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Abstract The anti-plane vibration of a quartz plate having an additional partial non-uniform mass layer is
solved by ignoring the effect of small c56 in comparison with other elastic constants. This analysis is based
on the trigonometric series solution, and the convergence is examined. Numerical simulation is conducted for
several different types of layers of different thicknesses using linear, cosine, and quadratic functions. The fre-
quency spectrums, in addition to the length and mass fraction of the layer, are discussed separately. Compared
with the homogeneous mass layer, the non-homogeneous layer with greater inertia leads to earlier appearance
of the higher modes and more modes trapped under the same condition. Especially, there is no energy trapping
in the plate with a fully covered uniform mass layer. However, this kind of energy trapping can be obtained
again when the surface is non-uniform for some cases.

1 Introduction

Frequency shifts in a crystal resonator or mass sensor that occurs due to a thin mass layer added to its surface
is an important issue in frequency stability analysis of crystal resonators used for time-keeping, telecommu-
nication, and sensing [1,2]. When a thin layer of another material is added to the surface of a resonator, the
resonant frequencies become lower; that this primarily occurs because of the inertia of the mass layer is the
simplest explanation (Sauerbery’s equation) [3]. This effect has been used to make mass sensors for measuring
the density and thickness of the layer [4]. For instance, quartz crystal microbalance (QCM) is used to detect
the micro-mass changes and physical properties of thin layers deposited on crystal surfaces [5,6], which have
important applications in chemical and biological sensing devices.

Due to its wide application, the study of the mechanism of operation of quartz crystal devices has drawn
increasing attention from researchers in recent years [7]. The dissipation effects of an electroded AT-cut quartz
resonator due to the intrinsic damping of the quartz plate and the surface damping of the coated electrodes
were discussed by Lu et al. [8]. The effect of position and percentage of covering area of mass absorption was
studied by the same team of researchers, and their findings were published in the literature [9]. The stiffness
effect of the mass layer was investigated by Wang [10]. Furthermore, Liu et al. [11] studied the thickness-shear
vibration of a rotated Y-cut quartz crystal plate, in which one of the surfaces was in contact with a viscous
fluid layer of finite thickness. The effect of different polarizations of the crystal plate was investigated by Du
et al. [12]. However, the research works described above pertained to the uniform mass layer.

Sauerbery’s equation gives the linear relationship between the resonance frequency shift of QCM and mass
attached on the electrode surface [3]. However, this equation and its various refinements generally assume that
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Fig. 1 An AT-cut quartz plate with a partial non-uniform mass layer

the mass is uniform and fully attached to the QCM surfaces [3,9], and it is not a good approximation in practical
application. It has been noted that Sauerbery’s equation can yield incorrect results when the mass and amplitude
of vibration distribution are not uniform, and when the mass is not attached rigidly [13]. When the mass layer
is non-uniform or partially distributed on the plate surface, the first-order perturbation integral [14,15] and
Mindlin’s two-dimensional equation [16–18] can be used to obtain the solution for thickness-shear vibration.
Another approximate solution can be obtained by dividing the mass layer into many subsidiary thinner layers
[19]. Most of the research works reported are with regard to the thickness-shear (TSh) vibration. In reality,
however, due to the finite sizes of devices, pure TSh modes cannot exist in finite crystal plates because of edge
effects [20,21]. To the best of the authors’ knowledge, there is a lack of relative systematic theoretical results
for the anti-plane vibration of crystal plate.

In this article, the anti-plane vibration of an AT-cut quartz plate having an additional partial non-uniform
mass layer is solved using the Fourier sine and cosine series solution. The results can be reduced when applied
to some special cases, such as the uniform or additional fully attached mass layer. After the convergence is
examined, some numerical simulations are carried out based on the solution, while including the frequency
shift, the mode number, and the energy-trapping phenomenon. The results reported in this article may enable
applications of anti-plane vibrations of crystal devices, for example, QCM, resonators, mass sensors and
so on.

2 The anti-plane vibration of the quartz plate and the solution

Consider a crystal mass sensor that comprises a quartz plate with an additional partial non-uniform mass layer,
which occupies the region of −b ≤ x3 ≤ b on its upper surface as shown in Fig. 1. The plate is unbounded in
the x1 direction, and only a cross-section of the plate is shown. The length of the plate is 2L and the thickness
is 2h. A thin layer of additional mass with the thickness 2h′

0 f (x3) and the mass density ρ′ is deposited on the
surface of the plate. For free vibration frequency analysis, the small piezoelectric coupling is usually not taken
into consideration and an elastic analysis is sufficient [16–21]. Anti-plane vibrations in the AT-cut quartz plate
were reported by Mindlin [7,20] and can be described as

u1 = u(x2, x3, t), u2 = u3 = 0. (1)

Therefore, in the linear theory of piezoelectricity, the corresponding stresses are [22]

T13 = c55u1,3 + c56u1,2, T12 = c56u1,3 + c66u1,2, (2)

where c is the elastic stiffness tensor, and a comma followed by subscript i denotes differentiation with respect
to xi . The governing equation of u1 is obtained by

c66u1,22 + c55u1,33 + 2c56u1,23 = ρü1, (3)

whereρ is the mass density of the crystal plate, and a dot on top of a symbol represents differentiation with regard
to time. For AT-cut quartz plates, c55 = 68.81×109N/m2, c56 = 2.53×109N/m2, and c66 = 29.01×109N/m2

[23]. The value of c56 is very small compared with c55 and c66; therefore, the usual approximation of neglecting
the small c56 is followed throughout the rest of the equations discussed in this article [21,24]. Therefore, the
governing field equation is

u1,22 + c55

c66
u1,33 = ρ

c66
ü1. (4)
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The solution of (4) can be obtained by virtue of the trigonometric function expansion technique along the
x3-axis [25]. Hereafter, exp(−iωt) is omitted for brevity.

u1 = A(0)
1 cos(η0x2) + A(0)

2 sin(η0x2) +
∞∑

m=2,4,6,...

[
A(m)

1 cos(ηm x2) + A(m)
2 sin(ηm x2)

]
cos(αm x3)

+
∞∑

m=1,3,5,...

[
A(m)

3 cos(ηm x2) + A(m)
4 sin(ηm x2)

]
sin(αm x3), (5)

where A(m)
1 , A(m)

2 , A(m)
3 and A(m)

4 are undetermined constants, and αm = mπ
2L , (m = 0, 1, 2, 3, . . .), and

T13 = 0 at x3 = ±L has been satisfied. In this equation, both the cosine series solution and the sine one are all
considered. Theoretically, the variation of the thickness of the mass layer can be arbitrary along the x3-axis in
the following discussion [25,26]. Equation (5) satisfies (4) when

η2
m = π2

4h2

[
ω2

ω2
s

− c55

c66

(
mh

L

)2
]

, (6)

where the resonant frequency of the fundamental mode in an unbounded quartz plate is given by ωs =
π
2h

√
c66/ρ [23,24]. The shear stress component, which will be used in subsequent boundary conditions, is

given as

T12 = c66η0

[
−A(0)

1 sin(η0x2) + A(0)
2 cos(η0x2)

]

+ c66

∞∑

m=2,4,6,...

ηm

[
−A(m)

1 sin(ηm x2) + A(m)
2 cos(ηm x2)

]
cos(αm x3)

+ c66

∞∑

m=1,3,5,...

ηm

[
−A(m)

3 sin(ηm x2) + A(m)
4 cos(ηm x2)

]
sin(αm x3). (7)

The boundary conditions at the top and bottom surfaces of the plate are defined by [14,15,19,27]

x2 = h : T12 =
{−ρ′ · 2h′

0 f (x3)ü1, −b ≤ x3 ≤ b

0, −L ≤ x3 ≤ −b, b ≤ x3 ≤ L

x2 = −h : T12 = 0,

(8)

where the mass layer is assumed to be very thin; therefore, only its inertial effect needs to be considered and
its stiffness effect can be neglected [27], especially for long waves [10,16–18]. In addition, the mass layer and
the quartz plate are perfectly bonded. Substitution of Eqs. (5) and (7) into the boundary conditions (8) yields
the following linear homogeneous equations:

c66η0

[
−A(0)

1 sin(η0h) + A(0)
2 cos(η0h)

]
+ c66

∞∑

m=2,4,6,...

ηm

[
−A(m)

1 sin(ηmh) + A(m)
2 cos(ηmh)

]
cos(αm x3)

+ c66

∞∑

m=1,3,5,...

ηm

[
−A(m)

3 sin(ηmh) + A(m)
4 cos(ηmh)

]
sin(αm x3)

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ρ
′
2h

′
0 f (x3)ω

2
{[

A(0)
1 cos(η0h)+ A(0)

2 sin(η0h)
]

+∑∞
m=2,4,6,...

[
A(m)

1 cos(ηmh)+ A(m)
2 sin(ηmh)

]
cos(αm x3)

+∑∞
m=1,3,5,...

[
A(m)

3 cos(ηmh)+ A(m)
4 sin(ηmh)

]
sin(αm x3)

}
, −b ≤ x3 ≤ b

0, −L ≤ x3 ≤ −b, b ≤ x3 ≤ L

(9)
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Table 1 The value of ω/ωs with truncation of the series

n 14 16 18 20 22

b = 7.5 mm 0.9740933 0.9740925 0.9740909 0.9740899 0.9740899
R0 = 3 % 0.9831757 0.9831559 0.9831453 0.9831295 0.9831295
f (x3) = 1 0.9961527 0.9961511 0.9961339 0.9961267 0.9961267

0.9729317 0.9729313 0.9729301 0.9729301 0.9729301
b = 10 mm 0.9787835 0.9787579 0.9787559 0.9787489 0.9787481
R0 = 3 % 0.9879647 0.9879625 0.9985611 0.9879487 0.9879483
f (x3) = 1 0.9986387 0.9985777 0.9879491 0.9985461 0.9985451

b = 7.5 mm
R0 = 2 % 0.9832973 0.9832969 0.9832957 0.9832951 0.9832951
f (x3) = 1 0.9913791 0.9913715 0.9913639 0.9913553 0.9913553

0.9513207 0.9513203 0.9513203 0.9513201 0.9513201
b = 7.5 mm 0.9668061 0.9667977 0.9667975 0.9667925 0.9667921
R0 = 3% 0.9839409 0.9839305 0.9839257 0.9839193 0.9839193
f (x3) = 2 − ( x3

b

)2 0.9998227 0.9996627 0.9996597 0.9996397 0.9996395

η0

[
A(0)

1 sin(η0h) + A(0)
2 cos(η0h)

]
+

∞∑

m=2,4,6,...

ηm

[
A(m)

1 sin(ηmh) + A(m)
2 cos(ηmh)

]
cos(αm x3)

+
∞∑

m=1,3,5,...

ηm

[
A(m)

3 sin(ηmh) + A(m)
4 cos(ηmh)

]
sin(αm x3) = 0. (10)

Multiplying Eqs. (9) and (10) by cos(αnx3) for n = 0, 2, 4, . . . (with α0 = 0), and sin(αnx3) for n = 1, 3, 5, . . .,
respectively, and integrating the resulting equations from −L to L , we obtain the following linear equations
for the undetermined constants:

A(0)
1 sin(η0h) + A(0)

2 cos(η0h) = 0,

c66η0

[
−A(0)

1 sin(η0h) + A(0)
2 cos(η0h)

]
· 2L = ρ′2h0ω

2
{[

A(0)
1 cos(η0h) + A(0)

2 sin(η0h)
]

· F0

+
∞∑

m=2,4,6,...

[
A(m)

1 cos(ηmh) + A(m)
2 sin(ηmh)

]
· Gm +

∞∑
m=1,3,5,...

[
A(m)

3 cos(ηmh) + A(m)
4 sin(ηmh)

]
· Hm

}
,

A(n)
1 sin(ηnh) + A(n)

2 cos(ηnh) = 0,

c66ηn

[
−A(n)

1 sin(ηnh) + A(n)
2 cos(ηnh)

]
· L = ρ′2h0ω

2
{[

A(0)
1 cos(η0h) + A(0)

2 sin(η0h)
]

· Gn

+
∞∑

m=2,4,6,...

[
A(m)

1 cos(ηmh)+ A(m)
2 sin(ηmh)

]
· Smn +

∞∑
m=1,3,5,...

[
A(m)

3 cos(ηmh)+ A(m)
4 sin(ηmh)

]
· Tmn

}
,

A(n)
3 sin(ηnh) + A(n)

4 cos(ηnh) = 0,

c66ηn

[
−A(n)

3 sin(ηnh) + A(n)
4 cos(ηnh)

]
· L = ρ′2h0ω

2
{[

A(0)
1 cos(η0h) + A(0)

2 sin(η0h)
]

· Hn

+
∞∑

m=2,4,6,...

[
A(m)

1 cos(ηmh)+ A(m)
2 sin(ηmh)

]
· Tmn +

∞∑
m=1,3,5,...

[
A(m)

3 cos(ηmh)+ A(m)
4 sin(ηmh)

]
· Qmn

}
,

(11)

where
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Fig. 2 The frequency ratio ω/ωs and the mode number N of the anti-plane vibration of quartz plate when the length of the mass
layer changes (R0 = 5 %, f (x3) = 1). a The frequency ratio ω/ωs ; b The mode number N

F0 =
b∫

−b

f (x3)dx3,

Gm =
b∫

−b

f (x3) cos(αm x3)dx3 , (m = 2, 4, 6, . . .),

Hm =
b∫

−b

f (x3) sin(αm x3)dx3 , (m = 1, 3, 5, . . .),

Smn =
b∫

−b

f (x3) cos(αm x3) cos(αnx3)dx3 , (m = 2, 4, 6, . . . , n = 2, 4, 6, . . .), (12)

Tmn =
b∫

−b

f (x3) sin(αm x3) cos(αnx3)dx3 , (m = 1, 3, 5, . . . , n = 2, 4, 6, . . .),

Qmn =
b∫

−b

f (x3) sin(αm x3) sin(αnx3)dx3 , (m = 1, 3, 5, . . . , n = 1, 3, 5, . . .).
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Fig. 3 The frequency ratio ω/ωs and the mode number N of the anti-plane vibration of quartz plate when the mass fraction of
the layer changes (b = 10.0 mm, f (x3) = 1). a The frequency ratio ω/ωs ; b The mode number N

Eliminating A(0)
2 , A(m)

2 , and A(m)
4 from Eq. (11) and introducing the factor R0 = 2ρ′h′

0
2ρh , the following equations

can be obtained with regard to A(0)
1 , A(m)

1 , and A(m)
3 :

[
ω2

ω2
s
β0 cot(2η0h)

F0

2L
+1

]
A(0)

1 +
∞∑

m=2,4,6,...

(
ω2

ω2
s
β0γ(m,0)

Gm

2L

)
A(m)

1 +
∞∑

m=1,3,5,...

(
ω2

ω2
s
β0γ(m,0)

Hm

2L

)
A(m)

3 =0

ω2

ω2
s
βnγ(0,n)

Gn

L
A(0)

1 +
∞∑

m=2,4,6,...

(
ω2

ω2
s
βnγ(m,n)

Smn

L
+δmn

)
A(m)

1 +
∞∑

m=1,3,5,...

(
ω2

ω2
s
βnγ(m,n)

Tmn

L

)
A(m)

3 = 0,

(n = 2, 4, 6, . . .)

ω2

ω2
s
βnγ(0,n)

Hn

L
A(0)

1 +
∞∑

m=2,4,6,...

(
ω2

ω2
s
βnγ(m,n)

Tmn

L

)
A(m)

1 +
∞∑

m=1,3,5,...

(
ω2

ω2
s
βnγ(m,n)

Qmn

L
+δmn

)
A(m)

3 = 0,

(n = 1, 3, 5, . . .)

(13)

in which βn = π2 R0
2hηn

, and γ(m,n) = cos(2ηm h)
2 cos(ηm h) sin(ηnh)

with m = 0, 1, 2, 3, . . . , n = 0, 1, 2, 3, . . .. For non-
trivial solutions, the determinant of the coefficient matrix has to vanish, and from this the frequency can be
obtained.
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Fig. 4 The relative displacement u1 of the first five modes of the quartz plate (b = 10.0 mm, R0 = 5 %, f (x3) = 1). a 1st mode,
ω = 0.9548103ωs ; b 2nd mode, ω = 0.9610253ωs ; c 3rd mode, ω = 0.9711165ωs ; d 4th mode, ω = 0.9845225ωs ; e 5th mode,
ω = 0.9987597ωs

If the partial non-uniform mass layer is symmetric about x2-axis, then Hm = Tmn = 0 can be obtained
from Eq. (12). Equation (13) can be reduced as

[
ω2

ω2
s
β0 cot(2η0h)

F0

2L
+ 1

]
A(0)

1 +
∞∑

m=1,2,3,...

(
ω2

ω2
s
β0γ(m,0)

Gm

2L

)
A(m)

1 = 0,

ω2

ω2
s
βnγ(0,n)

Gn

L
A(0)

1 +
∞∑

m=1,2,3,...

(
ω2

ω2
s
βnγ(m,n)

Smn

L
+ δmn

)
A(m)

1 = 0,

(14a)
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Fig. 5 The relative stress component T12 of the first five modes of the quartz plate (b = 10.0 mm, R0 = 5 %, f (x3) = 1). a
1st mode, ω = 0.9548103ωs ; b 2nd mode, ω = 0.9610253ωs ; c 3rd mode, ω = 0.9711165ωs ; d 4th mode, ω = 0.9845225ωs ;
e 5th mode, ω = 0.9987597ωs

with αm = mπ
L , (m = 0, 1, 2, 3, . . .), or

∞∑

m=1,3,5,...

(
ω2

ω2
s
βnγ(m,n)

Qmn

L
+ δmn

)
A(m)

3 = 0 (14b)

for n = 1, 3, 5, . . ..
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Fig. 6 The relative stress component T13 of the first five modes of the quartz plate (b = 10.0 mm, R0 = 5 %, f (x3) = 1). a
1st mode, ω = 0.9548103ωs ; b 2nd mode, ω = 0.9610253ωs ; c 3rd mode, ω = 0.9711165ωs ; d 4th mode, ω = 0.9845225ωs ;
e 5th mode, ω = 0.9987597ωs

Equation (14a) determines the frequencies of the symmetric waves, and Eq. (14b) is used to solve the
anti-symmetric waves. Furthermore, if the mass layer is uniform, F0 = 2b and Gm = 2L

mπ
sin(mπa

L ) can be
obtained from Eq. (12). Hence, Eq. (14a) is the same as those described in the work by Kong et al. [24]. As a
special case, if the homogeneous mass layer encompasses the whole surface of the quartz plate, that is, b = L ,
then F0 = 2L , Gm = 0, and Smn = Lδmn . Thus, Eq. (14a) can be abbreviated as
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Fig. 7 The relative displacement u1 of the first mode along x3 direction when x2 = h and f (x3) = 1. a for some selected b
(R0 = 5 %); b for some selected R0 (b = 10.0 mm)
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Fig. 8 The shapes of the non-uniform mass layer (b = 10.0 mm, R0 = 5 %)

ω2

ω2
s

· β0 + tan(2η0h) = 0, (15)

which is the same as the outcome discussed by Chen et al. [28].

3 Numerical simulation

For a numerical example, an AT-cut quartz plate with the half length L = 20 mm, the thickness 2h = 1 mm and
the mass density of ρ = 2,649 kg/m3 is considered. Generally speaking, Eq. (13) is a transcendental equation,
in which the frequency cannot be solved using an explicit expression. Hence, we have adopted the following
iterative procedure for numerical computations [29]. For an initial value of ω, we evaluate the determinant
of the coefficient matrix, presented in the left hand of Eq. (13), for various values of the unknown quantity,
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Fig. 9 The frequency ratio ω/ωs and the mode number N of the anti-plane vibration of quartz plate when the length of the mass
layer changes (R0 = 5 %, f3(x3) = 2 − ( x3

b )2). a The frequency ratio ω/ωs ; b The mode number N

and each time adding a fixed but small increment to that unknown quantity till the value of the determinant
changes its sign. Then, the “bisection method” is applied to locate the root correct to a chosen number of
decimal places.

In the following discussion, we mainly focus on energy-trapping phenomenon, that is, ωs(1−R0) < ω < ωs
for the uniform mass layer [24]. However, if the thickness is variable, the relation ωs(1 − μR0) < ω < ωs is
used for the seeking of the frequency, in which μ is selected for different variation form of mass layer.

3.1 Convergence and verification of the series

First of all, we examined the convergence and verification of the series. In practical applications, R0 is usu-
ally less than 1 % [23]. An exaggerated value of R is selected to show its numerical effects more clearly
[21,23,28]. Table 1 shows the frequencies of the mass sensor for some special cases by using the trig-
onometric function expansion method. In such cases, the corresponding frequencies converge very well,
which can be seen from this table. On the other hand, the parameter b, R0, and surface shape of the mass
layer hardly affect the convergence of the series. Therefore, all calculations below are based on calculations
using 22 terms in the series. Meanwhile, η2

m(m = 0, 1, 2, 3, . . .) is positive in this case, which reduces the
complexity of numerical simulation. When a large m is indeed needed, η2

m can be redefined with a minus
sign and the sine and cosine functions in Eq. (5) can be changed to hyperbolic sine and cosine functions,
respectively [21].

Taking the case of b = 7.5 mm, R0 = 3 %, f (x3) = 1 for example, three resonant frequencies ω1/ωs =
0.974090, ω2/ωs = 0.983130, and ω3/ωs = 0.996127 are found within ωs(1 − R0) < ω < ωs . The frequen-
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Fig. 10 The frequency ratio ω/ωs and the mode number N of the anti-plane vibration of quartz plate when the mass fraction of
the layer changes (b = 10.0 mm, f3(x3) = 2 − ( x3

b )2). a The frequency ratio ω/ωs ; b The mode number N

cies of two symmetric modes ω1 and ω3 are nearly the same as those discussed by Kong et al. [24], and this
validates the accuracy of our calculation to some extent.

3.2 The uniform mass layer

In this section, we consider the uniform mass layer, that is, f0(x3) = 1. Figures 2a and 3a show the variation pat-
tern of non-dimensional frequency ratio ω/ωs with the parameter b and R0, respectively. At this time, Figs. 2b
and 3b give the mode number curves under the same conditions, in which the quantitative values appeared
in these figures are corresponding values when the new modes appear. All these frequencies of the anti-plane
vibration initiate the unbounded quartz plate ωs and approach the value ωs(1 − R0) with the increasing b and
R0, which means the longer or thicker mass layer decreases the limit value of the frequency and makes more
modes trapped in this region. However, the minimum cannot reach ωs(1 − R0), which is because the value is
the resonant frequency of the fundamental TSh mode in an unbounded quartz plate fully covered by a uniform
mass layer at the plate top surface [23,24]. Here, the size of the plate in the x3 direction is a finite dimension,
not unbounded. In general, the frequency changes nonlinearly with b, but it is quasi-linear especially for the
larger R0. When R0 is small, this kind of nonlinearity takes notable. On the other hand, higher modes appear
periodically with the increasing of b, which can be seen from Fig. 2b. For instance, the second mode appears
at b = 2.5 mm; the third one emerges at b = 4.9 mm; the forth one takes at b = 7.3 mm, etc. The period of

b is about 2.4 mm. However, this kind of periodical character does not happen with the increasing of R0
in Fig. 3b.

Here, we choose b = 10 mm and R0 = 5 % for an instance. b is related to the length of mass layer, and R0
is corresponding to the product of mass density and thickness. There exist five trapped modes for the partial
uniform mass layer: ω1 = 0.9548103ωs, ω2 = 0.9610253ωs, ω3 = 0.9711165ωs, ω4 = 0.9845225ωs , and
ω5 = 0.9987597ωs . Figures 4, 5, and 6 show the relative displacement component u1, stress components T12
and T13 of these modes. The values of the displacement and stress components are normalized in such a way
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Fig. 11 The non-dimensional frequency shift 
ω/ωs of the first mode due to the surface shape of mass layer. a with b (R0 = 5 %);
b with R0 (b = 10.0 mm)

that the maximal displacement is equal to one [16,19,21]. Hence, the relative displacement component u1,
stress components T12 and T13 in this text are all non-dimensional numbers physically. The odds modes are
symmetric about the x2-axis, and the even modes are anti-symmetric waves for u1 and T12. For T13, it is just
opposite. In the region of |x3| > b, u1 and T13 are almost equal to zero, which is related to the energy-trapping
phenomenon. The vibration is confined to the central portion of the plate, that is, the region with the mass
layer, and essentially, there is almost no vibration in the rest of the plate. Meanwhile, T12 is also trapped in the
x2 direction, which can be seen from Fig. 5.

Figure 7 shows the effects of the parameters b and R0 on the relative displacement component u1 of the fun-
damental mode, that is, the first mode in this text, which is the usual operating mode of a resonator. The length
of the mass layer determines the region of energy distribution. Shorter mass layer makes energy trapped in the
center of the plate easily, which can be seen from Fig. 7a. Meanwhile, a larger thicker mass layer, that is, bigger
R0, makes more energy concentrate in the center region. In other words, the effect of b on the energy trapping is
more evident than that of R0 for the uniform mass layer. To the point, if the mass layer is too long, for example,
b = 19 mm, the vibration will not approach to zero even at the edge of the plate. Especially, when the quartz plate
is fully covered by a uniform mass layer, that is, b = L = 20 mm, the amplitude of vibration keeps constant
along the x3-direction at the surface of the plate, which means the energy-trapping phenomenon completely
disappears.

3.3 The effect of inhomogeneous mass layer

With the exception of the uniform thickness, the effect of the thickness on the frequencies and displacement
components when the non-uniform mass layer changes in terms of linear, cosine, and quadratic functions is
considered separately. For the uniform mass layer,
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Fig. 12 The non-dimensional frequency shift 
ω/ωs of the second mode due to the surface shape of mass layer. a with
b(R0 = 5 %); b with R0 (b = 10.0 mm)

f0(x3) = 1. (16)

Meanwhile, if the mass layer is thicker at the center than the edge,

f1(x3) =
{

2 + x3/b, −b < x3 < 0,
2 − x3/b, 0 < x3 < b,

(17a)

f2(x3) = 1 + cos
( π

2b
x3

)
, (17b)

f3(x3) = 2 −
( x3

b

)2
. (17c)

Oppositely, if the mass layer is thinner at the center than the edge,

f ′
1(x3) =

{−x3/b, −b < x3 < 0,
x3/b, 0 < x3 < b,

(18a)

f ′
2(x3) = 1 − cos

( π

2b
x3

)
, (18b)

f ′
3(x3) =

( x3

b

)2
. (18c)

The surface shape of the mass layer is shown in Fig. 8 when b = 10 mm and R0 = 5 %. In this presentation,
μ = 2 is adequate for the three non-uniform layers of Eq. (17), and for Eq. (18), μ = 1 is used to solve the
frequency. Figures 9 and 10 give the frequency ratio ω/ωs and the mode number N of the anti-plane vibration
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Fig. 13 The comparison of relative displacement u1 of the first mode along the x3 direction when x2 = h (b = 10 mm, R0 = 5 %).
a for f0(x3), f1(x3), f2(x3) and f3(x3); b for f0(x3), f ′

1(x3), f ′
2(x3) and f ′

3(x3)

of the quartz plate with the increasing of b and R0, respectively, when the mass layer changes in the quadratic
function of f3(x3). The resonance frequencies have the same variation tendency as the uniform mass layer.
The frequencies initiate the unbounded quartz plate ωs with the increasing b and R0. However, the lower limit
value of frequencies is ωs(1 − μR0), where 1 ≤ μ ≤ 2 and is related to the area of the mass layer. Besides,
there are eleven modes when b equals to L . The mode number excited in the plate with greater inertia is larger
than the uniform circumstance. Higher modes take place periodically with the increasing of b, and the period
is 
b = 1.9 mm, which is smaller than the uniform mass layer. If the mass layer is thinner at the center than
the edge, that is, f ′

3(x3), the changing variation is opposite. For example, there are only three modes excited
when b = L : ω1 = 0.9654415ωs, ω2 = 0.9899405ωs , and ω3 = 0.9900289ωs . The corresponding figures
are not listed for the sake of brevity.

The frequency shift due to the additional thickness when compared with the uniform layer can be defined
as 
ω = ω − ω f0 , where ω f0 is the frequency of the plate with the uniform mass layer and ω = ω fi or
ω = ω f ′

i
(i = 1, 2, 3) represents the frequency of the plate with the non-uniform mass layer. The non-dimen-

sional frequency 
ω/ωs of the first and second modes with b and R0 is depicted in Figs. 11 and 12, respectively.
This is different in our study from the definitions in previously published reports in the literature [3,5,15–19].
There are two reasons. Firstly, ωs remains constant across these cases, and Figs. 11 and 12 would be identical
to Figs. 2 and 3 if the same definition is applied. Secondly, we mainly focus on the frequency shift due to the
change of its thickness compared with the uniform mass layer.

From Figs. 11 and 12, it can be concluded that the frequency shifts of the first modes initiate zero for
the functions described above. However, the initial value of b and R0 are no longer null for the second
modes (in this case, the same tendency can be seen for the higher modes; therefore, only the second mode
is depicted), which is because larger b and R0 make the higher modes appear earlier, as shown in Figs. 9
and 10.
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Fig. 14 The comparison of relative displacement u1 of the first mode along x3 direction when x2 = h(b = 20 mm, R0 = 5 %).
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On the other hand, compared with the uniform mass layer, a thicker mass layer with greater inertia
lowers the resonance frequency and a thinner one increases the frequency. Taking f1(x3) and f ′

1(x3) for
example, the surface shapes are symmetric about f0(x3), but the frequency shift is not symmetric. Particu-
larly for the different lengths of the mass layer, the frequency shifts are non-monotonous. They decrease or
increase first and then turn to ascend or descend curves when the mass layer nearly covers the whole quartz
plate. However, for different R0, the frequency shifts are quasi-linear. Meanwhile, because the shapes of
the layers are nearly the same (Fig. 8), the cosine and quadratic functions have almost the same frequency
shifts.

The relative displacement component of the upper surface of the plate along the x3-axis, when b = 10.0 mm
and R0 = 5 %, is considered for different layers, as shown in Fig. 13. The energy-trapping phenomenon is
obvious for the circumstances above and is attributable to the additional partial mass layer. Especially for the
thinner mass layer at the center, the displacement of the fundamental mode is symmetric on the x2-axis, but
with two peaks.

Finally, in order to explain the reason that the frequency shifts in Figs. 11 and 12 change evidently when the
non-uniform mass layer is nearly fully attached on the surface of the plate, we give the relative displacement of
the fundamental mode along the x3-axis when b = L and R0 = 5 %. The vibration of the plate with a uniform
mass layer will keep constant under this condition, as Fig. 7a, which means no energy trapping. However, if
the center of the mass layer is thicker than the edge, energy-trapping phenomenon appears again because of
the change of surface shape of mass layer (Fig. 14a). For the mass layer with thinner thickness at the center
than the edge, the vibration reaches maximum at the edge of the plate, and the energy is concentrated at these
regions (Fig. 14b).
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4 Conclusions

The trigonometric series method, which gives good convergence and high precision, is employed for solv-
ing the problem of anti-plane vibration of a quartz plate with several types of additional partial non-uniform
mass layers on its surface, with the interface perfectly bonding. The frequency spectrums with the length and
mass fraction of mass layer are discussed separately. The energy-trapping phenomenon is displayed although
the mass layer is non-homogeneous. All the results obtained may give theoretical guidance not only for
physical phenomena explanations but also for experimental measurement of layer properties in mass sensor
devices.

In the present contribution, we discussed the anti-plane vibration of a finite quartz plate in the x3-direction,
and hence, the small coupling elastic constant c56 is neglected for simplification. Generally speaking, ignoring
the small c56 may have influence on the values of the frequencies of these trapped modes, but will not affect
the physical essence of the anti-plane vibration of a quartz plate with an additional non-uniform mass layer,
such as the modes number, frequency tendency, displacement distribution, energy trapping, and so on. Further
research concerning the effect of small c56 on the above-mentioned phenomenon for sensing applications needs
to be carried out in the future.
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