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ABSTRACT

The onset of cardiac fibrosis post myocardial infarction
greatly impairs the function of heart. Recent advances of
cell transplantation showed great benefits to restore
myocardial function, among which the mesenchymal
stem cells (MSCs) has gained much attention. However,
the underlying cellular mechanisms of MSC therapy are
still not fully understood. Although paracrine effects of
MSCs on residual cardiomyocytes have been discussed,
the amelioration of fibrosis was rarely studied as the
hostile environment cannot support the survival of most
cell populations and impairs the diffusion of soluble
factors. Here in order to decipher the potential mecha-
nism of MSC therapy for cardiac fibrosis, we investi-
gated the interplay between MSCs and cardiac
myofibroblasts (mFBs) using interactive co-culture
method, with comparison to paracrine approaches,
namely treatment by MSC conditioned medium and gap
co-culture method. Various fibrotic features of mFBs
were analyzed and the most prominent anti-fibrosis
effects were always obtained using direct co-culture that
allowed cell-to-cell contacts. Hepatocyte growth factor
(HGF), a well-known anti-fibrosis factor, was demon-
strated to be a major contributor for MSCs’ anti-fibrosis
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function. Moreover, physical contacts and tube-like
structures between MSCs and mFBs were observed by
live cell imaging and TEM which demonstrate the direct
cellular interactions.
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INTRODUCTION

Myocardial infarction accounts for over 40% of cardiovas-
cular diseases (CVD) related human mortality, as reported
by the World Health Organization (WHO, 2013). Cardiac
fibrosis, the most eminent pathological feature post infarction
(van den Borne et al., 2010; Fan et al., 2012; Weber et al.,
2013), would form a scattering area of fibrosis scars that
generate tonic contraction forces and interfere with the
original conduction property of healthy myocardium, thus
greatly impairs the physiological functions (i.e. blood pump-
ing) of normal heart (Rohr, 2009; Weber et al., 2013). His-
tological characterization revealed that an excessive
deposition of fibrillar collagen was accumulated within the
infarcted myocardium and an altered cell population which
was positive for alpha-smooth muscle actin (a-SMA)
replaced the lost cardiomyocytes, namely myofibroblasts
(mFBs) (Rohr, 2009). mFBs were believed to mainly origi-
nate from interstitial cardiac fibroblasts (Brown et al., 2005;
Czubryt, 2012) which are responsible for the stability of
extracellular matrix in heart and its dynamic balance with
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cardiomyocytes (Fan et al., 2012; Weber et al., 2013). The
transition from interstitial fibroblasts to mFBs has been
demonstrated to be initiated by transforming growth factor-
beta 1 (TGF-B1) secreted by both immunocytes and necrotic
cardiomyocytes (Brown et al., 2005; Rohr, 2009; Czubryt,
2012; Weber et al., 2013).

The current treatments for myocardial infarction, including
the administration of thrombolytic drugs (e.g. streptokinase,
urokinase and alteplase) (Tomasevic et al., 2008; Minami
et al.,, 2010; Sehestedt et al., 2011; Lyngbaek et al., 2012;
Juarez-Herrera and Jerjes-Sanchez, 2013; Lippi et al.,
2013), the implantation of vascular stents (Armstrong, 2006;
Stefanini and Windecker, 2012; Tokushige et al., 2013;
Zhang et al., 2013) and bypass operation (Favaloro, 1969,
1971) mainly concentrated on improving the hemodynamics
thus restoring the blood supply to infarcted myocardium.
Nonetheless, the efficacy of these conventional therapies
was limited as they could hardly compensate for the massive
loss of necrotic cardiomyocytes, which account for approxi-
mately 25% of total cardiomyocytes during a single episode
of infarction (Deutsch et al., 2013). Given the limited
regenerative capacity of adult human heart, effective thera-
pies should focus on the remuscularization of the diseased
heart (Deutsch et al., 2013). Therefore, transplantation of
autologous cells into the diseased heart has shown to be a
reasonable and effective therapeutic strategy. During the
past decade, multiple cell types, including endothelial pro-
genitors (Asahara et al., 1997) and mesenchymal stem cells
(MSCs, either derived from bone marrow or adipose tissue)
(Miyahara et al., 2006; Emmert et al., 2013; Blocki et al.,
2015; Li and Zhang, 2015) have shown therapeutic effects
(shrunken area of fibrotic scar and thickened ventricle wall
post-infarction) on cardiac fibrosis, among which the utility of
MSCs has reached phase Il or Il clinical trials due to their
ease of access and consistent outcome (Sheridan, 2013).
However, the exact behavior of MSCs post-transplantation
in vivo was barely known and the exact underlying cellular
mechanisms were not fully understood. Although the
development of advanced imaging techniques, e.g. mag-
netic resonance imaging (MRI) has been used to track the
stem cells post transplantation (Drey et al., 2013; Emmert
et al,, 2013), the intercellular activity between MSCs and
host tissue cells remained difficult to monitor. In addition, the
paracrine activity of MSCs was reported to activate the qui-
escent cardiac progenitor cells or stimulate the residual
cardiomyocytes to re-enter proliferative phase (Ranganath
et al., 2012). However, few of these studies have provided
solid explanation on how MSCs attenuate the fibrosis con-
dition within the infarcted myocardium, since the hostile
avascular and hypoxic environment could not support cell
survival and factor diffusion to help remuscularization of the
diseased heart.

As the main ‘architect’ of cardiac fibrosis, the interplay
between cardiac mFBs and MSCs should be investigated to
provide a better understanding for cardiac fibrosis therapy.
Some studies showed that the conditioned medium from

MSC culture (Ohnishi et al., 2007; Mias et al., 2009; Wang
et al., 2011; Mao et al., 2013) could inhibit the proliferation,
the expression of a-SMA and collagen production of mFBs,
and the secretion of matrix metalloproteinases (MMPs) by
fibroblasts was elevated as well. Nonetheless, the treatment
of conditioned medium in vitro cannot fully recreate the
condition of cell therapy in vivo where multiple intercellular
activities were involved. For instance, Cselenyak et al.
observed a significant dependency of cell-to-cell contact for
MSC therapy to rescue the cardiomyocytes from cell death
using an in vitro ischemia model, whereas MSCs cultured in
inserts, the conventional format for paracrine studies, cannot
exert similar beneficial effect (Cselenyak et al., 2010).
Besides, Plotnikov et al. discovered that specific cellular
contacts, namely nanotubes, were formed within the co-
culture of MSCs with cardiomyocytes (Plotnikov et al., 2008).
Therefore, the direct cell-to-cell contact, or so-called inter-
cellular communication, would be a dominant factor for
proper therapeutic benefit of MSCs to cardiac fibrosis.

To elucidate the dominant role of intercellular communi-
cations for MSC therapy, the direct cell co-culture model
using adipose-derived MSCs and cardiac mFBs was intro-
duced in vitro and multiple pathological features of mFBs,
including cellular viability, biomarker expression (a-SMA,
collagen), cellular contractility and motility were analyzed in
the model, which were compared to the treatment of MSC
conditioned medium in parallel. An engineered microfluidic-
based co-culture platform was fabricated to further assess
the importance of direct cell-to-cell communication for MSCs’
anti-fibrotic therapy. The system comprised two chambers
separated by varying distances of cell-repellent gap, which
would only allow communication by paracrine factors and no
direct contact could be formed.

RESULTS AND DISCUSSION

Viability of mFBs during co-culture and comparison
with treatment using MSC conditioned medium

The viability of mFBs was inhibited by co-culturing with
MSCs in a dose-dependent manner (Fig. 1A). Comparable
level of viability to control group was obtained when MSCs
were administrated in low dosages (1%~20% of mFBs),
while a significant decrease could be observed at high doses
(half or the same as the number of mFBs). In order to
eliminate the impact of contact inhibition on the reduced
viability resulted from high cell density, MSCs in 1:1 co-cul-
ture were replaced by an equal number of mFBs, yet an
obvious difference was still obtained (Fig. 1B), indicating the
independence of reduced viability of mFBs on high cell
densities. Annexin V/PI staining was also performed to verify
whether the decreased viability of mFBs was caused by cell
apoptosis. In addition, specificity control for the staining was
included using cells treated with 500 nmol/L H,O, solution.
Apoptotic cells were stained green on membrane and red in
nuclei, while few cells in co-culture were positive for both
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Figure 1. Reduced viability of mFBs in MSC co-cultures with comparison to mFB monoculture and treatment by MSC
conditioned medium. (A) mFBs were co-cultured with MSCs (mitosis inactivated) in gradient ratios ranging from 1:0.01 to 1:1. All
values were normalized to that of control group (mFB:MSC = 1:0, monocultured mFBs). (B) A group was set by replacing MSCs with
same number of inactivated mFBs in order to eliminate the impact of high cell density on cell viability. (C) Cell apoptosis detection was
performed using Annexin V/PI staining. Apoptotic cells (treated with H,O,) were stained green on membrane (Annexin V-FITC) and
red in nuclei (propidium iodide, PI), while few apoptosis was detected in co-cultures. (D) Conditioned medium collected from normal
MSC cultures were applied to mFBs and the resulting viability was compared to that of direct co-culture. Scale bar = 100 um.
Significance was defined as ** when P < 0.01 and “** when P < 0.001.

signals (Fig. 1C). Thus the ratio of 1:1 was selected for the
following experiments.

Conditioned medium harvested from normal MSC cul-
tures was used to incubate mFBs for 48 h as a conventional
paracrine method, resulting in decreased viability of mFBs
relative to controls (Fig. 1D). However, the viability reduction
was not comparable to direct co-culture manner, indicating
that specific stimuli from microenvironment (cell-to-cell
communications) would be important for MSCs exerting
better therapeutic effect. Indeed, it has been reported that
preconditioning for MSCs would serve as a stress environ-
ment and enable better regenerative effects in various dis-
eases (Haque et al., 2013). For example, the application of
hypoxic preconditioning during culture would enhance the
survival rate and therapeutic potential of MSCs in treating
brain (Chang et al., 2013) or liver (Yu et al., 2013) injuries.
Here mFBs culture recapitulated the cardiac fibrosis envi-
ronment and thus served as the stress preconditioning for
MSCs.

Phenotypic and functional analysis of mFBs during co-
culture

Since the viability of mFBs was reduced in co-culture unre-
lated to apoptosis or contact inhibition, it was conjectured

that the cellular phenotype of mFBs would alter to a more
dormant state, which could be quiescent fibroblasts (Brown
et al., 2005; Deutsch et al., 2013; Weber et al., 2013). The
expression of a-SMA, which has been a typical marker for
distinguishing fibroblasts from active mFBs, was assayed in
co-cultures. Immunofluorescence images displayed faint
expression profile for mFBs in co-culture compared to those
in normal cultures (Fig. 2A, with the same total cell number).
Further verification was accomplished by Western blotting of
a-SMA (Fig. 2B), where it was shown that MSCs hardly
expressed a-SMA compared to normal mFBs. As mFBs
were capable of producing massive extracellular matrix
proteins, most of which was composed of collagen, the total
collagen content was quantified for both co-culture and
control group. Collagen was labelled with Sirius Red dye and
extracted from cultures. Similar to the decreased expression
of a-SMA, the production of collagen was significantly
reduced in co-culture (Fig. 2C). It therefore was assumed
that mFBs would undergo dedifferentiation process towards
fibroblasts, a quiescent cell population, during co-culture
with MSCs.

Besides the phenotypic alteration of cells, mFBs could
also exert strong contractile ability which could be charac-
terized by the extent of collagen gel contraction in vitro. Gels
populated by co-cultured mFBs remained relatively larger in
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Figure 2. Phenotypic characterization and function analysis of mFBs. The expression of a-SMA, the most specific biomarker of
mFBs compared to fibroblasts, was characterized by immunofluorescence staining (A, top: co-culture; bottom: control) and Western
blotting (B). Green stained cells were regarded as mFBs and non-stained were MSCs. (C) Collagen production capacity of mFBs was
measured by reading the absorbance of Sirius red labeled protein specimens. (D-F) The contractility of mFBs was measured by
collagen contraction assay. HGF was supplemented to mFB-populated collagen gel lattice and the resulting area was compared with
control (D). (E) Antibody against HGF was added to block the factors secreted by MSCs which was marked by ‘+’. (F) The quantitative

analysis of contraction extents calculated by normalizing the lattice area to well size. Scale bar = 100 pm.

size compared with those populated with pure mFBs
(Fig. 2E, marked by ‘'), and mFB-populated collagen gels
would contract independently of different comprising number
of mFBs (data not shown), implying that the contractile
property of mFBs was greatly inhibited by MSCs. As a
member of MSC secretome, HGF has been demonstrated to
be an effective inhibitor for fibrosis condition. Collagen gel
lattice remained much bigger in size than control group with
the addition of exogenous HGF (Fig. 2D), and the HGF
antibody could block the inhibitory effect of MSCs in co-
culture without affecting the original contractile ability of
mFBs (Fig. 2E).

Therefore, it was demonstrated here that co-culturing with
MSCs could drive the mFBs return to a quiescent dediffer-
entiated state where some of pathological characteristics
(both phenotypic and functional), e.g. a-SMA expression and
collagen gel contraction ability, were significantly alleviated.
HGF played an important role for enhancing the anti-fibrosis
activity of MSCs. Moreover, MSCs themselves were
reported to have strong contractile ability in mono-culture
(Sumanasinghe et al., 2009; Espagnolle et al., 2014) and

similar results were also obtained in this study (Fig. S1),
implying that specific microenvironment was essential to
stimulate the therapeutic potential of MSCs.

Comparison of mFBs dedifferentiation during co-
culture between direct contact mode and gap mode

An engineered gap mode co-culture device was fabricated
using PDMS (Fig. 3A) in order to further demonstrate the
vital role of intercellular interaction during MSC therapy. The
device was based on a highly hydrophobic glass surface
where two identical chambers were separated by varied
gap distances, with the narrowest around 500 pym and
the widest around 1000 um (Fig. 3B-D). Surface within the
chambers was coated by gelatin for cell growth and the
PDMS stamp was removed after successful cell attach-
ment, leaving a corresponding cellular pattern on the glass
(Fig. 3E). MSCs and mFBs could only communicate by a
range of gap distances without any chance of direct contact.
Likewise, a-SMA expression profile was utilized to assess
the therapeutic potential of MSCs in this experimental
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Figure 3. The microfluidic device for MSC/mFB co-culture in gap mode. (A) Macro-size demonstration of the device compared
with a 50 cent coin (25 mm diameter). (B) The culture chambers within the device were highlighted by red (Dylight 594-conjugated
IgG) and green (AlexaFluor 488-conjugated IgG) stains, respectively. The narrowest width between chambers was ~500 um (C) while
the widest ~1000 um (D). MSCs and mFBs were seeded into different chambers (E, Scale bar = 100 pm). The a-SMA expression of
mFBs was characterized by measuring the fluorescence intensity under constant image settings. Cells growing with varying gap
width (a: 400-600 pm; b: 700-900 um; c: 950-1000 pm; scale bar = 100 pm) were analyzed. (F) Fluorescence intensities were
compared among mFBs residing on different gap widths (upper graph), or between directly co-cultured mFBs and mFBs with the

narrowest gap (bottom graph).

setup. As reported previously, the paracrine activity was
strictly dependent on the distance between cell populations
in vitro (Hui and Bhatia, 2007). An obvious difference of the
a-SMA fluorescence intensity was observed among mFBs
which grew with different distances to MSCs (Fig. 3E a—c).
Consistent to previous studies, the impact of MSCs on mFB
phenotype was prominent within a short distance of sepa-
ration (Fig. 3F) and the impact declined to comparable level
as control (mono-cultured mFBs). However, comparison
with the a-SMA intensity of directly co-cultured mFBs still
showed an obvious difference, revealing that intercellular
contact would be a dominant factor for MSCs’ therapeutic
potential.

Dynamic interaction between MSCs and mFBs

In order to visualize the intercellular contacts, real-time
interaction between MSCs and mFBs was monitored using
time-lapse recording technology. Distinguishing the two
populations was realized by pre-labelling MSCs and mFBs
with dyes of distinct colors for live cell imaging. Obvious
physical connections were observed between MSCs and
mFBs (Fig. 4A, supplementary video 1), while similar con-
nections were rare within the same populations (data not
shown). ‘Tentacles’ (white arrows in Fig. 4A) stretching out of
MSCs would target towards mFBs and gradually reach the

cell membranes. The interaction would last for several hours
followed by MSCs leaving and targeting other mFBs (black
arrowhead in Fig. 4A). Strikingly, a prominent different
mobility profile was observed for mFBs during co-culture.
The cell movement traces were extracted from frames of
time-lapse records and it was clear that mFBs in co-culture
mostly resided in limited areas, and this was irrelevant to cell
density as mono-cultured mFBs (control) with the same cell
number could travel much more actively than co-cultured
counterparts (Fig. 4B, supplementary video 2). However, the
motility of MSCs was not affected by co-culture. As shown in
previous study (Noiseux et al., 2006), transplanted MSCs at
infarct border areas could travel or penetrate into the infarct
zone, suggesting the migration and successful engraftment
of MSCs into ischemic tissues, which was consistent with the
observation here. Moreover, the movement velocity of cells
was analyzed using the extracted traces and a great
reduction of mFB motility was clearly shown in Fig. 4C.

Directional migration property of mFBs during co-
culture

As to precisely assess the impact of MSC co-culture on
mFBs’ motility, a well-accepted device for cell migration
studies was fabricated (Fig. 5A a). The device was com-
posed of PDMS and compartmentalized culture chambers
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Figure 4. Dynamic observation of direct MSC/mFB co-culture and motility analysis of mFBs. (A) Time-lapse images of the co-
culture. Cells were labelled with red (MSCs) or green (mFBs) CellTracker stains. Capture time points were indicated on each frame.
White arrows highlighted the dynamic physical contacts between MSCs and mFBs. (B) Cell movement traces of mFBs in control
group or co-cultures and those of MSCs in co-cultures. (C) Quantitative analysis of mFBs movement velocity between co-culture and

mono-culture (control). Scale bar = 50 ym.

were generated in a similar way to the device used in gap
mode co-culture. Nonetheless, the two chambers were
connected by micro-channels (Fig. 5A b), enabling cells to
migrate from one side to the other. mFBs with or without
MSCs were seeded into one chamber of the device, leaving
the other side empty for observing migrated cells. After 48 h,
many mFBs that were pre-labelled red were found in the
empty chamber and within the micro-channels (Fig. 5C).
Few red cells were discovered either in the channel or the
opposite chamber in co-culture (Fig. 5B).

Though no inducible agent was added inside the empty
chamber, cells would still move towards the opposite due to
limited growth space. However, the proliferation of mFBs
was mostly inhibited by MSCs as above investigated.
Importantly, the expression of a-SMA, the major cytoskeletal
actin that mFBs depend on to contract and migrate, was also
proved to be greatly reduced due to the co-culture. Thus
mFBs in co-culture could hardly migrate for long distance in
the engineered system.

Formation of cell-to-cell contacts during co-culture

Since cell staining is tricky for TEM analysis, we have to
distinguish the two different cell populations by comparing
the cellular morphology in mono-cultures. MSCs and mFBs
could be distinguished clearly due to their unique membrane
morphology and cytoplasmic composition under TEM
(Figs. S2 and S3). TEM revealed that tight intercellular
connections formed between MSCs and mFBs (Fig. 6A) and

abundant vesicles were observed inside the cytoplasm of
MSCs where connections were formed (Fig. 6B). Further-
more, tube-like structures were discovered as potential tun-
nels for vesicle transportation and other mass transferring
towards mFBs (Fig. 6C). In addition, fiber-like structures
could be obviously found both on membranes and within
cytoplasm in mono-cultured mFBs (Fig. S3) while similar
structures could rarely be found in co-cultured mFBs. These
fibers were assumed to be a-SMA and the difference was
consistent with the previous observation of reduced
expression of a-SMA (Fig. 2A).

CONCLUSION

In this study, we employed an in vitro interactive cell co-
culture model to demonstrate that adipose-derived MSCs
could ameliorate the key pathological characteristics of car-
diac fibrosis mediated by mFBs mainly in a direct cell-to-cell
contact manner, namely direct intercellular communication.
Consistent with previous studies, we obtained the inhibitory
effects of conditioned medium from MSCs on the viability
and a-SMA expression of mFBs, however, the effects were
more significant in the direct co-culture system. Hepatocyte
growth factor (HGF), one of the known factors that reduce
fibrosis in multiple organs, was demonstrated to be a major
contributor for MSCs’ anti-fibrosis function. Moreover, using
the engineered co-culture platform, the paracrine activity
was found to be dependent on the distance between the two
cell populations and be efficient at a narrow gap width
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Figure 5. Investigation of mFB migration using compartmentalized microfluidic device. (A) Macro-size demonstration of the
device compared with a 50 cent coin (25 mm diameter) (a). The chambers in the device were connected by micro-sized channels,
indicated by AlexaFluor 488-conjugated IgG (b). (B and C) mFBs were seeded into the device either with MSCs (co-culture) or alone
(control). mFBs were labelled by red CellTracker stain. Few mFBs migrated towards the other empty chamber in co-cultures (a, c),
while cells would move to the other side across the channels without MSCs (b, d). Quantitative analysis of migrated mFBs was shown

in (D). Scale bar = 200 pym.
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Figure 6. Formation of cell-to-cell contacts during co-culture. (A) Physical contacts formed between MSC and mFB during co-
culture. (B and C) magnified views of boxed region in (A). Arrowheads highlighted the vesicles inside the cytoplasm of MSCs (B) or

tunnels towards mFBs (C). NC: nucleus.

(500 pum). Proper therapeutic benefits of MSCs to myocardial
infarction should be based on the amelioration of fibrosis
condition, in order to provide a favorable microenvironment
for cell survival and factor diffusion. The study here, for the
first time, elucidated that MSCs could exert better thera-
peutic effects by directly communicating with pathogenic
cells (i.e. mFBs in cardiac fibrosis). We anticipated that this
study could provide novel insight and more precise guidance
for cell therapy based on MSCs, e.g. to introduce MSCs
sufficiently close to the disease foci. Systematic investiga-
tions into anti-fibrosis molecules that were involved during

the therapy process were necessary to provide better
understanding of the underlying molecular mechanisms for
the regenerative capacity of MSCs and could lead to
establishment of novel therapeutic approaches.

MATERIALS AND METHODS
Materials

Polyethylene glycol (PEG, MW 258), 3-Trimethoxysilyl-propyl-
methacrylate (TMSPMA), and Octadecyltrichlorosilane (OTS) were
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purchased from Sigma-Aldrich (St. Louis, MO). The photo initiator,
2-hydroxy-1-[4-(hydroxyethoxy)-phenyl]-2-methyl-1-pro-panone  (Ir-
gacure D2959), was purchased from Insight High Technology Co.
LTD (China). CellTiter-Blue cell viability assay kit (alamar blue) was
purchased from Promega (Wisconsin, USA).

Cell culture

All animal experiments were approved by the Animal Ethics Com-
mittee of the Center of Biomedical Analysis, Tsinghua University.
Cardiac fibroblasts were derived from hearts of Sprague-Dawley rats
(male, 80-100 g) as previously described (Santiago et al., 2010)
except some modifications (Zhao et al., 2014). Briefly, left ventricle
tissue was excised, washed with HBSS (Wisent, Canada) and cut
into pieces of ~1 mm?®. Enzymatic digestion using Collagenase Type
Il (100 U, Gibco) and trypsin—-EDTA (0.125%, Wisent, Canada) was
employed to dissociate the tissue pieces, which were agitated at 37°C
for 40~60 min. Supernatant was collected every 10 min into a con-
ical tube and digestion was neutralized with 1/10 volume of fetal
bovine serum (Wisent, Canada). Finally, the cells were centrifuged at
1,200 rpm for 5 min, resuspended in fresh medium (DMEM con-
taining 10% FBS) and plated into 25 cm? culture flasks. Non-ad-
herent cells were discarded after 60 min. The rest of cells were
propagated 4~5 passages, which would be induced spontaneously
into mFBs as reported (Santiago et al., 2010).

MSCs were isolated from human adipose tissues obtained from
patients undergoing liposuction operation as previously reported (Li
et al.,, 2010). After isolation, the MSCs were expanded in growth
medium (BIOWIT, China) and incubated at 37°C in a humidified
environment containing 5% CO.. The isolated MSCs were positive
for CD29, CD44, CD105 and Flk-1 while negative for CD31, CD34,
CD45 and HLA-DR, as described earlier (Cao et al., 2005).

For direct co-culture of MSCs with mFBs, cells were mixed in
ratios ranging from 1:0.01~1:1 (mFBs:MSCs) and plated in a density
of 10,000/cm? (Rahmat et al., 2013). Co-culture medium was com-
posed by half of fibroblast medium (DMEM containing 10% FBS)
and the other half of MSC growth medium. To prepare conditioned
medium of adipose-derived MSCs, 90% confluent MSCs (less than
passage 5) were washed with PBS and then exposed in fresh co-
culture medium for 24 h (Yang et al., 2013). The medium was then
collected and filtered through a 0.22 pm filter unit (Millipore) before
use. All analyses were conducted 48 h post co-culture or treatment
in conditioned medium.

Cell viability analysis

Viability was assayed using CellTiter-Blue® cell viability assay kit
and performed as per manufacturer’s instructions. For viability
assay, MSCs in the co-culture were inactivated by 10 pg/mL mito-
mycin C (Dalian Meilun Biology Technology Co., Ltd, China) for 3 h
before being mixed with mFBs. Cells were plated in 48-well plate
with constant number of mFBs and an equal number of inactivated
MSCs used in the co-culture among each ratio were plated in indi-
vidual wells for background elimination. Before the assay, culture
medium was discarded. Alamar blue solution prepared in fresh
medium was added to each well and incubated at 37°C. Fluores-
cence values were read by microplate reader (Molecular Devices,

USA) with excitation at 560 nm and emission at 590 nm. All values
were normalized to the mFB mono cultures.

Cell apoptosis detection kit (Beyotime, China) was used to verify
that the mFBs were viable in co-culture. All procedures were
accomplished as per the instructions. Cells treated with 500 pmol/L
H,0, for 2 h were used as positive control.

Immunofluorescence staining

Samples were prepared by culturing cells on circular coverslips, then
fixed with absolute methanol at =20°C for 10 min and blocked with
5% wl/v bovine serum albumin (biotechnology grade, Wisent). Pri-
mary antibody against a-SMA (rabbit, Abcam) was diluted at 1:500
and incubated with samples overnight at 4°C. This was followed by
1 h incubation with Alexa Fluor 488 goat anti-rabbit IgG at room
temperature. Hoechst 33324 (1:4000, Invitrogen) was used to stain
cell nuclei. Fluorescence observation was performed on Nikon
Eclipse Ti-S microscope (Nikon, Japan). a-SMA fluorescence
intensity was analyzed using ImageJ software (NIH, USA) according
to software manual. Briefly, all the fluorescent images were taken
with identical optical settings (i.e. exposure time and binning num-
bers). Images were then imported into ImageJ and more than 3
different ROIs in the image were selected for pixel intensity
quantification.

Collagen staining

Sirius Red collagen detection kit (Chondrex, Inc., USA) was used to
quantify the amount of collagen as per manufacturer’s instructions.
Similarly, an equal number of inactivated MSCs used in the co-
culture among each ratio were plated in individual wells for back-
ground elimination. Briefly, samples were fixed and incubated with
Sirius Red solutions for 30 min at room temperature, and eluted
using extraction buffer provided in the kit. The absorbance of the
extracted solution was read at 540 nm by microplate reader.

Western blotting

Total proteins were extracted from cultured cells using RIPA lysing
buffer (Beyotime, China), according to the manufacturer’s protocol.
Proteins were separated by 10%-12% SDS/PAGE gels and trans-
ferred to PVDF membrane (Millipore), which was then blocked by 5%
(w/v) nonfat dry milk in TBS-Tween (0.2%) for 1 h. Membranes were
probed with rabbit anti-rat a-SMA (1:400, Abcam) overnight at 4°C.
After several washes in TBS-Tween, membranes were incubated with
goat anti-rabbit HRP-conjugated secondary antibody (1:2000, ZSGB-
BIO, China). The subsequent visualization was performed using
SuperSignal West Pico Chemiluminescent Substrate (Thermo) by the
ChemiDoc XRS™ with image Lab software (Bio-Rad).

Collagen contraction assay

Collagen gel lattice contraction assay was performed to measure
contractility of mFBs. The collagen lattice was prepared by com-
bining 20 pL of cold collagen solution (BD, USA), 80 pL co-culture
medium and 0.46 pL of 0.1 mol/L sodium hydroxide solution on ice.
mFBs were harvested from mono-culture, counted and resuspended
in pre-mixed cold collagen solution at a density of 1 x 10 cells/mL.
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For co-culture group, MSCs and mFBs were mixed equally to reach
the same density. As to dispel the impact of mFBs’ number on gel
contraction, control groups were prepared by encapsulating mFBs
inside gels with an equal or half of the total cell number in co-culture.
Then cell-collagen mixture was pipetted into 48-well plates
(100 pL/well) and incubated at 37°C for 30 min to polymerize the
collagen lattices. The plates were pre-coated with 5% bovine serum
albumin (biotechnology grade, Wisent, Canada) in order to release
the gels from the plates. After 30 min, 200 uL co-culture medium
were added to each well. To assess the influence of anti-fibrosis
cytokine, antibody against HGF (sc-13087, Santa Cruz) was dis-
solved in collagen solution (1:100) to block the factors secreted by
MSCs, while HGF (R&D) was dissolved in collagen solution (20 ng/mL)
to disturb normal contractility of mFBs. A digital camera was used to
take pictures of the gel lattices after 18 h. The area of the lattices
was analyzed using ImageJ software (NIH, USA). The extent of
contraction was calculated by:

well area - gel area

x 100%
well area

extent =
Time-lapse imaging

Time-lapse recording was performed to monitor the dynamic inter-
action between MSCs and mFBs. Culture plate was mounted in a
5% CO, filled incubation chamber (Nikon, Japan). Cells were
labeled with CellTracker (green for mFB and red for MSCs, Invitro-
gen) before imaging. Pictures were taken at 35 min interval using
inverted Fluorescent Microscope (Ti-U series, Nikon, Japan) and
cellular movement tracking was realized using ImageJ software
equipped with an open access manual tracking plugin.

Fabrication of compartmentalized microfluidic devices

The device was fabricated using PDMS stamps by conventional
soft-lithography technique. The molds were fabricated using UV
cross-linkable polyethylene glycol (PEG, Mw = 258, Sigma) through
pre-designed photomask. Briefly, 1 wt% photo initiator (Irgacure
D2959) was dissolved in PEG258 solution, which was then pipetted
onto  3-(trimethoxysilyl)propyl methacrylate (TMSPMA) coated
glass slides and exposed to UV light (OmniCure SERIES 1500,
27.6 mW/cm?, Canada) for 18~25 s. Then, the patterned molds were
immersed into ethanol to remove any unreacted precursors for 5 min
and air dried. Afterwards, PDMS prepolymer solution was poured
onto the molds and polymerized at 70°C for 8 h.

Device for investigating directional cell migration was composed
of two isolated chambers (2 cm long 150 um high) interconnected by
narrow channels (1 mm long 0 ym high). Device for investigating gap
mode co-culture was composed of two separated chambers in the
same size as above mentioned despite that they were separated by
cell-repellent gaps in a range of distances.

For cell seeding in migration device, PDMS was removed from
the molds and stamped on clean glass slides through thermal
binding after 2 min of plasma treatment. The slides were then
functionalized with 0.1% gelatin solution for cell adherence. Cells
were seeded into one chamber at a density of 1 x 10* cells/cm?. To
prevent cell leakage, the interconnected micro-channel was filled
with 2 mg/mL collagen gel prior to cell seeding.

For gap mode co-culture, PDMS stamp was pressed onto OTS-
treated glass slides which would provide a cell-repellent surface
between separated chambers, followed by plasma treatment that
enabled protein adsorption in cell growing chambers. MSCs and
mFBs were seeded into each chamber and allowed to adhere before
stamp removal, leaving separated cell patterns on the slide. Co-
culture medium was then added on top of the slide, covering both
patterns and incubated for 48 h.

Transmission electron microscopy (TEM)

For the TEM analysis, cells were immersed in 2.5% glutaraldehyde
(VASE, China), fixed in 1% OsQO,, dehydrated using 70% EtOH
containing 2% uranyl acetate and embedded in Epon 812 (Fluka,
USA). After Epon polymerized, the samples were removed from the
culture dish and cut into ultra-thin (7 ym) sections using a Leica EM
UC6. The sections were stained with lead citrate and examined
using H-7650B microscope (Hitachi, Japan).

Statistical analysis

Quantitative data were plotted as the mean + standard deviation.
Statistical analysis was performed using Student’s unpaired two-way
t-tests and ANOVA analysis. Differences were considered to be
statistically significant when P < 0.05.
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