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The inertia force caused by an additional mass layer is usually adopted to simulate the effective mechan-
ical boundary condition in a quartz crystal microbalance (QCM), which may yield incorrect results when
the upper layer becomes relative thicker. Thus, a detail analysis of the thickness shear vibration in a QCM
for detecting the characteristics of the upper isotropic layer is proceeded based on a second-order
approximation of Taylor series. The result calculated by this method has a higher accuracy than that of
inertial-force approximation. According to these outcomes, the free and forced vibration has been illus-
trated, as well as transient effects during the switching on/off processes or under a sudden fluctuation of
the driving-voltage amplitude or frequency. It has been revealed by numerical simulation that the addi-
tional mass layer has a great influence on the mechanical performance of QCM, including the resonance
frequency, amplitudes of displacement and admittance, response time of the transient processes, and so
on. These findings can prove effective guidance for physical phenomenon explanations and experimental
measurement in mass sensor devices.

� 2015 Elsevier B.V. All rights reserved.
1. Introduction

Owning to its advantage of high sensitivity and distinguishabil-
ity, the quartz crystal microbalance (QCM) has been regarded as
very convenient to detect physical property changes of thin layers
at its surfaces, which has been widely used in many regions, such
as physics, biology, chemistry and medicine [1]. By changing the
quality of the material under test into frequency signal, QCM can
be applied to measure the properties of affiliated layer [2]. Some-
times, the resonance frequency can be reached gigahertz, with its
thickness typically in the range of some micro-meters. Hence, it
is easy to measure mass densities of the attached layer down to
a level of 1 lg/cm2 [3,4].

The frequency of oscillation, which is partially dependent on the
thickness of the mass layer, is the basic performance index of the
QCM. During the past decades, the effect of some mechanical char-
acteristics on resonance frequency of QCM have been extensively
investigated, including visco-elasticity [1], inhomogeneity of mass
layer [5], imperfection of connected interface [6], electrical admit-
tance [7], and so on. Among these explorations mentioned above,
an inertia force caused by the thin layer is usually applied for the
description of mechanical boundary condition at the upper surface
of the crystal plate [5,8,9], which replaces a detailed analysis of
mechanical and electrical coupling. Based on this simplification,
Sauerbrey’s equation provides a simple computational formula
about resonance frequency, which is proportional to the mass of
the film attached [1]. However, it has been pointed that this kind
of simplification may yield incorrect results especially when the
upper layer becomes relative thicker [10]. Both the mass and
stiffness effects must be considered during the analysis. Hence,
the present paper will introduce a second-order approximation
of Taylor series, which will be more accurate than the previous
inertial-force approximation.

On the other hand, owning to the piezoelectricity of AT-cut
crystal plate, an alternative voltage applied on its two surfaces is
usually used to excite a particular vibration mode. Another
phenomenon, transient effect [11,12], is inevitable during the exci-
tation process of QCM. For instance, the initial switching-on from
rest, followed by a sudden switching-off caused by the interruption
of incident current, fluctuations in the driving voltage or the
frequency, and thermal and mechanical shocks, and so forth. They
can disturb resonator operation evidently. There have been a few
attempts to study the transient effect on the thickness-shear vibra-
tion in quartz crystal resonators [13–15]. However, the theoretical
model mentioned above is simplified as a single infinite piezoelec-
tric plate. To the best of our knowledge, little work has been
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performed so far to discuss the transient effect in the composite
layered structures, which contains at least two different materials.
However, this is significant for the design of high-quality electronic
devices.

Synthesis above, a systematic investigation, including reso-
nance frequency solving, forced vibration analysis, and some tran-
sient responses, on the thickness shear vibration performance of
QCM is carried out in present contribution by using of a second-
order approximation of Taylor series. The dispersion equation has
been obtained from linear elastic theory, which can be reduced
to a few known elastic or quasi-static piezoelectric solutions. Based
on this equation, the effect of affiliated mass layer on some prop-
erty indices of thickness shear mode, such as resonance frequency,
displacement distribution, admittance amplitude, and transient
response time, has been revealed numerically. Finally, some con-
clusions are given.

2. Thickness-shear vibration analysis

QCM is inexpensive owning to its simple configuration. For our
purpose it is sufficient to consider an AT-cut quartz plate having a
thickness of 2h and a mass density q in Fig. 1. Meanwhile, an addi-
tional mass layer with its thickness and mass density being 2h0 and
q0 respectively is perfectly bonded on its upper surface. The origin
of coordinates is set on the middle plane of the AT-cut quartz plate
without loss of generality. Meanwhile, the alternating voltage
±Vexp(ixt) which are respectively imposed on the upper and bot-
tom surfaces of the crystal plate, i.e., x2 = ±h, are used to excite the
thickness shear vibration. Here, x is the circular frequency, t
stands for time, and i2 = �1. Generally speaking, the thickness
shear vibration may be coupled to flexure and face shear motions,
and this kind of coupling depends on the plate dimensions [16]. It
has been revealed that at certain length/thickness ratio, thickness
shear vibration can be excited independently [16]. Hereby, the dis-
placement vector u and electric potential u in the AT-cut crystal
plate can be described by

u1 ¼ u1ðx2; tÞ; u2 ¼ u3 ¼ 0; u ¼ uðx2; tÞ: ð1Þ

By virtue of constitutive and geometric relations, dynamic
equations and Maxwell’s law, the governing equations correspond-
ing to u1 and u are

c66
@2u1
@x2

2
þ e26

@2u
@x2

2
¼ q @2u1

@t2 ;

e26
@2u1
@x2

2
� e22

@2u
@x2

2
¼ 0:

8><
>: ð2Þ

where c66, e26, e22 are the elastic and piezoelectric coefficients and
dielectric permittivity, respectively. The thickness shear vibration
solution in the AT-cut quartz plate can also be expressed as [4,6,10]

u1 ¼ A1 cosðnx2Þ þ A2 sinðnx2Þ½ � expðixtÞ;
u ¼ e26

e22
A1 cosðnx2Þ þ A2 sinðnx2Þ½ � þ ðA3x2 þ A4Þ

n o
expðixtÞ:

(

ð3Þ

in which A1, A2, A3, and A4 are undetermined coefficients, and
n ¼ xffiffiffiffiffiffiffiffiffi

�c66=q
p is the wave number with the relative piezoelectric
Mass layer (ρ ′, μ ′, 2h′) 
x2

x1

x3 Quartz (ρ, c66, e26, ε22, 2h) 

Fig. 1. A quartz crystal microbalance with an additional mass layer on its surface.
stiffness �c66 ¼ c66 þ
e2

26
e22

. Hence, the corresponding stress and electric

displacement components are:

T12 ¼ f�c66n½�A1 sinðnx2Þ þ A2 cosðnx2Þ� þ e26A3g expðixtÞ;
D2 ¼ �e22A3 expðixtÞ:

�
ð4Þ

Once the thickness shear mode is excited, the mass layer will
vibrates following the plate’s motion with its displacement compo-
nents being

u01 ¼ u01ðx2; tÞ; u02 ¼ u03 ¼ 0: ð5Þ

where u0 stands for the displacement vector of the attached mass
layer. Based on Eq. (5), the stress component T 012 and equilibrium
equation can be obtained as:

T 012 ¼ l0 @u01
@x2

;
@T 012

@x2
¼ q0

@2u01
@t2 ; ð6Þ

with l0 representing elastic coefficient of the mass layer. By using of
Eq. (6), we can get the following relation

@

@x2
R ¼MR: ð7Þ

where R ¼ u01
T 012

� �
, and M ¼

0 1
l0

q0 @2

@t2 0

" #
. Furthermore,

@n

@xn
2

R ¼MnR; with n ¼ 1;2;3; . . . : ð8Þ

A quartz crystal microbalance is widely used to measure the
characteristics of an additional thin layer upon its surface by
calculating the frequency shift. Specifically, the layer is so thin
compared with the quartz plate, i.e., let 2h0 be small, that we can
expand the expression of stress T 012 at x2 = (h + 2h0) into Taylor
series at x2 = h [8,17]:

T 012ðhþ 2h0Þ ¼ T 012ðhÞ þ 2h0
@

@x2
T 012ðhÞ þ

ð2h0Þ2

2!

@2

@x2
2

T 012ðhÞ

þ ð2h0Þ3

3!

@3

@x3
2

T 012ðhÞ þ . . . ð9Þ

In present contribution, we only consider the second-order
approximation of Taylor series for simplification. Owning to the
fact that the top surface of mass layer is traction free, i.e.,
T 012ðhþ 2h0Þ ¼ 0, substituting Eq. (9) into Eq. (8) yields

1� 2ðn0h0Þ2
h i

T 012ðhÞ � 2h0q0x2u01ðhÞ ¼ 0: ð10Þ

where n0 ¼ xffiffiffiffiffiffiffiffi
l0=q0
p is the wave number of the layer. If we only con-

sider the first-order approximation in Eq. (9), i.e., the terms contain-
ing h02 should be zero, Eq. (10) can be degenerated as

T 012ðhÞ ¼ 2h0q0x2u01ðhÞ: ð11Þ

which is the boundary condition that is usually used in previous
research [1,9], i.e., only considering the inertial force caused by
the mass layer. In this paper, we will discuss the performance of
QCM based on the second-order approximation described by
Eq. (10) that is more accurate than those previous works.

The other boundary conditions at x2 = ±h requires

T12ð�hÞ ¼ 0; uð�hÞ ¼ �V : ð12Þ

T12ðhÞ ¼ T 012ðhÞ; u1ðhÞ ¼ u01ðhÞ; uðhÞ ¼ V : ð13Þ

Substituting the displacement and stress expressions, i.e.,
Eqs. (3) and (4), into the above boundary conditions, i.e.,
Eqs. (10), (12) and (13), yields four linear homogeneous algebraic
equations for coefficients A1, A2, A3, and A4:

�c66n½A1 sinðnhÞ þ A2 cosðnhÞ� þ e26A3 ¼ 0; ð14aÞ
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Fig. 2. The frequency comparison calculated by three different equations.
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½1� 2ðn0h0Þ2�f�c66n½�A1 sinðnhÞ þ A2 cosðnhÞ� þ e26A3g
� 2h0q0x2½A1 cosðnhÞ þ A2 sinðnhÞ� ¼ 0; ð14bÞ

e26

e22
½A1 cosðnhÞ þ A2 sinðnhÞ� þ A3hþ A4 ¼ V ; ð14cÞ

e26

e22
½A1 cosðnhÞ � A2 sinðnhÞ� � A3hþ A4 ¼ �V : ð14dÞ

These undermined coefficients A1, A2, A3, and A4 can be deduced
as

A1¼�
e26V
�c66

2nhR0 sinðnhÞ
D

; A2¼� cotðnhÞþ 1
nhR0

½1�2ðn0h0Þ2�
� �

A1;

A3¼�
�c66

e26
n A1 sinðnhÞþA2 cosðnhÞ½ �; A4¼�

e26

e22
cosðnhÞA1:

ð15Þ

where

D ¼ 2 sinðnhÞ 1� 2ðn0h0Þ2
h i

k2
26 sinðnhÞ � nh cosðnhÞ

h i
þ nhR0 k2

26 sinð2nhÞ � 2nh cosð2nhÞ
h i

; ð16Þ

and R0 ¼ 2h0q0
2hq ¼

l0n0
�c66n

2h0n0

2hn : D ¼ 0 yields the resonance frequency equa-
tion of thickness shear vibration in the QCM in Fig. 1 when the
upper and bottom surfaces of the crystal plate are electrically
shorted (i.e., without the initial voltage V = 0), which is related to
the free vibration of such composites.

2 sinðnhÞ 1� 2ðn0h0Þ2
h i

k2
26 sinðnhÞ � nh cosðnhÞ

h i
þ nhR0 k2

26 sinð2nhÞ � 2nh cosð2nhÞ
h i

¼ 0: ð17Þ

Supposing that there is no additional mass layer on the surface
of quartz crystal plate, i.e., h0 ¼ 0, Eq. (17) can be degenerated as

tanðnhÞ k2
26 tanðnhÞ � nh

h i
¼ 0: ð18Þ

That is just the result by Tiersten [18] and Yang et al. [10,19].
Besides, if only the inertia effect of mass layer is considered, i.e.,
the polynomial containing h02 is neglected, the frequency equation
can be abbreviated as

2k2
26

sin2ðnhÞ
cosð2nhÞ � nh tanð2nhÞ

" #
þ nhR0 k2

26 tanð2nhÞ � 2nh
h i

¼ 0:

ð19Þ

Furthermore, owning to the fact that the electro-mechanical
coupling effect of quartz crystal is weak, for example, k2

26 ¼
0:78%, we can ignore this parameter and get

l0n0
�c66n
ð2n0h0Þ þ tanð2nhÞ ¼ 0: ð20Þ

Because the additional mass layer is so thin, that the approxi-
mation of tanð2n0h0Þ � 2n0h0 can be used. Hence, the frequency
equation is equivalent to the following form:

l0n0
�c66n

tanð2n0h0Þ þ tanð2nhÞ ¼ 0; ð21Þ

which is the same as our previous work [20]. The two points above
can validate the accuracy of our theoretical derivation to a certain
extent.

3. Numerical simulations

For a numerical example, an AT-cut quartz plate with the
thickness 2h = 1 mm, elastic constant c66 = 2.901 � 1010 N/m2,
piezoelectric coefficient e26 = 0.095 C/m2, dielectric permittivity
e22 = 3.982 � 10�11 F/m, and mass density q = 2649 kg/m3 is
considered [21]. In Fig. 1, infinite wave modes can be excited by
the alternative voltage, and we mainly discuss the fundamental
thickness shear mode in the following analysis. Generally speaking,
Eq. (17) is a transcendental equation, in which the frequency can-
not be solved using an explicit expression. Hence, we have adopted
the bisection method for numerical computations [22].

3.1. Resonance frequency

Fig. 2 gives the frequency comparison of the fundamental mode
respectively calculated by second-order approximation, i.e.,
Eq. (17), first-order approximation, i.e., Eq. (19), and exact solution,
i.e., Eq. (A3) in Appendix A, with the mass density and elasticity
satisfying q0 ¼ q, and l0 ¼ c66. Meanwhile, xs ¼ p

2h

ffiffiffiffiffiffiffiffiffiffiffiffi
�c66=q

p
is intro-

duced for simplification during the following calculation. The pres-
ent application of second-order approximation is more accurate
than the pervious first-order theory, which can be seen form
Fig. 2, especially when the mass layer is beyond 2% of the quartz
plate’s thickness. Sauerbrey’s equation provides a simple formula
about the frequency shift caused by the additional thin mass layer

on the surface of crystal plate, such as Df ¼ 2f 2
0

A
ffiffiffiffiffiffiffiffiffi
qQ lQ
p Dm, which can

be used to calculate the resonance frequency of QCM. It has been
pointed out that the relationship between the resonance frequency
and thickness of mass layer is linear by using of this equation [6].
However, in fact this sort of relationship becomes nonlinear, and
with the increasing thickness of the mass layer, the tendency of
the nonlinearity becomes more and more evident. The second-
order approximation can describe this nonlinearity. Thereby,
Eq. (17) will be applied in the following discussion.

We define x0 as the resonance frequency of fundamental mode
without mass layer, which can be calculated from Eq. (18). Once
there is an additional mass layer attaching the surface of crystal
plate, the frequency will be reduced, as described in Fig. 3. It can
be seen from Fig. 3 that the thickness of mass layer 2h0 has a great
effect on the performance of QCM. For some selected mass density,
the relationship between the frequency shift (x �x0) and thick-
ness ratio is linear, such as Fig. 3(a). To the pointed, when the layer
is very thin, the effect of elastic coefficient l0 is insignificant, which
can be seen from Fig. 3(b). At the same time, the inertial force plays
a leading role in the thickness shear vibration of QCM.

Fig. 4 depicts the variation tendency of non-dimensional fre-
quency shift x�x0

x0
with the function of the mass density or elastic

coefficient of mass layer when h0/h is fixed to 3%. It can be seen
from Fig. 4(a) that the absolute value of frequency shift decreases
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rapidly when the elastic coefficient l0 increases firstly. When l0 is
bigger than 0.1c66, the fluctuation of resonance frequency is very
tiny, which also can be seen from Fig. 4(b). With the increasing
of l0, the rigidity of mass layer becomes more and more evident,
and the deformation accompanying the crystal plate gradually
fades away. This is why these curves are almost keep flat for larger
l0. Oppositely, the relationship between the frequency shift and
the mass density of additional mass layer is linear. By comparing
Figs. 3(a), 4(a) and (b), it can be concluded that the QCM is more
suitable for measuring the thickness and mass density, not the
elasticity of additional mass layer, to some extent, owning to the
linear relationship in Figs. 3(a) and 4(b).

3.2. Displacement and admittance distributions

Supposing that the external voltage V = 1 V, A1, A2, A3, and A4

can be solved by using of Eq. (15). According to the expression of
electric displacement in Eq. (4), we can get the current per unit
area at the surface [4,6]:

I ¼ �ixe22A3 expðixtÞ: ð22Þ

The first few resonances of the displacement u1 and input
admittance I/(2V) at x2 = h versus the driving frequency are shown
in Fig. 5. During the simulation in this part, the damp of quartz
crystal is introduced by c66 ¼ c66 þ ixgq [6]. Here gq stands for
damping factor, and is fixed to 10�5. The corresponding magnitude
of displacement is 17.137 lm when the structure is driven in res-
onant frequency (x = 0.967576x0) according to our results. As
expected, displacement and input admittance assume their own
maxima at resonant frequencies, thus indicating that the device
is a resonator operating at a particular frequency. However, the
magnitude of displacement or input admittance is not zero when
the driving frequency is not the resonant frequency. For instance:
when external frequency satisfies x = 0.9x0, the amplitude of
excited displacement is 2.067 nm, and if x = 0.965x0, the ampli-
tude will be 0.512 lm. It should be stressed here that the ampli-
tude of displacement and admittance of even-order mode is
smaller than that of odd-order mode. Especially in Fig. 5(b), the
second mode cannot be captured from the admittance spectrum.
In the opinion of authors, this phenomenon may be due to the fact
that the external voltage is anti-symmetric about the middle plane
of crystal plate.

The density of mass layer has a great effect on the performance
of QCM, as described in Fig. 6. Both the resonance frequency and
the peak value have changed for different mass density q0. How-
ever, the bandwidth at resonance seems to have no relationship
with it.

4. Transient effect investigation

In real applications, the external voltage cannot keep constant
all the time. Sometimes, incident current or voltage becomes insta-
ble for some reason; for instance, a sudden switching-off caused by
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the thermal and mechanical shocks, which will disturb resonator
operation [11–16]. Usually this phenomenon is named as transient
effect. Based on the frequency equation, i.e., Eq. (17), we will inves-
tigate some transient effects in the QCM in Fig. 1, including the
switching on/off processes and under a sudden fluctuation of the
driving voltage amplitude or frequency.

Considering the damp of quartz, the governing equation in the
AT-cut crystal plate can be described as [14]

�c66
@2u1

@x2
2

þ c066
@3u1

@x2
2@t
¼ q

@2u1

@t2 : ð23Þ

Where c066 ¼
c66gq

x . The initial conditions are assumed as

t ¼ 0 : u1 ¼ pðx2Þ;
@u1

@t
¼ qðx2Þ: ð24Þ

Introducing a linear transformation u1 ¼ û� e26
c66

V
2h x2, the gov-

erning Eq. (23) can be expressed as

�c66
@2û
@x2

2

þ c066
@3û
@x2

2@t
¼ q

@2û
@t2 � q

e26

c66

x2

2h
d2V

dt2 : ð25Þ

The unknown displacement can be expressed in terms of the
following trigonometric series [14]:

û ¼
X1

n¼1;3;5

TnðtÞ sinðnnx2Þ þ
X1

n¼2;4;6

TnðtÞ cosðnnx2Þ: ð26Þ
Similarly, to conveniently solve this problem, we also expand
the known linear function of x2 and the initial conditions p(x2)
and q(x2):

x2 ¼
X1

n¼1;3;5

Sn sinðnnx2Þ þ
X1

n¼2;4;6

Sn cosðnnx2Þ;

pðx2Þ ¼
X1

n¼1;3;5

Pn sinðnnx2Þ þ
X1

n¼2;4;6

Pn cosðnnx2Þ;

qðx2Þ ¼
X1

n¼1;3;5

Qn sinðnnx2Þ þ
X1

n¼2;4;6

Q n cosðnnx2Þ:

8>>>>>>>>>><
>>>>>>>>>>:

ð27Þ

The undetermined constant Sn, Pn, and Qn can be calculated by
using of orthogonality of trigonometric function, which will not
be introduced one by one. Eq. (26) can be changed further:

@2Tn

@t2 þ k02n
@Tn

@t
þ k2

nTn ¼
e26

c66

d2V

dt2

Sn

2h
: ð28Þ

Where kn ¼ nn

ffiffiffiffiffiffiffiffiffiffiffiffi
�c66=q

p
; k0n ¼ nn

ffiffiffiffiffiffiffiffiffiffiffiffi
c066=q

p
. Without loss of general-

ity, it is assumed that the inertial voltage satisfies V ¼
�iV0 expðixtÞ, with its real parts representing the physical fields.
Hereby, the solution of Eq. (28) can be obtained as

Tn ¼ C1n expðb1ntÞ þ C2n expðb2ntÞ

þ 1
ð�x2 þ ixk02n þ k2

nÞ
e26

c66

ix2V0

2h
Sn expðixtÞ: ð29Þ



Fig. 7. The amplitude fluctuation when the QCM is turned on at t = 0, and then
turned off at t = 0.15 s (h0 = 0.03h, q0 = q, and l0 = 0.5c66).

Fig. 8. The amplitude fluctuation when the driving voltage is increased from V to
V + DV at t = 0.3 s, and decreased back to V at t = 0.4 s (DV = 0.5 V, h0 = 0.03h, q0 = q,
and l0 = 0.5c66).

Fig. 9. The amplitude fluctuation when the driving frequency is increased from f to
f + Df at t = 0.3 s, and decreased back to f at t = 0.4 s (Df = 10 Hz, h0 = 0.03h, q0 = q,
and l0 = 0.5c66).

(a) h′ = 0.005h 

(b) h′ = 0.03h

(c) h′ = 0.1h

Fig. 10. The effect of thickness of mass layer on the QCM turning on (q0 = q, and
l0 = 0.5c66): (a) h0 = 0.005h; (b) h0 = 0.03h; (c) h0 = 0.1h.
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In which b1n ¼
�k02n þ

ffiffiffiffiffiffiffiffiffiffiffiffi
k04n �4k2

n

p
2 , and b2n ¼

�k02n �
ffiffiffiffiffiffiffiffiffiffiffiffi
k04n �4k2

n

p
2 . C1n and C2n are

undetermined constants, which need to be calculated by consider-
ing the initial conditions described in Eq. (24). The specific compu-
tational process has been presented by Liu et al. [14], which has
been omitted for simplification in present contribution.

Fifty terms in the series are kept in the following calculation
with twelve significant figures for the displacement field. Mean-
while, the driving frequency of the external voltage is fixed at
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x = x1, where x1 = 0.967576xs (f = 0.5x1/p) is the frequency of
fundamental thickness shear mode with h0 = 0.03h, q0 = q, and
l0 = 0.5c66. The amplitude fluctuation of displacement at x2 = h
when the QCM is turned on at t = 0, and then turned off at
t = 0.15 s with the initial conditions p(x3) = 0 and q(x3) = 0 is shown
in Fig. 7. In this case, separate theoretical solutions exist in two
time intervals of (0,0.15 s) and (0.15 s,1). The displacement and
velocity fields at the end of the first interval serve as the initial con-
ditions for the second interval. The amplitude of the displacement
starts from zero, increases monotonically, and then reaches the
steady-state vibration during the first interval. After switching
off, it will take about 0.1 s for the QCM to come to rest during
the second interval.

Another typical transient phenomenon is the sudden fluctua-
tion of external voltage or frequency. It is assumed that the QCM
is working normally; suddenly, the driving voltage is increased
from V to V + DV at t = 0.3 s, and then decreased back to V at
t = 0.4 s. Fig. 8 gives the corresponding amplitude fluctuation when
DV = 0.5 V. Besides, the effect of frequency instability with
Df = 10 Hz off the resonance is shown in Fig. 9. It can be seen from
Figs. 8 and 9 that the displacement u1 of thickness shear mode at
x2 = h is sensitive to the external voltage and frequency. The time
scale of the transient processes of amplitude drop and rise is about
0.1 s.

The thickness of additional mass layer has a great influence on
the process of switching on for the QCM, which can be seen from
Fig. 10. A QCM with a thicker mass layer on its surface will lead to
a larger displacement amplitude and longer transient response time.
5. Conclusions

In summary, a second-order approximation of Taylor series has
been used to obtain the frequency equation of thickness shear
vibration in a QCM containing an infinite AT-cut crystal plate with
an isotropic mass layer on its surface. A dispersion equation, which
can be reduced as special cases in literature to a few known elastic
or quasi-static piezoelectric wave solution, is analytically obtained
by using of continuous boundary conditions. The good convergence
and high precision of this method have been illustrated. The com-
prehensive mechanical performance of the QCM has been proceed,
including the free vibration analysis, forced vibration excitation by
external alternating voltage, and simulation of transient effect.
Some numerical examples were provided to illustrate the detailed
effect of the mass layer on the mechanical properties of QCM in
Fig. 1, which yields the following points:

(1) Comparing with detecting the elastic coefficient of addi-
tional mass layer, the QCM is more suitable for measuring
the thickness and mass density, to some extent, which is
because of the linear relationship between the frequency
shift and the change of mass density or thickness.

(2) It should be stressed here that the amplitude of displace-
ment and admittance of even-order mode is much smaller
than that of odd-order mode. Hence, the symmetric modes
are hardly excited by the external anti-symmetric alternat-
ing voltage.

(3) It will take about 0.1 s for the QCM to become stable for
encountering a turning-on, switching-off, or the sudden fluc-
tuation of external frequency and voltage. Meanwhile, a QCM
with a thicker mass layer on its surface will lead to a larger
displacement amplitude and longer transient response time
at resonance.

This approximation method applied in the present paper could
be used in the study of acoustic waves along other analogous sys-
tems with inhomogeneous materials or multilayered structure.
Therefore, a higher order approximation needs to be adopted
during the analysis, which can provide theoretical guidance in
the design of wave propagation in other piezoelectric coupled
structures.
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Appendix A

The expressions of displacement and stress in additional mass
layer can be expressed as

u01 ¼ ½A
0
1 cosðn0x2Þ þ A02 sinðn0x2Þ� expðixtÞ;

T 012 ¼ l0n0½�A01 sinðn0x2Þ þ A02 cosðn0x2Þ� expðixtÞ:

(
ðA1Þ

By using of this expression, the exact frequency equation can be
obtained in the following form:

k2
26 sinðnhÞ � nh cosðnhÞ

h i l0n0

�c66n
cosðnhÞ sinð2n0h0Þ

�

þ2 sinðnhÞ cosð2n0h0Þ
i
þ nh sin2ðnhÞ l

0n0

�c66n
sinð2n0h0Þ ¼ 0: ðA2Þ

Eq. (A2) can be written in a concise form, such as

2 tanðnhÞ þ l0n0
�c66n

tanð2n0h0Þ
� �

k2
26 tanðnhÞ � nh

h i

þ l0n0

�c66n
nh tan2ðnhÞ tanð2n0h0Þ ¼ 0: ðA3Þ

Using the relation of R0 ¼ 2h0q0
2hq ¼

l0n0
�c66n

2h0n0

2hn , Eq. (A2) can be reduced
as

k2
26 sinðnhÞ�nhcosðnhÞ

h i
2nhR0 cosðnhÞsinð2n0h0Þ

2n0h0
þ2sinðnhÞcosð2n0h0Þ

� �

þ2ðnhÞ2 sin2ðnhÞR0
sinð2n0h0Þ

2n0h0
¼0: ðA4Þ

Expanding sin(2n0h0) and cos(2n0h0) into Taylor series when the
thickness of upper layer is very thin, we can get

sinð2n0h0Þ ¼ 2n0h0 � ð2n0h0Þ3

3!
þ ð�1Þm ð2n0h0Þ2m�1

ð2m� 1Þ! þ . . . ;

cosð2n0h0Þ ¼ 1� ð2n0h0Þ2

2!
þ ð�1Þm ð2n0h0Þ2m

ð2mÞ! þ . . . : ðA5Þ

In present contribution, we only consider the second-order
approximation of Taylor series for simplification. Hence, sin(2n0h0)
and cos(2n0h0) can be replaced approximately by 2n0h0 and
[1 � 2(n0h0)2], respectively. Based on this approximation, Eq. (A4)
can be equal to

k2
26 sinðnhÞ � nh cosðnhÞ

h i
2nhR0 cosðnhÞ þ 2 sinðnhÞ 1� 2ðn0h0Þ2

h in o
þ 2ðnhÞ2 sin2ðnhÞR0 ¼ 0: ðA6Þ

In fact, Eq. (A6) is the same as Eq. (17).
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