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Abstract

The in¯uence of each of the six di�erent types of morphological imperfectionÐwaviness,

non-uniform cell wall thickness, cell-size variations, fractured cell walls, cell-wall
misalignments, and missing cellsÐon the yielding of 2D cellular solids has been studied
systematically for biaxial loading. Emphasis is placed on quantifying the knock-down e�ect

of these defects on the hydrostatic yield strength and upon understanding the associated
deformation mechanisms. The simulations in the present study indicate that the high
hydrostatic strength, characteristic of ideal honeycombs, is reduced to a level comparable
with the deviatoric strength by several types of defect. The common source of this large

knock-down is a switch in deformation mode from cell wall stretching to cell wall bending
under hydrostatic loading. Fractured cell edges produce the largest knock-down e�ect on
the yield strength of 2D foams, followed in order by missing cells, wavy cell edges, cell edge

misalignments, G Voronoi cells, d Voronoi cells, and non-uniform wall thickness. A simple
elliptical yield function with two adjustable material parameters successfully ®ts the
numerically predicted yield surfaces for the imperfect 2D foams, and shows potential as a

phenomenological constitutive law to guide the design of structural components made from
metallic foams. # 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Low density metallic foams are a new class of engineering materials with
promising mechanical, thermal, electrical and acoustical properties. A wide range
of applications is currently under exploration, including lightweight components
for vehicles, heat dissipation media for high power electronics, and sound
absorbing devices for noise and vibration control. Experimentally validated
micromechanical models of metallic foams are needed as a framework for
structure-property relationships, and to aid design. The mechanical properties of
cellular materials have been studied extensively, and can be found in several
comprehensive surveys (Weaire and Fortes, 1994; Gibson and Ashby, 1997; Evans
et al., 1998).

Idealised foams such as the hexagonal honeycomb possess a high ratio of
hydrostatic strength to deviatoric strength: under hydrostatic loading their cell
walls deform by stretching whereas under deviatoric loading they yield at lower
stress levels by bending (Gibson and Ashby, 1997). Most commercially available
metallic foams contain processing induced morphological defects which degrade
their deviatoric strength by an order of magnitude (Sugimura et al., 1997; Evans
et al., 1998), and their hydrostatic strength to a level comparable with their
deviatoric strength (Deshpande and Fleck, 1998; Gioux et al., 1998). These include
wavy cell walls, non-uniform wall thickness, cell wall misalignments, broken cell
walls, missing cells, and a random dispersion of cell size. The extent to which each
of these imperfections is responsible for the observed knock-down in hydrostatic
yield strength is addressed in this paper for the simpli®ed case of a 2D foam,
using analytical and ®nite element techniques.

1.1. Processing defects in metallic foams

Metallic foams are most frequently made by foam casting or by directional
solidi®cation. For instance, a batch casting method is used by Shinko Wire to
manufacture a closed cell aluminium alloy foam under the tradename of
`Alporas'. First, a small amount of calcium (Ca) is added to the molten
aluminium alloy in a container to increase its viscosity. When the molten alloy has
attained the desired viscosity, a foaming agent titanium hydride (TiH2) is added;
at the same time, the stirring speed is increased. The titanium hydride decomposes
at 7208C to create hydrogen bubbles; a hydrogen over-pressure is applied to
control the development of these bubbles. A su�ciently large viscosity is needed
to prevent premature bubble coalescence. If the viscosity is too large, however, a
rapid and uniform dispersion of the foaming agent in the melt becomes di�cult,
and the ®nal porosity is low. The cellular structure of typical metallic foams
exhibits several morphological imperfections, including curved and wrinkled cell
walls, non-uniform wall thickness, non-uniform cell size distribution, fractured
cell-walls, and missing cells.

Another type of aluminium alloy foam, under the tradename of `Duocel', is
manufactured by ERG by a directional solidi®cation route and contains open
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polyhedral cells. Metallographic studies reveal that the cellular structure of a
typical ERG foam has a higher morphological quality than that of currently
available closed cell foams (e.g. Alporas foam). The most likely morphological
defect in an ERG foam is in the form of curved and wavy cell walls; here,
Plateau's laws for minimal surface area do not apply as the processing of ERG
and other metallic foams involves viscous forces in addition to surface tension
(Kraynik et al., 1997).

An intriguing question arises as to whether the yield strength of a metallic foam
having either closed or open cells is weakened by the presence of morphological
imperfections and whether this involves a change of yielding mechanism from cell-
wall stretching to cell-wall bending under hydrostatic loading. To gain some
insight into this problem we shall consider the biaxial yield response of 2D
metallic foams weakened by various morphological defects.

1.2. Survey of relevant literature and aim of study

An understanding of the yield behaviour of cellular metals is important for
structural applications, yet the existing literature has largely focused on regular
honeycombs. It is now well established that the in-plane hydrostatic strength of a
perfect hexagonal honeycomb is governed by cell wall stretching and is
proportional to the relative density �r , while its deviatoric strength is set by cell
wall bending and scales with �r2 (Gibson and Ashby, 1997). Thus, the yield surface
is elongated along the hydrostatic axis in biaxial stress space. Using simple beam
theory, Klintworth and Stronge (1988) proposed failure envelopes for regular
honeycombs with respect to various elastic and plastic cell crushing modes; these
are used together with the associated ¯ow rule of plasticity to describe the in-
plane indentation of a honeycomb by a plane punch (Klintworth and Stronge,
1989). Gibson et al. (1989) studied the biaxial yield surface of 2-dimensional
honeycombs and the triaxial yield surface of 3-dimensional open-celled foams.
These studies suggest that the plastic yield surface of regular honeycombs may be
truncated by elastic buckling in compression and by brittle fracture in tension.

Several attempts have been made to account for the e�ects of morphological
defects on the elastic and plastic properties of cellular solids. Warren and Kraynik
(1987) and Kraynik et al. (1991) found that the presence of Plateau borders (non-
uniform wall thickness) has only a small e�ect on the elastic response of
honeycombs. Simone and Gibson (1998a) considered the e�ect of Plateau borders
on the mechanical properties of hexagonal honeycombs and of idealised cellular
foams with closed tetrakaidecahedral cells. Their ®nite element results suggest that
the distribution of material in the cell walls has little e�ect upon the Young's
modulus and has only a moderate in¯uence upon the uniaxial yield strength. They
argue that the maximum bending moments appear at the joints of the honeycomb
and so the presence of Plateau borders has only a small e�ect on the Young's
modulus. Grenestedt and Tanaka (1998) used the ®nite element method to study
the in¯uence of non-uniform cell wall thickness on the shear and bulk modulus of
a ¯at-faced Kelvin structure, consisting of 14-sided closed cells in a BCC
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arrangement. It was found that both moduli are rather insensitive to thickness
variations, at ®xed overall relative density.

The e�ects of cell face curvature and wiggles on the mechanical properties of
regular honeycombs and of tetrakaidecahedral closed cell foams were studied by
Simone and Gibson (1998b). They found that wavy imperfections can reduce
signi®cantly the Young's modulus and the uniaxial yield strength of the foam.
Grenestedt (1998) has shown that wavy imperfections give a bigger reduction in
the Voigt upper bound bulk modulus for open cell foams than for closed cell
foams. He assumed a�ne deformation of the foams, and argued that cell wall
waviness reduces the stretching sti�ness of the beam-like cell walls in an open cell
foam more than it reduces the sti�ness of the shell-like cell walls in a closed cell
foam. Grenestedt (1997) has also studied the e�ect of wavy imperfections on the
yield behaviour of an open cell foam. In agreement with Gibson and Ashby (1997)
he argued that the hydrostatic strength of the perfect foam is governed by cell
wall stretching and scales with �r . For su�ciently large values of waviness,
however, bending dominates the response and the strength scales with �r3=2 under
all stress states.

Silva et al. (1995) used a ®nite element method to model a 2D random Voronoi
distribution of cells and found that `the relations between microstructural and
elastic properties for non-periodic honeycombs are, on average, not di�erent from
those for periodic honeycombs'. Silva and Gibson (1997) investigated the in¯uence
of random cellular microstructures and missing cell walls on the Young's modulus
and uniaxial yield strength of 2D Voronoi honeycombs. They found that the
uniaxial compressive yield strength of a Voronoi honeycomb is about 30% less
than that of a perfect honeycomb at the same relative density level, and that
defects, introduced by removing some of the cell walls at random locations, lead
to a sharp decrease in the uniaxial sti�ness and strength of both Voronoi and
perfect honeycombs. Through a combination of analytical and ®nite element
techniques Triantafyllidis and Schraad (1998) found that the yield surface of a
perfect hexagonal honeycomb provides an upper bound for the yield surfaces of
honeycombs with microstructural imperfections.

Kraynik et al. (1997) have presented a ®nite element study of the elastic
response of a 3D random foam. They used Voronoi cells as the starting
microstructures and then a surface evolution program to generate random soap
froths of minimal surface energy. The cell walls are assumed to consist of linear
elastic material but the overall response is found to be non-linear due to ®nite
deformation e�ects. Under uniaxial compression, the stress-strain response of the
foam is very similar to that of a regular foam with open Kelvin cells. However,
under hydrostatic loading, the peak stress for a random Voronoi foam is much
less than that for a perfect Kelvin foam. Kraynik et al. (1997) suggest that, under
hydrostatic loading, the response of a Kelvin foam with open cells is governed by
cell edge stretching and that of a random foam with open Voronoi cells by cell
edge bending. The geometrical imperfections considered include variations in cell-
wall lengths and random perturbations in the initial positions of the vertices of
each hexagon. In similar spirit, Grenestedt and Bassinet (1998) have used the ®nite
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element method to explore the e�ect of a dispersion of cell shape on the shear and
bulk modulus of a closed cell foam. They perturbed the shape of a ¯at-faced
Kelvin structure in a random manner and found that both the shear and bulk
moduli are relatively insensitive to a dispersion in cell shape.

The current literature lacks studies on the multi-axial yield surface of foams as

Fig. 1. Six di�erent types of geometric imperfection considered in the present study: (a) waviness; (b)

non-uniform wall thickness; (c) fractured cell walls; (d) cell-wall misalignment; (e) Voronoi structure;

and (f) missing cells.
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a function of random cellular structures, broken cell walls, cell wall misalignments
and missing cells. It is also noted that in the studies of Silva et al. (1995) and Silva
and Gibson (1997) for 2D Voronoi honeycombs and of Kraynik et al. (1997) for
3D Voronoi foams, the cell size distribution follows essentially the d-distribution
found in relatively uniform cellular microstructures. Recent image analysis on
selected cross-sections of Alporas foams suggests that the cell size distribution is
more closely described by the more random G-distribution (Klocker, 1998). The
present paper is an attempt to study comprehensively the e�ects of various
geometrical imperfections on the in-plane yielding behaviour of 2D cellular foams
under biaxial loading by using a combination of analytical and ®nite element
methods. Six di�erent types of morphological defect are studied, as sketched in
Fig. 1. First (in section 2), we address the reduction in strength of a regular
honeycomb by the periodic imperfections of non-uniform wall thickness and cell
wall waviness. Second (in section 3), the e�ects of random imperfections are
determined: missing cell walls, a dispersion of cell size, cell wall misalignments and
missing cells. In section 4, the numerically calculated yield surfaces are compared

Fig. 2. (a) Unit cell model for ideal hexagonal honeycomb, and (b) dependence of the deviatoric yield

strength S upon the inclination O of principal stresses relative to the microstrucure.
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with a simple elliptical yield surface in order to provide support for the simple
phenomenological model of yield as given by Deshpande and Fleck (1998).

2. Periodic imperfections

We adopt in this paper the same approach as that used by Silva et al. (1995),
Silva and Gibson (1997), Kraynik et al. (1997), and Triantafyllidis and Schraad
(1998) whereby each type of defect is studied separately for idealised cellular
microstructures. Thus, our results should be considered at most as qualitative
accounts of real metallic foamsÐthese are nevertheless important for guiding the
improvement of manufacturing processes and for future studies on the e�ects of
defects on the yielding of real metallic foams. Periodic defects (wavy imperfections
and non-uniform wall thickness) are studied in this section for regular
honeycombs, whilst random defects (missing cell walls, cell-wall misalignments
and random cell size distributions) are addressed in section 3.

2.1. Unit cell model

A unit cell approach is used, similar to that described by Warren and Kraynik
(1987), to study the in-plane yielding response of an in®nitely large regular
honeycomb subjected to uniform stressing (Fig. 2). The reference honeycomb is a
perfect, hexagonal structure with a cell wall length of l and a uniform cell wall
thickness of t; cell wall waviness and non-uniform wall thickness are then
introduced, as discussed below. The relative density �r is given by �r � 2t=

���
3
p

l.
Results are presented below for regular honeycombs of su�ciently low relative
density ( �r<0:2) that simple beam theory is adequate (t=l<0:2). Symmetry indicates
that the bending moment vanishes at the mid-point of each cell edge. The cell
edgesÐOA, OB and OC in Fig. 2Ðare taken to be rigidly connected at joint O
and are modelled by simple beam theory. It is further assumed that the cell wall
material is rigid perfectly plastic with a yield strength denoted by sy. The axial
and shear forces sustained by each beam are de®ned in Fig. 2 and satisfy the
following equilibrium relations

P1 ÿ 1=2�P2 � P3� �
���
3
p
=2�Q3 ÿQ2� � 0

ÿQ1 ÿ
���
3
p
=2�P3 ÿ P2� � 1=2�Q3 �Q2� � 0

Q1 �Q2 �Q3 � 0: �1�
These forces are related to the average macroscopic stresses (s11, s22, s12) by

Pi �
���
3
p

lb�s11 cos 2 yi � 2s12 cos yi sin yi � s22 sin 2 yi �
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Qi �
���
3
p

lb�ÿs11 cos yi sin yi � s12�cos 2 yi ÿ sin 2 yi � � s22 cos yi sin yi �

i � 1, 2, 3 �2�
where b is the out-of plane thickness of the honeycomb. The angles yi denote the
corresponding directions of the cell edges OA, OB and OC, and are given by

y1 � p=2; y2 � 7p=6; y3 � 11p=6: �3�
It is straightforward to check that the forces given by Eq. (2) satisfy the
equilibrium Eq. (1).

The yield strength of a honeycomb is determined by studying the yield
behaviour of the cell edges in the unit cell. Each cell edge is modelled as a
cantilever beam clamped at one end and subjected to an axial force P and a
transverse force Q at the free end. For a perfectly plastic solid, a plastic hinge
appears at the clamped end when the forces satisfy the following yield condition
(see, for example, Hodge, 1959)

j Ql j =2ÿ syb�t2=4ÿ P2=�2syb�2� � 0: �4�
Plastic collapse occurs when one or more plastic hinges appear in the unit cell,
and this can be expressed by

j Qil j =2ÿ syb�t2=4ÿ P2
i =�2syb�2� � 0 for i � 1, 2 or 3 �5�

where Pi and Qi (i= 1, 2, 3) are given by Eq. (2). It should be noted that the
yield surface obtained from the unit cell model is the inner surface of the set of
surfaces speci®ed by Eq. (5). For the special case s12=0, Eq. (5) reduces to

j s11 ÿ s22 j� 2syt2

3l2

"
1ÿ 3=16�l=t�2 �3s11 � s22�2

s2y

#
: �6�

If, on the other hand, the honeycomb is subjected to pure shear stressing, Eq. (5)
becomes

j s12 j� sy
2
���
3
p �t=l �2: �7�

Eqs. (6) and (7) are identical to those given by Gibson and Ashby (1997).
It should be noted that the elastic response of an ideal hexagonal honeycomb is

isotropic. It is instructive to explore the degree of plastic anisotropy by subjecting
the honeycomb to macroscopic deviatoric loading, comprising the principal
stresses (S, ÿS) rotated by an angle O (0 R O R 908) from the 1±2 axes of the
honeycomb. The procedure is to resolve the principal stresses (S, ÿS) back into
the stress components (s11, s22, s12) by Mohr's circle and then to evaluate the
magnitude of S from Eqs. (2) and (5). Because an ideal hexagonal honeycomb has
6-fold symmetry, the calculated dependence of S upon O is plotted in Fig. 2(b) for
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O in the range 08 to 308. The honeycomb has a maximum strength for the
orientation O=08 and 308,

S � ÿ2sy � 2sy

�����������������������
1� 1

3
�t=l �2

r
�8�

which can be approximated as

S � sy
3
�t=l �2 �9�

when (t/l )2 is small. The minimum strength exists for O=158 and is given by

S � sy
2
���
3
p �t=l �2: �10�

Fig. 2(b) reveals that the degree of plastic anisotropy is small for the ideal

Fig. 3. (a) Unit cell of regular honeycomb with cell wall waviness, and (b) its yield surface for the case

t/l and selected values of w0/t.
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hexagonal honeycomb. Thus, in the sequel, we will simplify the loading on perfect
and imperfect honeycombs to principal stresses (s11, s22) aligned with the
symmetry directions of the honeycomb.

The results presented above for a perfect honeycomb are taken as the reference
in order to study the in¯uence of two types of geometrical imperfection, wiggles
and non-uniform wall thickness, on the yield surface. The analysis assumes that
each cell wall contains identical imperfections which can be either wiggles or non-
uniform wall thickness but not both.

2.2. Wavy cell edges

For simplicity, a wavy imperfection along each cell is described by the initial
transverse de¯ection w(x ):

w � w0 sin�2npx=l � �11�

Fig. 4. (a) Unit cell of a perfect honeycomb with non-uniform wall thickness, and (b) its yield surface

for the case t/l= 0.15 and selected values of w0/t.
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where w0 is the amplitude of the waviness, n is the number of ripples in a length
l/2, and x is the distance from the mid-joint O along the cell edge (Fig. 3(a)).
Consider a wavy beam of length l/2 and thickness t which is clamped at one end,
and is subjected to a transverse force Q and an axial force P at the other end;
then, the yield locus in (P, Q ) space is given by

j Q�l=2ÿ x c� � Pwc j ÿsyb
"
t2=4ÿ �P cos jc �Q sin jc�2

�2syb�2
#
� 0: �12�

In the above equation, it is assumed that plastic collapse is by the formation of a
plastic hinge at a distance xc from the ®xed end O; the initial transverse de¯ection
and the associated slope at xc are designated wc and jc, respectively. The
derivation of the yield condition and the method for determining (xc, jc, wc) are
detailed in Appendix A. The e�ect of wavy imperfections on the yield surface, as
predicted by Eqs. (2) and (12), is plotted in Fig. 3(b) for biaxial loading (s11, s22),
with t/l = 0.15 and n = 2. It is seen that wavy imperfections reduce signi®cantly
the hydrostatic yield strength of a regular honeycomb but have only a minimal
in¯uence on its deviatoric yield strengthÐthe resulting yield surface is much less
elongated in biaxial macroscopic stress space when compared to that of a perfect
honeycomb. For a ®xed t/l ratio, an increase in the wave number n leads to a
slight increase in the relative density and to no change in the macroscopic yield
surface.

2.3. Non-uniform wall thickness

The e�ect of non-uniform wall thickness on the size and shape of the yield
surface is now examined, using the simpli®ed geometrical model shown in Fig.
4(a). It is assumed that the cell wall thickness decreases linearly from the joint O
to the mid-point of the cell edge. The average cell edge thickness is denoted by t.
Simple beam theory is employed, and so the predictions are limited to small
variations in cell wall thickness. The yield surface for such an `imperfect'
honeycomb is obtained by analysing the plastic collapse of a clamped beam whose
thickness varies linearly with length, as detailed in Appendix B. The critical load
for collapse of such a beam is given by

j �l=2ÿ x c�Q j ÿsyb
"
t2c=4ÿ

P2

�2syb�2
#
� 0 �13�

where xc is the distance of the plastic hinge from the built-in end. The thickness tc
at xc is given by

tc � t1 ÿ 2x c�t1 ÿ t2�=l �14�

where
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t1 � t� l tan y
4

; t2 � tÿ l tan y
4

: �15�

The predicted yield surface of a honeycomb with selected Plateau border
imperfections is shown in Fig. 4(b) for the case t/l = 0.15. Again, no remote shear
stress s12 is applied. The presence of non-uniform wall thickness in a periodic
honeycomb decreases its hydrostatic yield strength but enhances its deviatoric
yield strengthÐthe resulting yield surface is again less elongated when compared
to that of a perfectly periodic honeycomb.

We note from Figs. 3(b) and 4(b) that the yield surface of a perfectly periodic
honeycomb bounds the yield surface of an imperfect periodic honeycomb with
wavy cell edges but not the yield surface of an imperfect periodic honeycomb with
non-uniform wall thickness. Thus, the conclusion reached by Triantafyllidis and
Schraad (1998) that the yield surface of a perfectly periodic honeycomb provides
an upper bound for the yield surfaces of honeycombs with microstructural

Fig. 5. E�ects of (a) waviness and (b) non-uniform wall thickness on the yield strengths of perfect

honeycombs.
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imperfections is not universally applicable, at least, in the case where the
imperfections are of the Plateau border (non-uniform cell wall thickness) type.

2.4. Reduction of yield strength due to periodic imperfections

It is well established that the deformation of an ideal honeycomb is governed by
cell-edge bending under uniaxial stressing, and by cell-edge stretching under
hydrostatic stressing. We shall now show that the presence of a small amount of
cell wall waviness gives rise to a bending dominated deformation state under both
uniaxial and hydrostatic loading. The uniaxial yield strength sU and the
hydrostatic yield strength sH of a wavy honeycomb, normalised by the
corresponding yield strengths s 0

U and s 0
H of a perfect honeycomb, are plotted as

functions of cell-wall waviness amplitude w0/t in Fig. 5(a), for a cell-wall thickness
to length ratio t/l = 0.15. For completeness, the ratio of uniaxial to hydrostatic
yield strength sU/sH of the imperfect honeycomb is included in the ®gure.

The presence of wavy imperfections changes the deformation mechanism under
hydrostatic stressing from cell-edge stretching to cell-edge bending when the
amplitude of waviness is only about the thickness of the cell wall; the
corresponding drop in hydrostatic yield strength is signi®cantÐsH/s

0
H 1 0.2 for

w0/tr1. Wavy imperfections, on the other hand, lead to only a relatively small
drop in uniaxial yield strengthÐsU/s

0
U 1 0.8 when w0/t 1 1Ðwhich is expected

as the deformation state of both ideal and wavy honeycombs are dominated by
cell-edge bending under uniaxial stressing. Consequently, at w0/t 1 1, the uniaxial
yield strength of the imperfect honeycomb is about 60% of its hydrostatic yield
strength (sU/sH 1 0.6), as opposed to sU/sH 1 0.18 in the absence of
imperfections.

In similar manner, the e�ects of the Plateau border parameter y upon sU/s
0
U,

sH/s
0
H and upon sU/sH are shown in Fig. 5(b), for the case t/l= 0.15. The

corresponding relative density of the honeycomb is 17.3%. The presence of non-
uniform wall thickness decreases the hydrostatic yield strength sH slightly and
increases the uniaxial yield strength sU slightly. This can be explained as follows.
Under hydrostatic stressing, the deformation is governed by cell-wall stretching,
but its yield strength is reduced due to thinning of the cell edges near their
midpoints. Thus, the hydrostatic yield strength s 0

H of an ideal honeycomb
provides an upper bound to the hydrostatic yield strengths of the honeycomb with
non-uniform wall thickness, given that the relative density of the honeycombs
remains unchanged. For the case of uniaxial stressing, yield is by the formation of
a plastic hinge at the triangular joint; upon redistributing cell wall material in the
vicinity of the joint, the plastic collapse moment increases and the macroscopic
uniaxial strength increases. Hence, at ®xed relative density, the uniaxial yield
strength of a honeycomb with non-uniform wall thickness exceeds s 0

U, as shown
in Fig. 5(b). We conclude that s 0

U is not an upper bound for the uniaxial yield
strengths of honeycombs with microstructural imperfections in the form of non-
uniform wall thickness.
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3. Random imperfections

In this section, a ®nite element method is used to study the e�ects on the yield
behaviour of 2D foams for four types of random imperfectionÐfractured cell
walls, cell-wall misalignments, missing cells, and a Voronoi distribution in cell size.
Combined with the study presented in section 2, the overall aim is to identify
those morphological imperfections which have a pernicious e�ect upon yield, and
thereby to provide guidelines for the manufacture of metallic foams.

First, we consider the multi-axial yield response of foams with Voronoi
distributions of cell size. The e�ects of cell wall misalignments, fractured cell walls
and missing cells are then explored in turn. To create cell-wall misalignments, the
joints of an ideal hexagonal honeycomb are displaced by a ®xed amount in
random directions. Fractured cell edges are introduced randomly for both regular

Fig. 6. Typical ®nite element mesh for the unit cell of a periodic Voronoi structure with (a) G-
distributed cells and (b) d-distributed cells.

C. Chen et al. / J. Mech. Phys. Solids 47 (1999) 2235±22722248



honeycombs and for Voronoi structures. Missing cells are obtained by deleting
one or more triangular joints in an ideal honeycomb and in a honeycomb already
weakened by randomly distributed broken cell walls.

3.1. Voronoi cell models

If all pores nucleate simultaneously but randomly in space and grow at the
same linear rate, the resulting structure is a G-Voronoi foam with a random
morphological structure (Gibson and Ashby, 1997). Voronoi diagrams have been
employed to study the elastic and uniaxial yield behaviours of 2D random
honeycombs (Silva et al., 1995; Silva and Gibson, 1997) and the ®nite elastic
deformation of 3D random foams (Kraynik et al., 1997). To create a 2D Voronoi
diagram, randomly generated nucleation points are placed in a 2-dimensional
domain according to an assumed distribution function. The domain is then
divided into Voronoi polygons by drawing lines from each point to the nearest-
neighbouring points, with normals drawn to bisect these lines. The area
surrounding each generation point enclosed by the normals constitutes the
Voronoi cell. It is assumed that the Voronoi diagram used in the present ®nite
element model is the `unit' cell of an in®nite periodic cellular material with
random microstructures, see Fig. 6(a). Thus, for any nucleation point K lying
outside the unit cell ABCDA of size L � L, its position is determined by a
corresponding random point k in ABCDA through

xK � xk2mL

yK � yk2nL �16�
where m and n are integers. In the current study these random nucleation points
are generated using the commercial software Mathematica

2

. The resulting
Voronoi diagram is then a globally periodical structure having a unit cell of size
L � L. With the assumption that all cell walls have the same thickness, t, the
relative density �r of the structure is given by

�r � tSlk
L2

�17�

where lk are the cell-wall lengths and the summation is carried over the total
number of cell walls within the unit cell.

The relative density of the model foam is changed by altering the cell wall
thickness. In the ®nite element analysis, each cell wall is modelled by 1±13
Timoshenko beam elements (B22 element of ABAQUS), depending on the
thickness to length ratio. It is found that the thickness to length ratio of a very
few cell walls of the random microstructures (G-Voronoi, d-Voronoi, and
honeycombs with misalignments) exceeds 0.5. Generally speaking, continuum
elements instead of beam elements should be used for these stocky cell walls.
However, when the number fraction of short cell walls with respect to the total
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number of cell walls is less than 5% (which is satis®ed in all the cases studied
here), the error incurred by modelling all cell walls in a random microstructure
with beam elements is expected to be small.

The total degrees of freedom in a typical ®nite element model is in the range
35,000±70,000, depending on the total number of random Voronoi cells used in
the representative cellÐa mesh sensitivity study has been carried out and will be
discussed further below. Unless otherwise stated, J2-¯ow theory is employed and
the cell wall material is assumed to be elastic-perfectly plastic with a Young's
modulus of E = 68 GPa, a Poisson's ratio of n=0.3, and a yield stress of sy=130
MPa, which are representative of aluminium alloys. Thus, the independent non-
dimensional material parameters are the Poisson's ratio n and the yield strain sy/
E = 0.00191. Furthermore, to ensure that the random structure has approximately
isotropic properties, the unit cell is accepted only if its Young's modulus
calculated from the ®nite element model varies within 4% in two orthogonal
directions (the x and y directions in Fig. 6(a)).

3.1.1. Cell size distributions
A typical periodic unit cell ABCDA of size L � L arbitrary units and consisting

of about 400 Voronoi polygons is shown in Fig. 6(a). Since this Voronoi diagram
is generated without placing any constraints on the minimum distance between
neighbouring random points, the resulting cell size distribution follows the G-
distribution for which the probability of ®nding a cell of size a is given by

p�a� � tt

�aG�t�
�
a

�a

�tÿ1
exp

�
ÿ t

a

�a

�
�18�

where a=hai is the average cell size, G is the Gamma function and t=3.61, as
obtained by Weaire et al. (1986). If, however, the constraint is imposed that the
separation between all nucleation points must exceed a minimum distance, the
resulting Voronoi diagram has a nearly uniform cell size distribution given by the
d-distribution, as shown in Fig. 6(b). In their studies on Voronoi foams, Silva et
al. (1995), Silva and Gibson (1997) and Kraynik et al. (1997) all make use of such
a constraint to generate Voronoi diagrams. In this paper, both types of cell size
distribution are considered and their e�ects on biaxial yielding of cellular foams
are determined. The Voronoi cells are assumed to have uniform thickness and, in
the case of the d-distribution, it is further assumed that all cell walls must have a
length at least three times the cell wall thickness. In addition, to provide baseline
solutions, ®nite element calculations are performed on ideal hexagonal
honeycombs of size L � L and the results are compared with those obtained from
the unit cell analysis described in section 2.

3.1.2. Boundary conditions
Before performing any calculations, one must decide upon the most appropriate

boundary conditions in the ®nite element model. The chosen boundary conditions
should lead to the average global behaviour of the 2D foam, and not to localised
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deformation near the boundaries of the mesh. We shall explore the e�ects of the
boundary conditions upon the elastic-plastic response for both Voronoi foams and
ideal honeycombs, and compare the predictions with the analytic results for an
in®nite ideal honeycomb.

Three types of boundary condition are considered in turn: (i) mixed boundary
conditions, representative of frictionless grips (Fig. 7(a)); (ii) prescribed
displacement boundary conditions, representative of sticking grips (Fig. 7(b)); and
(iii) periodic boundary conditions (Fig. 7(c)). The mixed boundary conditions are
enforced by prescribing the normal displacement along each edge of the mesh,
with vanishing tangential force and bending moment at the edge nodes of the

Fig. 7. Three di�erent types of boundary condition: (a) mixed boundary conditions, (b) prescribed

displacement boundary conditions, and (c) periodic boundary conditions.
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®nite element mesh. Boundary conditions of mixed type have been used previously
by Silva et al. (1995), Silva and Gibson (1997), and Triantafyllidis and Schraad
(1998).

Prescribed displacement boundary condition (sticking grips) requires that the
translation displacements u J

a and rotation y J of every node on the boundary
ABCDA of Fig. 7(b) satisfy

uJ
a � eabx J

b, yJ � 0, a, b � 1, 2 �19�

where eab is the average macroscopic strain, x J
b are the co-ordinates of a

Fig. 9. E�ect of choice of boundary conditions on (a) uniaxial, (b) hydrostatic stress vs strain

behaviour of a G-distributed Voronoi structure with �r � 0:15.
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representative node J on ABCDA, and the summation convention applies over
repeated su�ces. The corresponding macroscopic stresses are derived by

sab � 1

2L2
S�x J

aF
J
b � x J

bF
J
a� �20�

where F J
a are the reaction forces on node J and the summation is carried over all

nodes along ABCDA. Similarly, periodic boundary conditions on ABCDA imply

uJ
a ÿ uI

a � eab�x J
b ÿ x I

b�, yJ ÿ yI � 0, a, b � 1, 2 �21�

for pairs of nodes I and J on opposite edges of the mesh, as shown in Fig. 7(c).
Without loss of generality, the shear strain e12 is taken to be zero in the ®nite
element calculation for the isotropic random structure. Moreover, proportional
loading is applied by ®xing the ratio e11/e22 except for the case of uniaxial loading
cases for which e11 is incremented with s22=0.

The e�ects of the boundary conditions on the yield strength of a G-Voronoi
foam are demonstrated in Fig. 8; here, the normalised uniaxial and hydrostatic
compressive yield strengths (sU/sy and sH/sy) are plotted as functions of relative
density �r . The yield strength of the foam is de®ned by the peak on the stress
versus strain curves, as shown in Fig. 9 for the case �r=0.15. From Figs. 8 and 9
it is clear that the calculated yield strength of the G-Voronoi model is sensitive to
the type of boundary condition imposed. On taking the periodic boundary
condition as the most appropriate for the averaged response, the prescribed
displacement boundary condition tends to overestimate the yield strength whilst
the mixed boundary condition underestimates it. These results have practical
signi®cance. In the mechanical testing of honeycombs and foams, the imposed
boundary conditions on a specimen approximate mixed boundary conditions for
the case of frictionless grips, and displacement boundary conditions for the case of
sticking grips. Such tests attempt to measure the bulk response of the foam, as
given by periodic boundary conditions. Thus, a surface e�ect on the measured
strength of the foams can be present in measurements. It is suggested that
experiments be performed with frictionless grips and sticking grips in order to
determine experimentally the in¯uence of the boundary conditions on the strength.

For a perfect honeycomb, the normalised Young's modulus (E �/E ), bulk
modulus (k �/E ), uniaxial and hydrostatic compression yield strengths (sU/sy and
sH/sy) obtained by the ®nite element method are plotted as functions of �r in Fig.
10. Here, the Young's modulus E � and bulk modulus k � are evaluated at the ®rst
increment of loading and the periodic boundary conditions (21) are applied;
identical results are obtained if the prescribed displacement boundary conditions
(19) are used. For comparison, Fig. 10 includes the known analytical solutions for
an ideal honeycomb (Gibson and Ashby, 1997), given by

E �=E � 1:49 �r3; k�=E � 0:25 �r

C. Chen et al. / J. Mech. Phys. Solids 47 (1999) 2235±2272 2255



sU=sy � 0:5 �r2; sH=sy � 0:5 �r �22�

It is seen that the ®nite element results agree closely with the analytical solutions
(22) except for the hydrostatic compression yield strength at low relative densities
(r < 0.1). This deviation can be explained by the fact that the elastic buckling
strength of a perfect honeycomb subjected to hydrostatic loading is comparable to
its hydrostatic yield strength for �r<0:1 at the chosen value sy/E=0.00191. The
coupling between elastic buckling and plastic yielding leads to a lower hydrostatic
strength than that given in (22) for plastic yielding alone. Although not shown
here, the yield surface of a perfect honeycomb has also been calculated using the
periodic boundary condition and again it is found that the ®nite element results
agree closely with the analytical predictions presented in section 2.

When the mixed boundary condition instead of periodic boundary condition is
used in the ®nite element model for a perfectly periodic honeycomb, nearly
identical results are obtained to those shown in Fig. 10 for uniaxial elastic and
plastic properties. Under hydrostatic loading, the results are sensitive to whether
the boundary cells of the ®nite element mesh are open or closed. For a mesh with
closed-cell boundaries, the ®nite element model reproduces the analytical solutions
(22); with open-cell boundaries, the cell walls of the open cells bend and crush at
premature load levels, leading to a much lower bulk sti�ness and hydrostatic yield
strength compared to the predictions of (22). The above results suggest that it is
important to apply the periodic boundary condition (21) for a mesh containing
open cells at the boundaries. Therefore, in the remainder of this paper, only
results using periodic boundary conditions will be reported.

3.1.3. Mesh sensitivity
A mesh sensitivity study has been performed by changing the total number N of

random G-Voronoi cells in the unit cell enclosed by ABCDA. For each value of
N, ®nite element calculations were performed for Voronoi diagrams generated

Table 1

E�ect of number of cells on the calculated sti�ness and strength of a G-distributed Voronoi structure

with �r � 15%a

Number of cells k �/E sH/sy E�/E sU/sy

400 (a) 0.0299 0.0268 0.00607 0.0106

400 (b) 0.0298 0.0239 0.00618 0.0103

400 (c) 0.0307 0.300 0.00587 0.0105

400 (d) 0.0304 0.0265 0.00640 0.0111

800 (a) 0.0295 0.0245 0.00619 0.0108

800 (b) 0.0287 0.0240 0.00616 0.0110

800 (c) 0.0297 0.0244 0.00573 0.0103

1200 (a) 0.0299 0.0236 0.00565 0.0105

1200 (b) 0.0301 0.0254 0.00548 0.0102

a (a), (b), (c) and (d) following the number of cells denote meshes generated with di�erent random

sets of nucleation points.
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with di�erent sets of random seeds. Table 1 compares the Young's modulus, bulk
modulus, and uniaxial and hydrostatic compression yield strengths of G-Voronoi
structures having an identical relative density, �r � 0:15, but a di�erent total
number of cells, N= 400, 800 and 1200. It is seen that fewer cells are needed to
model the elastic behaviour than the plastic response. When at least 800 random
cells are used, the variation of uniaxial and hydrostatic yield strengths is within
10% from one Voronoi realisation to the next. The ®nite element results given
below have been averaged over four random realisations of Voronoi foam with
the total number of cells ®xed at N = 800 unless otherwise stated.

3.2. E�ect of cell size distribution

As already discussed in section 3.1, the cell sizes of a random Voronoi
honeycomb created without constraining the minimum distance separating two
adjacent generation points follows the G-distribution law, consistent with the
experimentally measured cell size distribution for Alporas foams (Klocker, 1998).
If the constraint that the distance between any two random generation points is
larger than a minimum prescribed value is enforced, the resulting Voronoi
diagram has an almost uniform cell size following the d-distribution law. The
calculated Young's modulus, bulk modulus, uniaxial and hydrostatic compression
yield strengths are plotted in Fig. 10 as functions of relative density, for random
Voronoi honeycombs having either G- or d-distributed cell sizes. Results for
hexagonal honeycombs are included for comparison.

We note from Fig. 10 that the uniaxial elastic and plastic properties of random
Voronoi models are well described by those of a perfect honeycomb, regardless of
whether the cells are distributed according to the G- or d-law. Similar results for
the elastic properties of a Voronoi honeycomb having d-distributed cell sizes are
reported by Silva et al. (1995) for 2D foams and by Grenestedt and Tanaka
(1998) for 3D foams. However, Silva et al. (1995) found a 30% reduction in the
uniaxial compressive yield strength when compared to that of a perfect
honeycomb. The di�erence between the present results and those of Silva et al.
(1995) for d-Voronoi models is believed to be attributable to the di�erent
boundary conditions usedÐperiodic boundary conditions (21) are used in the
present study whereas mixed boundary conditions are used by Silva et al. (1995).
Numerical simulations were performed to check this: on employing the same
boundary conditions as those of Silva et al. (1995) we ®nd that the uniaxial
compressive strength of the d-Voronoi foam is about 30% weaker than that of the
perfect honeycomb.

The analytical solution of Gibson and Ashby (1997) is shown in Fig. 10(a). It is
obtained by assuming that the cell walls deform according to bending onlyÐthe
e�ects of stretching and shear deformation are ignored (Gibson and Ashby, 1997).
Warren and Kraynik (1987) obtained an alternative analytical solution by using
Euler±Bernoulli beam theory which includes both bending and stretching e�ects
but neglects shear deformation. As the stretching term introduces another
deformation mechanism, the honeycomb becomes more compliant, with a reduced
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Young's modulus E � (shown in Fig. 10(a) as the dashed line) compared to the
Gibson±Ashby result. The present ®nite element solutions for the regular
honeycomb correctly include all three deformations modesÐbending, stretching
and shearÐand predict the most complaint response. It is also observed from Fig.
10(a) that a d-Voronoi structure is sti�er than a regular honeycomb, implying that
randomising the microstructure does not necessarily make it more compliant.

The normalised bulk modulus k �/E and hydrostatic yield strength sH/sy are
presented in Figs. 10(b) and (d) as functions of the relative density �r obtained for
both G- and d-distributed Voronoi structures with periodic boundary conditions.
In Fig. 11, the dependence of the yield strength ratio sU/sH upon r is compared
for Voronoi models and for ideal honeycombs. For a Voronoi structure having d-
distributed cell sizes, its bulk modulus k � is only slightly lower than that of a
perfect honeycomb, but its hydrostatic yield strength sH is reduced signi®cantly.
Changing the cell size distribution from a d- to G-law increases the level of
imperfection in the cellular morphology, and leads to a further reduction in k �

and sH. Although the hydrostatic elastic and plastic properties of a perfect
honeycomb are signi®cantly reduced by the presence of random cellular structures,
the linear dependence of k � and sH on the relative density �r as seen from Figs.
10(b) and (d) suggests that these morphological imperfections do not change the
deformation mechanism from cell wall stretching to cell wall bending. This has
been veri®ed by changing the bending to stretching sti�ness ratio for the
Timoshenko beam elementsÐthe ®nite element results for the Voronoi cell models
remain unchanged if this ratio is changed by ®xing the beam stretching sti�ness
while varying its bending sti�ness, but not vice versa. Similarly, a change in the
bending strength of the cell walls gives only a negligible change in the hydrostatic

Fig. 11. Ratio of uniaxial to hydrostatic yield strength sU/sH vs relative density �r for perfect

honeycombs, G- and d-distributed Voronoi structures, and honeycombs with cell-wall misalignments

(a=0.4).
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strength of the Voronoi structures, but a change in the stretching strength results
in a proportional change in hydrostatic strength.

3.3. E�ect of cell-wall misalignments

Cell-wall misalignments are believed to play an important rule in open-celled
metallic foams having relatively regular morphological structure, e.g. Duocel
foam, manufactured by ERG. Here, we limit our study to the e�ects of cell-wall

Fig. 12. Typical ®nite element mesh for honeycombs with (a) cell-wall misalignment (a=0.2), and (b)

fractured cell walls (number fraction=1%).

C. Chen et al. / J. Mech. Phys. Solids 47 (1999) 2235±2272 2259



misalignments on the strength of hexagonal honeycombs using the ®nite element
method.

The cell-wall misalignments are introduced by displacing in random directions
the joints of a perfect hexagonal honeycomb by a constant distance al, where l is
the length of each side of the honeycomb, and the fraction a gives the magnitude
of the imperfection. Thus, the co-ordinates (xk, yk ) of a typical node are shifted to
(x 'k, y 'k), as speci®ed by

x 0k � xk � al cos y

Fig. 13. E�ect of (a) cell-wall misalignments, and (b) fractured cell walls on uniaxial and hydrostatic

yield strengths of 2D foams with �r � 0:1.
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y 0k � yk � al sin y �23�

where y is a random polar angle from the x-axis. The displaced cellular structure
for the case a=0.2 is depicted in Fig. 12(a). Notice that, even at large
misalignments (a=0.2), the cellular structure is still relatively uniform. The e�ects
of the imperfection measure a upon the uniaxial and hydrostatic compression
yield strengths are shown in Fig. 13(a) for a honeycomb of relative density
�r � 0:10. The uniaxial yield strength is relatively insensitive to cell-wall
misalignments, whereas the hydrostatic strength drops sharply with increasing a.
By varying the bending to stretching strength ratio of a beam element, it is found
that under hydrostatic stressing the deformation mechanism of cell-wall bending
dominates over cell-wall stretching as the measure of misalignment a increases.
Consequently, for a=0.4 the ratio sU/sH is nearly unity and is almost
independent of �r , as shown in Fig. 11.

3.4. E�ect of fractured cell walls

Fractured cell walls represent a common type of defects in commercial Al foams
(Evans et al., 1998). Such a defect has been considered by Silva and Gibson (1997)
who found that the random removal of some of the cell edges from a d-distributed
Voronoi honeycomb results in a sharp decrease of its uniaxial compression
strength; a mixed boundary condition was used in their ®nite element model.
Here, we explore both perfect honeycombs and G-Voronoi structures; periodic
boundary conditions are employed throughout. Fig. 12(b) displays the ®nite
element mesh of a perfect honeycomb with 1% of its cell edges removed
randomly; the fractured cell edges are marked by small arrows on the mesh.

The uniaxial and hydrostatic yield strengths and their ratio are shown in Fig.
13(b) as functions of the percentage of fractured cell walls for an initially perfect
honeycomb with �r � 0:10. The hydrostatic yield strength sH is much more
sensitive to the presence of broken cell edges than the uniaxial yield strength sU;
we note that a relatively small percentage (1%) of fractured cell walls reduces the
value of sH sharply. Consequently, the uniaxial to hydrostatic yield strength ratio
sU/sH approaches unity rapidly with increasing number of broken cell walls: the
resulting yield surface is nearly a circle in biaxial macroscopic stress space. By
varying the bending to stretching strength ratio of the beam elements, the bending
of cell walls is found to be the dominant deformation mechanism under
hydrostatic loading for perfect honeycombs with fractured cell walls. Recall that
the hydrostatic compressive behaviours of Voronoi structures and perfect
honeycombs without broken cell walls are dominated by cell-wall stretching.

The in¯uence of broken cell edges on G-Voronoi models has also been studied,
and it is found that the yield behaviour of a G-Voronoi structure with �r � 0:10 is
essentially the same as that depicted in Fig. 13(b) for a perfect honeycomb. This is
to be expected, as fractured cell walls have a much stronger knock-down e�ect
than variations in cell size on the yield strength of 2D foams. Thus, when cell size
variations co-exist with fractured cell walls in a 2D foam, the knock-down e�ect
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on hydrostatic yield strength is overwhelmed by the presence of the fractured cell
walls.

3.5. E�ect of missing cells

The ®nal type of imperfection considered is the missing cell. This is manifest in
commercial metallic foams as large holes. The e�ect of missing cells on the
Young's modulus, the elastic buckling strength and on the plastic yield strength of
regular hexagonal honeycombs has been studied by Guo et al. (1999), using mixed
boundary conditions. The buckling strength and yield strength are found to be
more sensitive to the presence of holes than the elastic modulus. Here, we focus
on the e�ects of large holes on the biaxial yield strength of perfectly periodic

Fig. 14. Finite element mesh for a perfect honeycomb with (a) 1 cell missing, and (b) 7 cells missing.
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honeycombs with or without other types of defect. Two hole sizes are considered,
1 missing cell (Fig. 14(a)) and 7 missing cells (Fig. 14(b)). The area fraction is
f = 3.1% for 1 missing cell and f= 8.5% for 7 missing cells. The initial relative
density of the honeycomb is ®xed at �r � 0:1 and periodic boundary conditions are
applied. As two or more di�erent types of imperfections are likely to co-exist in a
typical metallic foam, the combined e�ects of holes and fractured cell edges are
also studied. The calculated uniaxial and hydrostatic yield strengths as functions

Fig. 15. E�ect of the number of missing cells on uniaxial and hydrostatic yield strengths of (a) perfect

honeycomb, and (b) perfect honeycomb with 5% fractured cell edges. The initial relative density of

both honeycombs is �r � 0:1.
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of hole size are shown in Fig. 15(a) for a honeycomb without fractured cell edges
and in Fig. 15(b) for a honeycomb with 5% randomly distributed broken cell
edges. In both ®gures the results for uniaxial and hydrostatic strengths are
normalised by the values with no missing cells. Thus, in Fig. 15(b), the uniaxial
strength s 0

U and the hydrostatic strength s 0
H refer to a honeycomb with 5%

broken cell edges but no missing cells.
In the absence of other types of geometric imperfections such as broken cell

edges, Fig. 15(a) reveals that the presence of a single hole has a strong knock-
down e�ect on the hydrostatic strength of an initially perfect honeycomb and a
smaller e�ect on its uniaxial yield strength. There is only a minor e�ect of hole
size relative to the underlying hexagonal microstructure. A simple interpretation
of these ®ndings is that the presence of a hole induces bending of cell walls for
hydrostatic loading, and thereby produces a large knock-down in strength. For
the case of uniaxial compression, bending dominates the response with or without
the presence of holes, and the presence of a hole has only a minor e�ect on the
macroscopic strength.

The simultaneous e�ects of missing cells and random fractured cell edges are
such that the foam is insensitive to the presence of isolated large holes when
subjected to both uniaxial and hydrostatic loadings, see Fig. 15(b). This is in
agreement with the experimental observation of Olurin et al. (1999) and Evans
(1998) on aluminium metallic foams such as Alporas. Further studies are required
in order to explore the precise dependence of macroscopic strength upon the
volume fraction of holes and upon the size of holes relative to the underlying
microstructure. The e�ects of rigid inclusions on multi-axial strength are also left
to future study: redundancy defects in the form of solid inclusions are present in
commercial metallic foams and contribute signi®cantly to reduced strength to
density ratios. The stress-concentrating e�ects of such defects may reduce strength
in addition to increasing the mass of the foam.

Fig. 16. Elliptical yield surface of a G-distributed Voronoi structure with 5% fractured cell edges ®tted

to the ®nite element calculated stress paths in the sdÿsm space under proportional straining. The initial

relative density of the foam is �r � 0:15.
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4. Yield surface of 2D foams with imperfections

For 2D isotropic cellular solids with random microstructures, their yield
behaviours are fully characterised by two stress invariants, the mean stress sm and
the e�ective deviatoric stress sd, given by

sd �
��������������
2sabsab

p
; sm � 1

2
saa

sab � sab ÿ dabsm; a, b � 1, 2 �24�
The predicted loading paths in the sdÿsm space under proportional straining is

Fig. 17. (a) Typical elliptical yield surfaces of G-distributed Voronoi structures with and without

fractured cell edges (5%) and perfect honeycombs with and without cell-edge misalignments (a=0.4);

(b) Taylor yield surface of 2D random strut structures compared with the yield surfaces of perfect

honeycombs and G-distributed Voronoi structures with 5% fractured cell edges. The relative density of

the foams is ®xed at �r � 0:15.
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plotted in Fig. 16 for a G-distributed Voronoi structure with 5% fractured cell
edges; a ®xed relative density �r � 0:15 is assumed. We note that at least one
component of the stress goes through a maximum when the mean stress is
negative. An elliptical yield surface ®ts these limit points, as shown in Fig. 16. We
can express this yield surface by

�s ÿ YR0 �25�
where �s is an equivalent stress de®ned by

�s �
���������������������
s2d � b2s2m

q
�26�

The material constants b and Y are related to the uniaxial and hydrostatic
compressive yield strengths (sU, sH) by

b �
��������������������

4s2U
4s2H ÿ s2U

s
, Y � bsH �27�

Note that the yield condition (25) reduces to the Mises yield criterion when b=0.
Extensive ®nite element calculations have been carried out to establish the

dependence of b and Y upon �r . The following relations are found to hold

b2 � x �r , Y=sy � Z �r2 �28�
where x and Z are constants depending on the type of morphological imperfection
as well as the boundary conditions applied. (For practical applications,
experimental measurements of x and Z are recommended.) For example, for G-
distributed Voronoi honeycombs with no fractured walls and loaded by periodic
boundary conditions, we ®nd that x=1.2 and Z=0.47. Similar calculations have
been performed for a G-distributed Voronoi structure with 5% fractured cell walls
and a honeycomb with cell-wall misalignment (a=0.4), both at a ®xed relative
density of �r � 0:15. The predicted yield surfaces of these imperfect 2D foams
using (26) are presented in Fig. 17(a) and are compared with that for a perfect
honeycomb. The results shown in Fig. 17(a) reveal that the yield surfaces of 2D
foams with random imperfections are bounded by the yield surface of a perfect
honeycomb.

It is instructive to compare the yield surface given above with that predicted by
a Taylor upper bound calculation. To construct such a bound, we assume that the
2D foam comprises straight struts in all directions, with the ends of the struts
subjected to a�ne deformation. Grenestedt (1997) used such a random strut
model to study the yield surfaces of 3D model foam structures. Here, we use the
upper bound method to derive the Taylor yield surface for 2D model structures
(Appendix C). For �r � 0:15, the predicted Taylor yield surface is plotted in Fig.
17(b) and is compared with the yield surfaces of a perfect honeycomb and of a G-
distributed Voronoi structure containing 5% fractured cell edges. The nearly
circular shape of the Taylor yield surface is consistent with experimental
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measurements (Deshpande and Fleck, 1998; Gioux et al., 1998) but its size is
about an order of magnitude too large. This is to be expected, as the Taylor
surface is derived (Appendix C) with the assumption that stretching, not bending,
dominates the deformation of individual struts for all macroscopic stress states. A
perfect honeycomb yields by cell-wall stretching under hydrostatic stressing and by
cell-wall bending when subjected to uniaxial stressing, hence its yield surface
appears elongated in the sdÿsm space, with a size smaller than that of the Taylor
yield surface and larger than that of a G-distributed Voronoi structure with 5%
fractured cell edges. Under predominantly deviatoric stressing, the struts in a
perfect honeycomb undergo bending whereas the upper bound calculation assumes
stretching. The struts in an imperfect Voronoi model with 5% fractures edges
undergo bending deformation under all macroscopic stress states.

5. Concluding remarks

The e�ects of periodic imperfections (cell wall waviness and non-uniform wall
thickness) in altering the shape and size of the yield surface have been examined
analytically, using a unit cell model for periodic hexagonal honeycombs. Wavy
imperfections reduce signi®cantly the hydrostatic yield strength but have only a
minimal in¯uence on the deviatoric strength; non-uniform wall thickness, on the
other hand, reduce slightly the hydrostatic yield strength and increase slightly the
deviatoric strength.

Random imperfections, in the form of cell-size variations, fractured cell walls,
cell-wall misalignments, and missing cells, have been addressed using the ®nite
element method. Cell wall misalignments induce cell wall bending under
hydrostatic loading and lead to a large reduction of hydrostatic strength.
Similarly, the removal of some of the cell walls leads to cell wall bending and to
pronounced weakening. The e�ect of a random distribution of cell size on
strength is addressed by considering the yield surface for d- and G-Voronoi
structures: although their hydrostatic strengths are less than that of a perfect
honeycomb by a factor of 2 to 3, these microstructures are not su�ciently
dispersed in cell size to switch the deformation response from cell wall stretching
to cell wall bending under hydrostatic loading. Consequently, the hydrostatic
strength of the Voronoi models scales linearly with relative density whereas their
deviatoric strength scales quadratically with relative density. These collected ®nite
element results suggest that the yield surface of random 2D foams, when projected
onto a space of equivalent deviatoric stress and mean stress, is much less
elongated than that of regular honeycombs. The ®nite element method is also used
to study the sensitivity of the yield strength to the assumed boundary conditions.
Periodic boundary conditions give a stronger response than displacement
boundary conditions, particularly under hydrostatic loading. This suggests that
experimental measurements of the yield response of a foam may be sensitive to
edge e�ects and not give a representative measure of the bulk response.

Fractured cell edges produce the largest knock-down in yield strength of 2D
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foams, followed in order by missing cells, wavy cell edges, cell edge misalignments,
G Voronoi cells, d Voronoi cells, and non-uniform wall thickness. The nearly
circular yield surfaces predicted for honeycombs with either fractured cell edges or
cell-edge misalignments when plotted in combined deviatoric and mean stress
space are con®rmed by recent experimental observations by Deshpande and Fleck
(1998) and Gioux et al. (1998). The Taylor yield surface, although circular in
shape, is an order of magnitude larger in size than the experimental
measurements. A simple elliptical yield function with two adjustable material
parameters successfully ®ts the numerically predicted yield surfaces for the
imperfect 2D foams, and shows potential as a phenomenological constitutive law
to guide the design of structural components made of metallic foams.

Additional studies are required to assess the knock-down in strength due to
redundancy defects in the form of rigid inclusions within the foam. Such defects
are detrimental as they may reduce the strength in addition to increasing the mass
of the foam.
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Appendix A

Yielding of a wavy beam

The yield condition for a wavy beam of length l/2 and thickness t, clamped at
one end and subjected to a transverse force Q and to an axial force P at the other
end, is given below. The initial waviness is given by Eq. (11). With the assumption
that the plastic hinge appears at xc, a distance measured from the clamped end,
the axial force N and moment M at the plastic hinge are obtained as

N � P cos jc �Q sin jc

M � Q�l=2ÿ x c� � Pwc �A1�
where jc and wc are related to the unknown position xc by

jc � tan ÿ1
�
2npw0

l
cos

2npx c

l

�

wc � w0 sin

�
2npx c

l

�
�A2�
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Substituting Eq. (A1) into the yielding condition (4) results in

j Q�l=2ÿ x c� � Pwc j ÿsyb
"
t2=4ÿ �P cos jc �Q sin jc�2

�2syb�2
#
� 0 �A3�

When Q$0, xc is determined by minimising the absolute value of Q for any given
ratio of P/Q. In the limit Q4 0, the plastic hinge must appear at xc=l/(4n ),
hence

P �22syb�ÿw0 �
��������������������
w2
0 � t2=4

q
� �A4�

In the other limit when P 4 0, the plastic hinge forms at the clamped end, giving

Q �2
syb�ÿ2l�

���������������������������������������
�2l�2 � 4t2 sin2 jc

q
�

2 sin 2 jc

�A5�

where jc=tanÿ1(2npw0/l ). We assume that the beams are slender (t<<l ) and so
Eq. (A5) can be approximated as

Q �2
sybt2

4l2
�A6�

Eq. (A4) suggests that the stretching strength of the beam is strongly dependent
upon the magnitude of the wavy imperfection w0 and independent of the wave
number n, while Eq. (A6) implies that the bending strength of the beam is hardly
a�ected by the presence of wavy imperfections.

Appendix B

Yielding of a beam with non-uniform wall thickness

Consider a clamped beam of length l/2 whose thickness changes linearly from
the ®xed end to the free end. For a given set of forces P and Q, the condition
governing the formation of a plastic hinge at location xc measured from the ®xed
end, is

j Q�l=2ÿ x c� j ÿsyb�t2c=4ÿ P2=�2syb�2� � 0 �B1�
where

tc � t1 ÿ 2x c�t1 ÿ t2�=l �B2�
is the beam thickness at xc, and t1 and t2 are the thickness of the beam at the
clamped end and the free end, respectively, as de®ned by Eq. (15). When only P
or Q is imposed, xc can be determined directly. For the case Q = 0, it is
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straightforward to show from (B1) that the plastic hinge forms at the free end (i.e.
xc=0), with

P � sybt2: �B3�
When P = 0, the position of the plastic hinge depends on the ratio t1/t2 as

x c

l
�

8><>:
0, 1Rt1=t2R2

t1=t2 ÿ 2

t1=t2 ÿ 1
, 2Rt1=t2<1

�B4�

and the corresponding bending strength is given by

Q �

8>>><>>>:
sybt21
4l

, 1Rt1=t2R2

sybt2�t1 ÿ t2�
2l

, 2Rt1=t2<1
: �B5�

When both P and Q are imposed at the free end, the plastic hinge position xc
must be determined numerically from (B1). From (B3) and (B5) it is seen that, for
small geometric defects (1 R t1/t2 R 2), the Plateau border imperfection increases
the bending strength and reduces its stretching strength when compared with a
clamped cantilever beam of length l/2 and uniform thickness t=(t1+t2)/2.

Appendix C

Taylor yield surface of 2D foams

We contemplate a model foam of volume V made of random struts in 2D
space. It is assumed that the material is rigid, ideally plastic and that the
deformation of each strut is dominated by stretching with negligible bending
e�ects. The model structure is subjected to a uniform macroscopic strain rate ®eld
_e ij and, without loss of generality for the isotropic structure, the Cartesian co-
ordinate axes (x, y ) are aligned with the principal axes of strain rate. With these
assumptions, the stretching rate of an arbitrary strut oriented at angle y from the
x-axis is given by

_e � _e1 cos 2 y� _e2 sin 2 y �C1�
where _e1 and _e2 are the principal macroscopic strain rates. The rate of plastic
dissipation per unit volume of the foam is

_wp � 1

V

�
V

sy j _e j dV �C2�

where V is the volume of the foam.
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The macroscopic stress sa is given by sa � @ _wp=@ _ea�a � 1, 2� and integrating
(C2) over all directions gives

s1 � �r
2p

�2p
0

sy sign�e� cos 2 y dy

s2 � �r
2p

�2p
0

sy sign�e� cos 2 y dy �C3�

where �r is the relative density.
Explicit formulae for sa follow directly as

s1 �20:5sy �r

s2 �20:5sy �r �C4�
for _e1_e2r0, and

s1 � sy �r
2yc � sin 2yc ÿ p=2

p

s2 � sy �r
2yc ÿ sin 2yc ÿ p=2

p
�C5�

for _e1_e2<0. The angle yc is de®ned by yc � tan ÿ1� ���������������ÿ_e1=_e2
p �. The predicted Taylor

yield surface from (C4) and (C5) is plotted in the sdÿsm space in Fig. 17(b) for
the case �r � 0:15. The above analysis is similar to that given by Fleck et al. (1992)
for the yield surface of 3D metallic powders under axisymmetric loading.
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