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Abstract We present a new type of optomechanical soft
metamaterials, which is different from conventional mechan-
ical metamaterials, in that they are simple isotropic and
homogenous materials without resorting to any complex
nano/microstructures. This metamaterial is unique in the
sense that its responses to uniaxial forcing can be tailored by
programmed laser inputs to manifest different nonlinear con-
stitutive behaviors, such as monotonic, S-shape, plateau, and
non-monotonic snapping performance. To demonstrate the
novel metamaterial, a thin sheet of soft material impinged by
two counterpropagating lasers along its thickness direction
and stretched by an in-plane tensile mechanical force is con-
sidered. A theoretical model is formulated to characterize the
resulting optomechanical behavior of the thin sheet by com-
bining the nonlinear elasticity theory of soft materials and the
optical radiation stress theory. The optical radiation stresses
predicted by the proposed model are validated by simula-
tions based on the method of finite elements. Programmed
optomechanical behaviors are subsequently explored using
the validated model under different initial sheet thicknesses
and different optical inputs, and the first- and second-order
tangential stiffness of the metamaterial are used to plot
the phase diagram of its nonlinear constitutive behaviors.
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The proposed optomechanical soft metamaterial shows great
potential in biological medicine, microfluidic manipulation,
and other fields.
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1 Introduction

Metamaterials typically refer to artificial materials with
purposely designed internal structures that enable unusual
physical behaviors [1] and hence a wide range of innovative
designing. Such materials are commonly constructed with
novel geometries to realize their special properties. For elec-
tromagnetic properties, Smith et al. [2] first demonstrated a
compositemediumwith negative permittivity and permeabil-
ity both by simulation and experiment, opening a new avenue
for transformation optics. The study by Pendry [3] designed
subwavelength lenses using negative refractive index materi-
als. In theirwork, Schurig et al. [4] described thefirst practical
realization of electromagnetic cloak with the use of optical
metamaterials.

While significant advances in optical metamaterials for
constructing novel optic devices have been reported, such
concepts also inspire research on mechanical metamaterials.
Mechanical metamaterials, typically characterized by nega-
tive constants, possess fantastic properties such as negative
compressibility transitions [5], negative incremental stiffness
[6,7], negative normal stress [8], aswell as negative Poisson’s
ratio [9–12]. More recently, a new type of mechanical meta-
material was found by harnessing instabilities with a wide
variety of potential applications has beenproposed.The study
byLi et al. [13] exploited the elastic instability of shapemem-
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ory polymer sheets with an array of holes and demonstrated
color switching due to pattern transformations. In their work,
Overvelde et al. [14] designed and fabricated fluidic actuators
by harnessing snap-through instabilities, which can gener-
ate high forces and fast actuation. Their study provided a
new methodology for designing soft actuators having small
volume. Further, Singamaneni et al. [15] demonstrated that
buckling instability can be harnessed in porous elasto-plastic
solids to obtain a dramatic pattern transformation, which can
be used to design tunable photonic crystals or scaffolds for
tissue engineering. A paper by Shan et al. [16] proposed
a new class of mechanical metamaterials, containing beam
elements specially designed to enable local bistable defor-
mation to trap energy. Nonetheless, to accomplish a special
purpose, most existing mechanical metamaterials are either
designed with complicated structures or embedded with for-
eign inclusions to gain special properties, which significantly
increases difficulties in fabrication. There is thus a pressing
need to design metamaterials that can be fabricated from an
isotropic and homogenous medium such as soft material.

In this study, we create an optomechanical soft metama-
terial with programmable mechanical constitutive relation
via electromagnetic inputs. We propose a theoretical model
to investigate the optomechanical response of this soft
metamaterial and, upon tuning the electromagnetic wave
inputs, reveal phase transition of such metamaterial. This
study provides a new yet simple method for fabricating
optomechanical devices with small features and switchable
properties.

2 Theoretical model

An electromagnetic wave carries momentum flux when it
propagates through a medium from a surrounding medium,
generating optical force on the illuminated surface, which is
quite like the acoustic radiation force [17,18]. Such force can
be expressed in the formof a stress tensor, called theMaxwell
stress, which is associated with the electromagnetic field in
each medium and can be written as [19]

T = (εE ⊗ E + μH ⊗ H) − 1

2
(εE · E + μH · H) I, (1)

where E is the electric field, H is the magnetic field, I is the
identitymatrix, ε is the permittivity, andμ is the permeability.

Although the optical force is feeble, the force becomes
stronger when it comes to lasers. Equation (1) indicates that
the Maxwell stress scales with εE2 and μH2 . Since lasers
are harmonic plane waves, the two components of the elec-
tromagnetic fields (i.e., electric field and magnetic field) are
governed by εE2 = μH2 = √

εμEH [20]. Knowing that
c = 1/

√
εμ is the speed of light and EH is equal to the flux

of energy, we obtain that the magnitude of Maxwell stress
scales as P/ (cA) , P being the input power and A the cross-
sectional area of a beam of light. For typical values of lasers
such as P = 0.1 W, A = 1 μm2, and c = 3 × 108 m/s,
we find the magnitude of Maxwell stress is about 300 Pa.
Soft materials such as gels can have elastic moduli as low as
100 Pa [21,22]. As a result, theoretically speaking, Maxwell
stresses generated by lasers can induce large deformation in
soft materials. Indeed, previous experiments confirmed large
laser-induced optical forces, which can be used to manipu-
late solid particles [23–26], stretch cells [27,28], deformfluid
interfaces [29–31], and bend solid waveguides [32–37]. Fur-
ther, reversible phase transition in polymer gel was induced
by optical forces induced by lasers [38]. Therefore, laser-
induced optical forces can be harnessed to generate large
deformation in soft materials with attractive non-contact and
fast manipulation properties.

Intrinsically, the Maxwell stress determines the defor-
mation of a soft material through its time-average over an
oscillation circle of an electromagnetic wave, as

〈T〉 = 1

2
Re

[ (
εE ⊗ E∗ + μH ⊗ H∗)

− 1

2

(
εE · E∗ + μH · H∗) I

]
, (2)

where the superscript “*” represents the complex-conjugate
of the corresponding variable.

To give an intuitive sense of the optical force due to lasers,
we plot in Fig. 1 the distribution of time-averaged Maxwell
stress in both the soft material sheet and the surrounding
medium. The sheet optically mismatches with the surround-
ing medium, causing transmission and reflection of lasers at
the interfaces. The stress in the sheet differs from that out-
side, and it is such difference at material interface induces a
nonzero equivalent stress to deform the soft sheet.

Fig. 1 Distribution of time-averaged Maxwell stress in soft material
sheet (refractive index n = 1.5) and its surrounding medium (nout =
1.33)
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Fig. 2 Tensional mechanical force and two antiparallel lasers deform
a thin sheet of soft metamaterial with refractive index (n) different
from that in surrounding medium (nout). a The sheet has dimensions
(L , L , H) in reference state. b Two counterpropagating lasers impinge
the sheet in the z-direction while a tensional mechanical force f loads
the sheet in the y-direction. Under combined optical and mechanical
forces, the sheet deforms to current dimensions (l1, l2, h). c Equivalent
mechanical stresses in the sheet inducedbyMaxwell stress and tensional
mechanical force

We assume the soft material is homogenous and isotropic,
without free charge or current in it. Moreover, the soft mate-
rial is considered to be an ideal material with constant
permittivity and permeability when undergoing mechani-
cal deformation. Note that, when excited by lasers with
high enough frequencies (e.g., �1014 Hz, far exceeding the
mechanical frequencies), the soft material cannot respond
to such fast electromagnetic oscillation as a result of mate-
rial hysteresis. Thus, we can regard the stress generated by
lasers as a steady-state time-averaged stress, which can cause
steady material deformation.

With reference to Fig. 2a, consider a thin sheet of soft
material sheet with initial dimensions (L , L , H) and refrac-
tive index n immersed in an isotropic mediumwith refractive
index nout. Cartesian coordinates (x, y, z) located on sheet
midplane (z = 0) are selected. As shown in Fig. 2b, when
the sheet is loaded by a tensional mechanical force f in the
y-direction and impinged by two antiparallel lasers having
identical phase position, frequency, and amplitude, but oppo-
site propagation directions, the sheet is deformed from its
reference state of Fig. 2a to current dimensions (l1, l2, h). Let
EL = E0 exp(−ikoutz) and HL = √

εout/μE0 exp(−ikoutz)
be the left side fields,where E0 is the amplitude of the electric
field, εout = (nout)2ε0 is the permittivity of the surrounding

medium, μ is the permeability of both the soft material and
the surrounding medium, kout = noutω/c0 is the wave num-
ber of the lasers,ω is the angular frequency, and c0 is the speed
of light in vacuum. Because of the symmetry of the setup, the
right side fields are not listed. As the two fields of lasers are
symmetric with the respect to sheet midplane, the lasers gen-
erate optical forces that have opposite directions and identical
magnitude, maintaining the midplane stationery. This pro-
cess is closely linked to the Maxwell stress tensor T at the
interface, generating equivalent principal stresses (Fig. 2c)
as

t1 = −1

h

∫ h/2

−h/2
〈T1 (z)〉dz, (3)

t2 = −1

h

∫ h/2

−h/2
〈T2 (z)〉dz, (4)

t3 = 〈
T out
3 (h)

〉 − 〈T3 (h)〉 , (5)

where (〈T1〉 , 〈T2〉, and 〈T3〉) are the principal Maxwell
stresses obtained by time-averaging T over a period of
electromagnetic oscillation, i.e., 〈T〉 = (ω/2π)

∫ 2π/ω

0 Tdt .
Here, the components of the electric and magnetic field are
taken as (E1 = E0, E2 = E3 = 0) and (H2 = H0, H1 =
H3 = 0), respectively. Under such conditions, Eq. (2) indi-
cates that only the principal Maxwell stresses are nonzero

〈T1〉 = − 〈T2〉 = 1

4

(
ε |Ea|2 − μ |Ha|2

)
, (6)

〈T3〉 = −1

4

(
ε |Ea|2 + μ |Ha|2

)
, (7)

where Ea and Ha are the electric field and magnetic field
in medium “a”. Detailed expressions of the electromagnetic
field for the considered case are presented in “Appendix”.

Like many existing studies on nonlinear deformation of
soft materials, we consider only homogenous deformation
of principal stretches λ1 = l1/L , λ2 = l2/L , λ3 = h/H .
The two components (electric field and magnetic field) of
the electromagnetic field are determined by wave propaga-
tion of the two lasers, depending on key parameters such as
the refractive indexes of soft material and outside medium,
laser wavelength in soft material, and sheet thickness. Con-
sequently, the equivalent principal stresses derived on the
basis of electromagnetic field are also dependent upon these
parameters. In Fig. 3, we plot the normalized equivalent
stresses ti/(ε0E2

0) as functions of in-plane stretch λ2 for fixed
optical input of ε0E2

0/G = 1 but different initial sheet thick-
nesses: a H/Λ = 0.5, b H/Λ = 1.5, c H/Λ = 3.5, and
d H/Λ = 4.5, where Λ = 2πc0/ω is laser wavelength in
the soft material. For validation, numerical results obtained
using finite-element package COMSOL Multiphysics are
compared with the present theoretical predictions. Excel-
lent agreement between theory and simulation is achieved, as
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Fig. 3 Theoretical predictions compared with numerical simulation results of normalized equivalent stresses for fixed optical input (ε0E2
0/G = 1)

but different initial sheet thicknesses: a H/Λ = 0.5, b H/Λ = 1.5, c H/Λ = 3.5, and d H/Λ = 4.5

shown in Fig. 3. As H/Λ is increased, it is seen that the stress
versus stretch curves become considerably more undulating.

To analyze the instability behavior of the soft sheet, we
constrain its length in the x-direction. When it comes to
large deformation, the change in shape of the soft material is
much larger than its volume change. Thus, we further assume
that the soft material is incompressible so that its principal
stretches can be rewritten as λ1 = 1 and λ3 = 1/λ2. Under
such conditions, capturing the fundamental physical nature of
the optomechanical soft material becomes relatively straight-
forward, as demonstrated below.

Combining the electrodynamics of light and the nonlinear
elasticity theory of soft materials, we establish an optome-
chanical model for the proposed soft metamaterial. To this
end, we represent its elasticity by employing the Gent model
[39], as

W (F) = −GJlim
2

ln

(
1 − λ21 + λ22 + λ23 − 3

Jlim

)
, (8)

where G and Jlim are the shear modulus and extension limit
of the soft material, and F is the deformation gradient. Cor-
respondingly, the Cauchy stress is expressed as [40]

σ = F
∂W (F)

∂F
+ t − �I, (9)

where � is the Lagrange multiplier introduced to satisfy the
constraint of material incompressibility. Since the soft mate-
rial is considered incompressible, the above equation can be
rewritten as

σ1 − σ3 = λ1
∂W (λ1, λ2)

∂λ1
+ 〈T1〉 − 〈T3〉 , (10)

σ2 − σ3 = λ2
∂W (λ1, λ2)

∂λ2
+ 〈T2〉 − 〈T3〉 . (11)

In the y-direction,σ2 = f/ (l1h). Incorporating the boundary
problem conditions to Eq. (7), we get

t2 − t3 + f

l1h
= G

(
λ22 − λ23

)
1 − (

λ21 + λ22 + λ23 − 3
)
/Jlim

. (12)

Such equation can be rewritten as

F̃ =
⎡
⎣− t2 (λ2) − t3 (λ2)

G
+

(
λ22 − λ−2

2

)

1 −
(
1 + λ22 + λ−2

2 − 3
)

/Jlim

⎤
⎦ λ−1

2 ,

(13)

where F̃ = f/ (GLH) is the normalized tensional mechan-
ical force, which is a function of stretch λ2, electric field
amplitude E0 (or magnetic field amplitude H0) and initial
sheet thickness H .
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Equation (13) determines the normalized force F̃ versus
stretch λ2 relation. To analyze further the optomechanical
response of the metamaterial, we use the first- and second-
order tangential stiffness of Eq. (13) to separate its responses
under different modes, as

∂ F̃

∂λ2
= ∂ F̃

∂λ2

(
ε0E2

0

G
,
H

Λ
,λ2

)
= 0, (14)

∂2 F̃

∂λ22
= ∂2 F̃

∂λ22

(
ε0E2

0

G
,
H

Λ
,λ2

)
= 0. (15)

The stability of the current optomechanical system is
determined by Eqs. (14) and (15) by ensuring stretch λ2
has real solution within the formulary parameter space of(
ε0E2

0/G, H/Λ
)
. As illustrated in the following section,

Eq. (14) separates the S-shape region from the snapping
region while Eq. (15) distinguishes the S-shaped region from
the monotonic region.

3 Results and discussion

Figure 4a–d plots the normalized force as a function of
in-plane stretch λ2 for selected initial sheet thicknesses.

Also plotted in each force–stretch diagram is the corre-
sponding normalized equivalent stresses generated by lasers.
For plotting, the amplitude of input optical field is fixed at
ε0E2

0/G = 1 while the normalized initial sheet thickness is
varied as H/Λ = 0.5, 1.5, 3.5, 4.5. As H/Λ is increased,
the force versus stretch curve exhibits four distinct varia-
tion tendencies. (1) Monotonic morphology of Fig. 4a in
which the normalized force–stretch curve increases mono-
tonically, accompanied by a negative second-order tangential
stiffness, and nonlinear soft material deformation dominates
the variation tendency. (2) S-shape of Fig. 4b in which the
curve increases as well, but with a positive second-order
tangential stiffness when the inflexion part emerges. In this
case, the normalized equivalent stress–stretch curve becomes
non-monotonic and (t2 − t3) /

(
ε0E2

0

)
plays a minor role

in creating the inflexion. Fig. 4a, b shows that the soft
material deforms in a succession of states of equilibrium.
(3) Snapping shape of Fig. 4c where the curve goes up,
down, and then up again. The sheet is prone to snapping-
through instability, in which the tensional mechanical force
is programmed to increase slowly. When the force attains
local maximum, no state of equilibrium exists as the force
goes up further; instead, the sheet snaps to a state of equilib-
rium with a larger stretch. In this case, the snapping-through

Fig. 4 Normalized mechanical force plotted as a function of stretch for optomechanical metamaterial sheet with fixed optical input ε0E2
0/G = 1

at different initial sheet thicknesses: a H/Λ = 0.5, b H/Λ = 1.5, c H/Λ = 3.5, and d H/Λ = 4.5. As H/Λ is increased, the force–stretch
curve sequentially exhibits monotonic, S-shape, snapping, and multi-snapping morphologies. Inset plots illustrate the variation trends of normalized
optical stresses with stretch
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Fig. 5 Normalized mechanical force plotted as a function of stretch for optomechanical metamaterial sheet with a fixed initial sheet thickness of
H/Λ = 1.5 at different optical inputs: a ε0E2

0/G = 0.2, b ε0E2
0/G = 1, c ε0E2

0/G = 2, and d ε0E2
0/G = 4. With increasing input optical field,

the force–stretch curve sequentially exhibits monotonic, S-shape, snapping, and deep-snapping morphologies. Inset plots illustrate the variation
trends of normalized optical stresses with stretch

instability occurs because the first-order tangential stiffness
becomes negative and the equivalent stresses exerts a much
larger influence on snapping. (4) Multi-snapping shape of
Fig. 4d in which the curve varies non-monotonically and
exhibits multiple snapping-through instabilities, caused by
the multiple approaching of t2/

(
ε0E2

0

)
and t3/

(
ε0E2

0

)
.

Next, consider the actuation of a sheet with fixed ini-
tial thickness of H/Λ = 1.5, but varying amplitude of
optical field as ε0E2

0/G = 0.2, 1, 2, 4. The normalized
force versus stretch curves are presented in Fig. 5, with
the corresponding normalizedmechanical equivalent stresses
caused by lasers included as insets in each diagram. Since the
equivalent stresses depend on H/Λ, their variation tendency
remains unchanged as the optical field changes its amplitude.
However, the force versus stretch curves are significantly
influenced as ε0E2

0/G is changed. With increasing optic
wave input, these curves exhibit four distinct morphologies:
monotonic, S-shape, snapping, and deep snapping. That is to
say, large input optical fields tend to cause snapping-through
instability. In this regime, the soft material deforms discon-
tinuously. In sharp contrast, relatively small inputs ensure the
sheet deforms in a succession of equilibrium states. The rea-
son for such difference, as can be seen from Eq. (13), is that
a larger input optical field enhances the effect of λ−1

2 while
a smaller one weakens such effect.

Borrowing the concept of phase transition of three dif-
ferent phases in thermodynamics, we solve Eqs. (14) and
(15) by ensuring the in-plane stretch λ2 has real solution
within the parameter space of

(
ε0E2

0/G, H/Λ
)
. Different

deformation states, as well as phase diagrams of optome-
chanical responses are thence obtained, for both optically
mismatched

(
n �= nout

)
and optically matched

(
n = nout

)
cases. Equation (14) distinguishes the positive first-order tan-
gential stiffness from the negative one while Eq. (15) divides
the positive and negative second-order tangential stiffnesses.
Thus, Eqs. (14) and (15) divide the diagram into three phases,
representing different optomechanical responses: (1) mono-
tonic region, (2) S-shape region, and (3) snapping region,
with an illustrative example given as inset in each category.

As can be seen from the phase diagram presented in Fig. 6,
for a soft sheet with small initial thickness and low input opti-
cal field, its force–stretch curve tends to exhibit monotonic
shape, while for a sheet with either larger initial thickness or
input optical field, the S-shape and even snapping are readily
achieved. The S-shape curve has a positive first-order tan-
gential stiffness during actuation, while the snapping curve
has a negative first-order tangential stiffness when snapping-
through instability occurs.Between theS-shape and snapping
regimes is a boundary line, of which the first tangential stiff-
ness is zero before it becomes positive again (related to
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Fig. 6 Optomechanical phase diagrams for a thin soft metamaterial
sheet subject to a combined uniaxial mechanical force and optical force
in the parameter space

(
ε0E2

0/G, H/Λ
)
, showing different nonlinear

constitutive behaviors for both a optical mismatch case n �= nout and
b optical match case n = nout

plateau response). Helped by these phase diagrams, we can
predict the optomechanical response of the thin soft sheet
once its initial thickness and the amplitude of input optical
field are known.

4 Conclusions

We have presented a new class of optomechanical soft
metamaterials that exhibit different kinds of mechanical
responses by tailoring electromagnetic wave inputs. Under
programmed lasers, this novelmetamaterial,which is homoge-
nous and isotropic, possesses unusual mechanical properties
without resorting to embedded foreign inclusions or compli-
cated artificial architectures. Further, the optical field can be
easily modulated due to its fast and non-contact properties.
Thus, our work creates an enormous space for innovation in
conceptual design and fabrication of optomechanical devices
that are promising for a wide range of potential applica-

tions, including using light to control light, fabricating optical
circuits reconfigurable by optical forces, microfluidicmanip-
ulation platforms, etc.
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Science Foundation of China (Grant 51528501) and the Fundamental
Research Funds for Central Universities (Grant 2014qngz12).

Appendix: Electromagnetic wave propagation

With reference to Fig. 2, we consider an electromagnetic
wave with electric component E (z) = E0 exp

(−ikoutz
)

and magnetic component H (z) = H0 exp
(−ikoutz

)
that

impinges on a thin soft material sheet from its surrounding
medium, where H0 = E0/η and η = √

μ/ε is the char-
acteristic impedance of the medium. The soft material is
considered to be an ideal material with constant permittivity
and permeability when undergoing mechanical deformation.
The propagation of electromagnetic wave in a source-free
medium is governed by the Maxwell equations: ∇ × E =
−∂B/∂t,∇ × H = ∂D/∂t,∇ · D = 0,∇ · B = 0,E the
electric field, H the magnetic field, D = εE the electric flux
density, and B = μH the magnetic flux density. ε is the
permittivity and μ is the permeability of the medium. Since
the magnetic field corresponds to the electric field, the prop-
agation of electromagnetic wave can be illustrated by the
propagation of electric wave as shown in Fig. A1.

At the interface between the soft material sheet and the
surrounding medium, the electromagnetic wave must satisfy
the continuity conditions. Next consider the first interface
of Fig. A1. The corresponding continuity conditions are
n × (E2 − E1) = 0,n × (H2 − H1) = 0, where n is the

Fig. A1 Electric wave propagation through a soft material sheet as a
representative of electromagnetic wave propagation. Subscripts “+” and
“−” are related to positive- and negative-going waves, and superscript
“′ ” implies the right side of the interface
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unit vector normal to the interface and the subscripts 1 and
2 indicate the left side and the right side of the interface,
respectively. At the first interface we have

E1+ + E1− = E ′
1+ + E ′

1−,

1

η1
(E1+ − E1−) = 1

η2

(
E ′
1+ − E ′

1−
)
, (A1)

which can be written in matrix form as

[
E1+
E1−

]
= 1

τ1

[
1 ρ1
ρ1 1

] [
E ′
1+

E ′
1−

]
, (A2)

where ρ1 = (η2 − η1) / (η1 + η2) and τ1 = 2η2/ (η1 + η2)

are the elementary reflection and transmission coefficients at
the first interface. Recall that

η =
√

μ

ε
=

√
μrμ0

εrε0
=

√
μ0/ε0√

εr
= η0

n
, (A3)

where μr = 1 is the relative permeability and n = √
εrμr =√

εr is the refractive index. Thus, we obtain

ρ1 = n1 − n2
n1 + n2

, (A4)

τ1 = 2n1
n1 + n2

. (A5)

Similarly, the reflection and transmission coefficients at
the second interface are obtained as

ρ2 = n2 − n3
n2 + n3

, (A6)

τ2 = 2n2
n2 + n3

. (A7)

Using the transfer matrix method, we arrive at

[
E1+
E1−

]
= 1

τ1

[
1 ρ1
ρ1 1

] [
E ′
1+

E ′
1−

]

= 1

τ1

[
1 ρ1
ρ1 1

] [
eik2h 0
0 e−ik2h

] [
E2+
E2−

]

= 1

τ1

[
1 ρ1
ρ1 1

][
eik2h 0

0 e−ik2h
]
1

τ2

[
1 ρ2
ρ2 1

][
E ′
2+

0

]
,

(A8)

which can be rewritten as

E1+ = eik2h

τ1τ2

(
1 + ρ1ρ2e

−2ik2h
)
E ′
2+, (A9)

E1− = eik2h

τ1τ2

(
ρ1 + ρ2e

−2ik2h
)
E ′
2+. (A10)

Once E1+ is ascertained, we can calculate E1− and E ′
2+.

Upon inserting these variables into Eq. (A2), the electromag-
netic field inside the soft material is known. For simplicity,
assume themedium surrounding the left side of the softmate-
rial is the same as that surrounding its right side. It follows
that

n1 = n3 = nout, n2 = n, (A11)

k1 = k2 = kout, k2 = k. (A12)

Incorporating these equations to Eqs. (A4)–(A7), we have

ρ1 = −ρ2 = nout − n

nout + n
= ρ, (A13)

τ1 = 2nout

nout + n
, τ2 = 2n

nout + n.
(A14)

Consider the case when two counter-propagating electro-
magnetic waves with the same amplitude, frequency, and
phase position normally impinge on the soft material sheet
(Fig. 2). The corresponding electromagnetic fields can be
expressed as

Ein = 2 (1 + ρ) cos (kz)(
1 − ρ2e2ikh

)
×E0

[
e−i(kout−k)h/2 − ρe2ikhe−i(kout+k)h/2

]
, (A15)

Hin =
√

ε

μ

−2i (1 + ρ) sin (kz)(
1 − ρ2e2ikh

)
×E0

[
e−i(kout−k)h/2 − ρe2ikhe−i(kout+k)h/2

]
, (A16)

Eright = E0e
ikoutz +

(
ρ + eikh

) (
1 − ρeikh

)
(
1 − ρ2e2ikh

) E0e
−ikout(z+h),

(A17)

Hright =
√

εout

μ

[
E0e

ikoutz

+
(
ρ + eikh

) (
1 − ρeikh

)
(
1 − ρ2e2ikh

) E0e
−ikout(z+h)

]
. (A18)

Inserting the electromagnetic fields into Eq. (2), we obtain
the Maxwell stresses as

〈T1〉 in = εE2
0
(1 + ρ)2

[
1 + ρ2−2ρ cos (kh)

]
1 + ρ4 − 2ρ2 cos (2kh)

cos (2kz) ,

(A19)

〈T2〉 in = −εE2
0
(1 + ρ)2

[
1 + ρ2 − 2ρ cos (kh)

]
1 + ρ4 − 2ρ2 cos (2kh)

× cos (2kz) , (A20)

〈T3〉 in = −εE2
0
(1 + ρ)2

[
1 + ρ2 − 2ρ cos (kh)

]
1 + ρ4 − 2ρ2 cos (2kh)

, (A21)
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〈T1〉 right = εoutE2
0

×Re

[(
ρ + eikh

) (
1 − ρeikh

)
(
1 − ρ2e2ikh

) e−ikout(h+2z)

]
, (A22)

〈T2〉 right = −εoutE2
0

×Re

[(
ρ + eikh

) (
1 − ρeikh

)
(
1 − ρ2e2ikh

) e−ikout(h+2z)

]
, (A23)

〈T3〉 right = −εoutE2
0 . (A24)

These Maxwell stresses can be further homogenized as

t1 = −1

h

∫ h/2

−h/2
〈T1 (z)〉dz,

t2 = −1

h

∫ h/2

−h/2
〈T2 (z)〉dz,

t3 = 〈
T out
3 (h)

〉 − 〈T3 (h)〉 . (A25)

Once the electromagnetic fields are known, the Maxwell
stresses can be calculated by inserting the electromagnetic
fields into Eq. (2) while the equivalent Maxwell stresses are
obtained via the homogenization of Eq. (A25). Eventually,
the optomechanical response of the soft metamaterial sheet
can be analyzed by using Eq. (9) in conjunction with the
corresponding mechanical boundary conditions.
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