 1), which
yields the following points:

• Graded factors significantly affect the characteristics of
thickness-twist waves, not only in terms of the value of
resonance frequencies but also the number of trapped
modes. The waves propagate slowly, and higher modes
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Figure 15. Relative displacement component u of fundamental
mode along the x1 direction at x2 = 0 for some selected transition
length H.

appear earlier with the reduction of the elastic and
piezoelectric coefficients. Moreover, the effect of the
dielectric permittivity and the mass density are opposites.
• Left or right piezoelectric material damage facilitates

energy trapping, which is impossible for perfect materials.
With increasing piezoelectric damaged length and de-
creasing piezoelectric coefficient, the resonance frequency
decreases but higher modes of thickness-twist waves
appear. The modes emerge periodically along the damaged
length. Furthermore, the displacement is not symmetric at
approximately the center of the damaged portion, which
differs from the non-graded plate.
• In an FGPM transition layer, this wave is not characterized

by completely trapped modes, which is only trapped in one
region but propagate in the other portion.

The power-series expansion method applied in the
present this paper could be used in the study of acoustic waves
along with other analogous systems with inhomogeneous
materials. Therefore, the piezoelectric damage that facilitates
energy trapping can be used theoretically in the design of
wave propagation in piezoelectric coupled structures.
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