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Porous metal fiber sintered sheets (MFSSs) are a type of low density cellular materials

promising for functional and structural applications. A micromechanics random beam

model is proposed to investigate the elasto-plastic behavior of MFSSs. The relative

density dependence of the elastic constants and yield strength of MFSSs is predicted

and found to agree well with available experimental results. Fiber stretching is

identified as the dominant deformation mechanism under uniaxial and multiaxial

loading. When compared with two-dimensional Voronoi foams and honeycombs, the

stretching deformation dominated MFSSs exhibit higher stiffness and tensile strength,

but lower compressive strength due to long fiber buckling. With the developed

micromechanics model, the multiaxial elasto-plastic responses of MFSSs are simulated.

A macroscopic phenomenological constitutive model with a segmented yield function is

proposed to describe the predicted multiaxial responses. The yield function and its

evolution can be fully calibrated in terms of the uniaxial tension and compression

responses rather than complex multiaxial loading responses, which can greatly

facilitate practical applications of the model. This constitutive model is also expected

to be applicable to other fiber sintered materials with hydrostatic pressure sensitive

and asymmetric tension–compression yielding behaviors.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Cellular materials with attractive thermal, acoustic, electrical and mechanical properties are promising for a wide range
of engineering applications (Ashby et al., 2000; Banhart, 2001; Gibson and Ashby, 1997; Lu et al., 2006). Recent advances in
fiber-pullout techniques have promoted the development of a new type of cellular material -MFSSs1 (Xi et al., 2011). These
porous materials consisting of metallic fiber networks can be used as structural materials as the low density core of
sandwich panels (Clyne et al., 2005; Markaki and Clyne, 2003a,b; Zhou and Stronge, 2005), in addition to functional
materials as anodic gas diffusion backing (Liu et al., 2004), catalyst support (Qiao et al., 2008), and filtration net (Wang,
2003), among others. When used as structural components, they show an attractive combination of properties, such as
high specific stiffness and good energy absorption capacity due to the existence of long plateau stress during plastic
yielding. To fulfill the structural applications, a mutual understanding of their mechanical properties is essential. So far,
however, only limited studies are available (Qiao et al., 2009).

For the mechanical properties of generic cellular solids, extensive studies have been conducted during the past decades.
In their monograph, Gibson and Ashby (1997) provided a comprehensive study on the property characterization and
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engineering applications of a number of cellular materials, including two dimensional (2D) honeycombs and three
dimensional (3D) foams, either natural or man-made. They demonstrated that the relative density (i.e., the ratio of the
macroscopic density of a cellular material to that of its constituting solid material) is a key parameter to describe the
mechanical properties of cellular materials. Despite the success of this phenomenological study, the models established
are difficult to characterize the microstructural morphology with great complexity and experiments are usually required
to determine constitutive parameters. Alternatively, micromechanics models are also extensively applied to quantitatively
relate the microstructure constitution and macroscopically mechanical properties of porous material, albeit highly porous
materials (e.g., metal foams and MFSSs) are macroscopically homogenous but strongly heterogeneous on micro-scales. The
generation of a microscopically based macroscopic stress–strain relation from a representative volume element (RVE),
which is preferred to the full scale model due to computational limitations, is proposed by some pioneering works, only cited
a few (Hashin and Shtrikman, 1963; Hill, 1963, 1965). It is suggested that the macroscopic stress and strain could be identified
from the average values of the microscopic corresponding quantities over a RVE. The selected RVE must be periodic, i.e., the
microstructure should be periodic repetitions of the RVE and the applied displacement and traction force are periodic and
anti-periodic, respectively to meet the continuity and equilibrium between arbitrary two neighboring RVEs.

With the assistance of the finite element method (FEM), some advanced models (Bao et al., 1991; Christman et al.,
1989; Michel et al., 1999) are proposed to explore macro-mechanical responses of materials through discretization of a
RVE. Although much more complicated RVEs can be modeled, this method also suffers from a few limitations: many
porous materials such as Voronoi foams or honeycombs as well as the material investigated in present paper-MFSSs are
not microscopically periodic. To resolve this issue, the RVEs composed of a significant number of irregular cells or other
types of units are developed to explore the mechanical properties of materials with complex microstructures (Böhm et al.,
1993; Michel and Suquet, 1992; Moulinec and Suquet, 1998; Nakamura and Suresh, 1993). With the development of
computational techniques, the ratio of the RVE size to the characteristic size of microstructure (e.g., the length of the
inclusions or cells) can be significantly increased. In such cases, the computations will be less sensitive to the boundary
conditions or its influence would even vanish if the mode size is sufficiently large (Huet, 1990; Jiang et al., 2001). Many
micromechanics models of this category are developed to explore the mechanical properties of porous materials with
highly irregular microstructures (e.g., two dimensional Voronoi foam and three dimensional porous materials with highly
interconnected irregular pores) (Chen et al., 1999; Ghosh and Moorthy, 1995; Roberts and Garboczi, 2002a; Silva and
Gibson, 1997; Zhu et al., 2000). Since the irregularity of microstructure of MFSSs is much more remarkable than most of
known materials mentioned above, the size of the RVE employed should be first examined to promise that the
micromechanically obtained results could accurately represent the overall macroscopic mechanical behavior of the
materials. The ratio of the RVE size to the characteristic size of microstructure is expected to be large while the influence of
different boundary conditions is expected to be insignificant.

Both phenomenological and micromechanical approaches merged from above presented frameworks are further
applied to characterize more detailed and specific mechanical behaviors of porous materials. In order to explain the
significant discrepancy between theoretically predicted hydrostatic strength and experimental measurements, several
types of imperfection have been studied (Attia et al., 2010; Chen et al., 1999; Gan et al., 2005; Grenestedt, 1998, 1999;
Grenestedt and Bassinet, 2000; Meguid et al., 2002; Silva and Gibson, 1997) and their effects on reducing the hydrostatic
stiffness and strength in imperfect porous material were discussed. It was contended that the imperfections change the
stretching dominated deformation mechanism of cell edges into bending dominated one, resulting in significant decrease
of the hydrostatic stiffness and strength. The influence of the deformation mechanism of cell edges on the mechanical
properties of perfect metallic foams were studied (Grenestedt, 1999) to give a reference for further works on the
imperfection effect. Cell-wall waviness and non-uniform cell-wall thickness which are considered as important
imperfections for cellular foams (Chen et al., 1999; Grenestedt, 1998; Grenestedt and Bassinet, 2000) are absent in MFSSs
whilst the extent of cell size variation and cell-wall misalignment (Chen et al., 1999; Grenestedt, 1999; Silva and Gibson,
1997) are much more severe in MFSSs than in cellular metallic foams and honeycombs. The influence of spatial density
variation on the mechanical properties of metallic foams has been found to be important (Attia et al., 2010; Meguid et al.,
2002). Further, according to previous studies, cell size variation and cell-wall misalignment reduce hydrostatic strength
and stiffness of cellular foams, because such imperfections usually change the deformation mechanism of cell edges from
stretching dominated to bending dominated.

Based on the Maxwell criterion, Deshpande et al. (2001) examined the influence of the connectivity of joints on the
deformation mechanism of strut models with regular microstructures. Triangular lattices, Kagome lattices and hexagonal
honeycombs with stochastic nodal dispersion were numerically simulated and it was found that nodal connectivity plays
an important role in the sensitivity of the mechanical properties to imperfections (Symons and Fleck, 2008). It should be
noted that such regular microstructures with morphological imperfections are significantly different from the purely
random microstructures of MFSSs, as all joints in the latter have 4 struts while the cells with different shapes are
composed of unknown number of struts (edges). Thus, for MFSSs, the deformation mechanism of cell edges cannot be
simply and solely determined by the Maxwell criterion.

To describe the initial yield surface and subsequent plastic flow rules, several constitutive models of cellular materials
have been proposed. Drucker and Prager (1952) established a hydrostatic pressure sensitive model with one more
parameter than the Mises criterion for materials with different tensile and compressive strengths. In this model, the
hydrostatic pressure sensitiveness depends on the ratio of tensile strength to compressive strength, which is not suitable
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for cellular materials in which even if the tensile and compressive strengths are identical, the sensitiveness of hydrostatic
strength to yielding still exists. Based on theoretical analysis, a pressure sensitive model with identical tensile and
compressive strength was proposed by Gibson and Ashby (1997) for perfect foams. However, because morphological
imperfections are not considered in this model, the hydrostatic strength is overestimated. Zhang et al. (1997) and Miller
(2000) considered both the hydrostatic pressure sensitiveness and the difference between tensile and compressive
strengths as two independent factors and proposed a three-parameter yield function of elliptical shape in the equivalent
stress and mean stress plane. The difference between the two models lies in that the plastic flow in the work of Zhang et al.
is characterized in terms of the volumetric strain whereas that in the model proposed by Miller is governed by the uniaxial
compressive response and volumetric strain. Deshpande and Fleck (2000) proposed a constitutive model governed by
either isotropic hardening or differential hardening, with the initial yield surface characterized by the plastic Poisson ratio.
Wang and Pan (2006) proposed a non-quadratic yield function and found that it well characterizes the experimentally
measured yielding behavior of polymeric foams under multi-axial loading. Chen and Lu (2000) proposed a general
constitutive model for both incompressible and compressible materials by introducing characteristic stress and
characteristic strain and successfully applied the model to describe the multi-axial yielding behavior of metallic foams.
With the development and increasing applications of various types of porous material, several constitutive models have
also been proposed to characterize their anisotropic and visco-plastic behaviors (Alkhader and Vural, 2009, 2010; Hård af
Segerstad et al., 2008; Tsuda et al., 2010). Whilst the constitutive models mentioned as above have been proved to be
effective in predicting the mechanical behavior of porous materials (Meguid et al., 2004). Segerstad et al. (2008) developed
a constitutive model to describe the tension–compression asymmetry in two dimensional open cell foams due to the
buckling of cell edges. The buckling feature of cell edges is also observed in MFSSs, owing to the existence of long fibers.
The single-strut approach used in the model by Segerstad et al. can reduce computational cost and simplify the modeling
of the plasticity, viscoelastic and damage of the cell edges. However, MFSSs have highly irregular microstructures and
widely dispersed direction and length of the fibers, as compared to open cell metal foams. Application of the model by
Segerstad et al. has yet to be verified. Indeed, a phenomenological constitutive model that can account for the complex
behaviors and microstructures inherent in MFSSs is desirable.

Application prospect, limited existing studies, and significant differences from traditional porous materials such as
metallic foams and honeycombs call for a specific numerical simulation model to describe the mechanical behavior of
MFSSs. Such a model is proposed in the present investigation. To begin with, the methodology of constructing a random
fiber felt model is introduced; several factors in the model which may lead to unexpected influences on the simulation
results or cause errors are excluded. The model is subsequently applied to obtain the elastic constants of Young’s modulus,
bulk modulus, and Poisson ratio for various relative densities. With the large deflection effect accounted for in non-linear
plastic simulations, the predicted stress versus strain curve indicates significant difference between tension and
compression beyond the initial linear elastic regime. For selected relative densities, the initial yielding behaviors of a
MFSS are described by numerically calculating its uniaxial tensile strength, uniaxial compressive strength, hydrostatic
tensile strength, hydrostatic compressive strength as well as initial yield surface in the equivalent stress versus mean
stress plane based upon the non-linearity of its characteristic stress versus characteristic strain responses. Further, a 2D
phenomenological constitutive model is proposed to describe its plastic flow rule.

2. Simulation method

2.1. Random beam model

A random strut numerical model based on the microstructure of typical MFSSs is presented in this section, which is
significantly different from previously established 2D and 3D numerical models for porous material in terms of the cell
shape and the joint structure (Luxner and Pettermann, 2009; Luxner et al., 2009; Roberts and Garboczi, 2002b). The
numerical model is based on the microstructure of MFSS specimens used in experiments (Zhao, 2011)2. The MFSSs
consisting of sequentially overlapped 316L stainless steel fiber layers are produced by sintering in a vacuum thermal
processing furnace at �1500 1C, with properly selected external pressure applied (Xi et al., 2011). As the sintered fibers
within each layer are randomly arranged, macroscopically speaking, the MFSSs thus processed are transversely isotropic,
the plane of the layers being the isotropic plane. In the following, the direction perpendicular to the isotropic plane is
referred to as the thickness direction or the out-of-plane direction. A SEM (scanning electron microscope) image showing
the isotropic in-plane of a typical MFSS sample is presented in Fig. 1(a). The experimental results of Zhao (2011) indicate
that the in-plane stiffness and strength of the MFSSs are much higher than those in the thickness direction. In addition, the
Poisson ratio in the thickness direction is close to 0, which implies that the deformations in the isotropic plane and in the
thickness direction are approximately independent of each other. It is thus desirable to develop a 2D model to simulate the
in-plane elasto-plastic behavior of MFSSs. To this end, a 2D micromechanics random beam model is developed, with a
typical model shown in Fig. 1(b). Comparison between Fig. 1(a) and (b) reveals that the generated microstructure of the
developed random beam model is indeed very similar to that of real MFSSs. Details of the model construction are discussed
as follows.
2 Materials provided by the State Key Laboratory of Porous Metal Materials, Xi’an, PR China.
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Fig. 1. (a) The SEM image of a porous metal fiber sintered sheets with fiber diameter 8 mm and relative density 0.25; (b) typical random beam model for

porous metal fiber sintered sheets (MFSSs).

Fig. 2. Illustrations of (a) how to construct a periodic model for porous metal fiber sintered sheets and (b) how to remove exceedingly short beams in the

original model. Note that the model shown in (a) is only for the illustration purpose. The models used in simulations have much more fibers as shown in

Fig. 1(b).
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The geometrical microstructure of the random beam model is generated by overlapping randomly distributed straight
lines of length l representing the fibers in MFSSs. Although the microstructures in the model are randomly distributed, the
model itself should be periodic (i.e., repetitive in the x–y plane) to ensure its prediction to be representative of MFSSs. For a
better illustration of how the periodicy of the model is guaranteed, a model with a few of lines is shown in Fig. 2(a). A set of
randomly distributed fibers of length l and with periodicy of s in the x and y directions is first generated within a space of
size 3s�3s. The central points and directions of the fibers are randomly generated following the uniform distribution rule.
Then, a model with dimensions s� s (as denoted by the broken lines in Fig. 2(a) with l¼1.6s) can be obtained by deleting
all the segments of the lines out of the broken lines. From the corresponding pairs of nodes along opposite boundaries (e.g.,
J and J0 in Fig. 2(a)), it is easily seen that the resulting model is periodic. The effect of the fiber length l upon the predicted
mechanical properties will be discussed in Section 2.2.
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The ideal bonding (i.e., rigid connection) at the intersection joints between fibers is assumed. It is noted that
intersection of randomly overlapped fibers may produce extremely short segments, causing convergence issues during
numerical computation. To avoid this, all fibers in the model are carefully examined. Any fiber is deleted if its length is less
than one fifth of the average value, with other fibers connected to the two joints of the deleted line directly converged at
one joint. An example is shown in Fig. 1(b) as to how to remove the extremely short segments marked in Fig. 1(a) from the
micromechanics model, e.g., any fiber shorter than fiber thickness will be removed. It has been established that whilst the
deletion of these short segments has negligible influence on the predicted mechanical responses of MFSSs, it can greatly
improve the computation efficiency.

The finite element method (FEM) is employed to simulate the stress versus strain responses of the random beam model
constructed following the procedures outlined above. The fibers are meshed using Timoshenko shear deformable 2-node-
beam elements of width 12 mm, which is also the diameter of the fibers used in MFSS specimens for supporting
experiments presented later (Zhao, 2011). Large deformation option is enabled in the simulations to explore the nonlinear
yielding and buckling of the fibers. It should be pointed out that, although out of plane buckling is possible in real
materials it cannot be captured in the developed 2D models. The constituting solid material of the fibers is assumed to be
elastic perfectly plastic with Young’s modulus Es¼210 GPa, Poisson ratio v¼0.3 and yielding strength of ss¼290 MPa,
typical for 316L stainless steel. The mass density of the generated model is given by:

rr ¼ rs

t
P

l

s2
ð1Þ

where t, l and rs represent the width (unit thickness), length and mass density of the fibers, respectively. In the following
simulations, rr is varied by changing

P
l and s but fixing t and rs.

To explore the mechanical properties of MFSSs, both uniaxial and proportionally biaxial straining loadings are applied
to the random beam model. In the following sections, sx, sy ,ex and ey not only denote the macroscopic stresses and strains
in the x and y directions but also the principal stresses and strains, since only tension or compression without shearing is
imposed on the boundaries along the x or y axis. Three different boundary conditions (i.e., periodic boundary condition;
prescribed displacement boundary condition with rotation constraint, corresponding to non-zero stress couples; and
prescribed displacement boundary condition without rotation constraint, corresponding to zero stress couples) are
considered and discussed in Section 0 (Chen et al., 1999). To describe how different boundary conditions are imposed upon
the periodic structure of Fig. 1(b), we define I and J as a pair of opposite nodes on boundaries AD and BC; similarly, K and L

as a pair of opposite nodes on boundaries AB and DC. Under proportionally biaxial straining, the prescribed displacement
boundary condition without rotation constraint requires that the translation displacements uI

x (displacement of node I in x

direction), uJ
x, uK

y , and uL
y at I, J, K, L satisfy:

uI
x ¼ uK

y ¼ 0; uJ
x ¼ sex; uL

y ¼ sey ð2Þ

where ex and ey are separately the macroscopic average strains in the x and y directions. The prescribed displacement with
rotation constraint is the combination of Eq. (2) and the following Eq. (3):

yI
¼ yJ
¼ yK

¼ yL
¼ 0 ð3Þ

where yI, yJ, yK, and yL are the rotations at I, J, K, L, respectively. Periodic boundary conditions imply:

uJ
x�uI

x ¼ sex; uL
y�uK

y ¼ sey; y
J
�yI
¼ yL
�yK
¼ 0: ð4Þ

Uniaxial loading is similarly defined, with the constraint on free stress boundaries released.
The macroscopic stresses are calculated as (Chen et al., 1999):

sx ¼
1

s2

X
xJFJ

x

sy ¼
1

s2

X
yJFJ

y ð5Þ

where FJ
x and FJ

y are the reaction forces of node J, x and y are the coordinates of node J, and summation is carried over the
boundary ABCDA.

2.2. Mesh sensitivity and error analysis

Recall that the beams in the model are generated randomly and only a finite number of beams are employed due to
computation limitation. It is therefore necessary to perform mesh and model size sensitivity studies as well as error
analysis of the FEM simulation results inherent to the random structures. In this section, five factors relevant to meshing
dependence (i.e., model size, length of initial beams, different types of boundary condition, and randomness of
microstructure) that may have significant effects on the simulation results are examined.

Element size is chosen according to the relative density, which is dependent upon the length of each cell edge. From the
results of a series of preliminary models, it is found that finite elements having the size of about one second of the fiber
width are small enough to give convergent results. This criterion is applied throughout subsequent simulations.



Fig. 3. Model size dependence upon the Young’s modulus of a porous metal fiber sintered sheets with relative density of 0.20. Three different boundary

conditions (A) periodic, (B) prescribed displacement conditions without rotation constraint and (C) prescribed displacement conditions with rotation

constraint) are considered and over 20 random models are used to obtain 95% confidence intervals for each model size (c is the averaged cell size). The

results are normalized by the values obtained from no rotation boundary condition and s/c¼146.
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Because all numerical models are established randomly, their elasto-plastic responses are expected to show difference
even if they are generated using identical parameters (such as relative density, length of initial beams and model size).
Although increasing the ratio of model size to cell size can reduce and may even eliminate such variance, it would be
unacceptably computationally inefficient. Similar problems exist in other numerical simulations of porous materials
(Wicklein and Thoma, 2005). Thus, it is desirable to use an effective method to present reliable results from dispersed data
due to the randomness of the numerical models used in the present study. Here, the interval estimation method (Rice,
2007) is used to provide the estimation intervals of the mechanical properties obtained from the dispersed results of the
random models. The mechanical properties obtained from 10 to 20 random models are post-processed to assure that the
estimation of 95% confidence interval associated with the mean values is below 5% for the elastic constants and 8% for the
plastic properties.

Theoretically, the dependence of the simulation results upon model size will diminish if the model size compared to the
cell size is sufficiently large. However, according to the numerical simulations of Chen et al. (1999), the necessary size to
give convergent results for MFSSs is much larger due to the irregularity of their microstructures. Their results suggest that
when the ratio of model size to averaged cell size reaches 20, the size effect is negligible for Alporas aluminum foams.
Here, we simulate several groups of models and post-process the results with the interval estimation method to find the
size required for convergence. Fig. 3 shows the simulated Young’s modulus as a function of the normalized model size (s/c)
for three different boundary conditions, where c is the averaged cell size defined by c2

¼s2/Nc, with Nc being the total
number of cells within the model. Such a definition of the averaged cell size c is based upon the assumption of an
equivalent regular square honeycomb with the same number of cells, cell wall thickness, and relative density. The cell edge
length of the equivalent square honeycomb is adopted to be the averaged cell size c of the random beam model. It is found
that the Young’s modulus does not change as the model size exceeds 140 times the averaged cell size c. Such a big model
size in order to ensure numerical convergence is due to significant cell shape and size variance in MFSSs as compared to
Voronoi foams, which also increases the deviation of simulation results. The results of Fig. 3 also demonstrate that the
model size used in this paper (140 times the averaged cell size) is big enough to reduce the boundary effects to a negligible
scale (e.g., the difference in the converged results for different boundary conditions less than 5%). Since the model size is
given in terms of averaged cell size, for lower relative density, larger model size should be employed due to increasing of
averaged cell size. Note that the prescribed displacement conditions without rotation constraints, compared to the
periodic boundary conditions are usually closer to the loading conditions (e.g., uniaxial loading) in most experiments and
are easier to be implemented into the random beam models. Therefore, although Chen et al. (1999) showed that periodic
boundary conditions are more appropriate for Voronoi foam models, the prescribed displacement boundary conditions
without rotation constraint are employed in the following random beam model simulations. In addition, the effect of the
fiber length l upon the predicted mechanical properties is explored and is found that, when the fiber length (l) in the
numerical models is as large as about 220 times the averaged cell size c, convergence of the numerical results is
guaranteed. It is also noted that the length of fibers used in experiments (Zhao, 2011) are much longer than the convergent
length estimated above and are found have little influence on measured results. The geometrical models for all FEM
simulations in the following sections are generated according to the parameters discussed above.

3. Numerical results

3.1. Elastic constants

Fig. 4 presents the numerically simulated stress versus strain responses of MFSSs subject to uniaxial loading and biaxial
loading of proportional straining ex:ey¼1:1, �1:�1, and 1:�1 (i.e., corresponding to equi-biaxial tension, equi-biaxial
compression and deviatoric straining loading). These curves exhibit typical features of elasto-plastic responses: a linear



Fig. 4. Simulated stress normalized by the yield strength of the fibers versus strain responses of a porous metal fiber sintered sheets with relative density of

0.15 under (a) uniaxial tension and compression, (b) deviatoric strain loading, and (c) equi-biaxial tension (stx/ss,sty/ss) and compression (scx/ss,scy/ss).
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elastic regime followed by non-linear stress hardening under tension whereas lower yielding stress and subsequent slight
softening under compression. The lower compressive strength than tensile strength is related to the non-linear buckling
effect under compression when large-deflection effects are considered. The elastic constants (i.e., Young’s modulus, bulk
modulus and Poisson ratio) of MFSSs are calculated from the predicted stress versus strain curves and their dependence
upon the relative density is shown in Fig. 5. It is seen that both the Young’s modulus and bulk modulus depend almost
linearly upon the relative density. Curve fittings give the following approximate relationships:

En

Es
¼ 0:259rr ð6Þ

kn

Es
¼ 0:183rr ð7Þ

where En/Es is the macroscopic Young’s modulus of MFSSs normalized by that of the solid cell edges (beams), k*/Es is the
normalized bulk modulus and rr is the relative density. The experimentally measured in-plane Young’s modulus in
Fig. 5(a) are taken from Zhao (2011). The present model predictions agree very well with experimental measurements
though the simulation results are slightly larger: this may be attributed to the fact that various morphological
imperfections of the test specimens are not included in the random beam model. As for the Poisson ratio, it is seen
from Fig. 5(b) that the prediction is close to 0.3 (between 0.24 and 0.32) for relative density ranging from 0.05 to 0.25. We
note from Zhao (2011) that the measured in-plane Poisson’s ratio of a MFSS with rr¼23% is 0.23. Again, good agreement



Fig. 5. Dependence of (a) Young’s modulus and (b) bulk modulus and Poisson ratio of porous metal fiber sintered sheets compared with the Young’s

modulus and bulk modulus of G-distributed Voronoi 2D foam without imperfections and honeycomb with a¼40% (representing significant cell edge

misalignment) from numerical simulations(Chen et al., 1999). Predicted data points are marked by symbols, with lines used for eye guide only.
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between model prediction and experimental result is achieved. The results for Voronoi 2D foams and honeycombs (Chen
et al., 1999) are also included in Fig. 5. The normalized Young’s modulus of the MFSSs is significantly higher than that of
either G-distributed Voronoi 2D foams without imperfections or honeycombs with a¼40% (indicating significant cell edge
misalignment). In comparison, the normalized bulk modulus of the MFSSs is similar to that of G-distributed Voronoi 2D
foams without imperfections.
3.2. Yield strength

Traditionally, the yielding of a material is defined according to the von Mises equivalent stress versus strain curve.
However this method is not suitable for hydrostatic sensitive materials subject to hydrostatic loading in which the Mises
equivalent stress is zero. Another commonly used mean stress versus volumetric strain curve cannot be used universally
either (e.g., it is not applicable to pure shear loading). On the contrary, the characteristic strain e and stress s (Chen and Lu,
2000) are able to provide a consistent ways to define yielding under various loading conditions (e.g., uniaxial, equi-biaxial
static, pure shear, etc.). The definition of yielding is then based on the plastic portion of the characteristic strain. Following
Chen and Lu (2000), the characteristic stress and strain,s and e, are expressed as:

s2
¼ s2

eþb
2s2

m

e2
¼ e2

eþ
e2

v

b2
ð8Þ



Fig. 6. Simulated characteristic stress normalized by the yield strength of the fibers versus strain responses of a porous metal fiber sintered sheets with

relative density of 0.15 subjected to uniaxial tension (A), uniaxial compression (B), equi-biaxial tension (C), equi-biaxial compression (D) and deviatoric

loading with ex:ey¼1:�1 (E).

M.Z. Jin et al. / J. Mech. Phys. Solids 61 (2013) 161–174 169
where

se ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsx�syÞ

2
q

sm ¼
sx þsy

2

ee ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
4 ðex�eyÞ

2
q

ev ¼ ðexþeyÞ

ð9Þ

Notice that the definition (8) can be extended to anisotropic materials (Alkhader and Vural, 2009).
In the elastic regime, the relationship between e and s satisfies:

s¼ Ece ð10Þ

where

b¼ 2

ffiffiffiffiffiffiffiffiffiffiffi
1�v

1þv

r

Ec ¼
2E

1þv
ð11Þ

With Eq. (8), the predicted stress–strain curves for several different loadings are re-plotted in terms of their normalized
corresponding characteristic stress and strain; see Fig. 6. It is seen that the yielding of the MFSSs can be defined
consistently by introducing the 2D characteristic strain e and stress s. The results of Fig. 6 show that all curves collapse
onto a master curve in the elastic regime and comply with Eq. (10) while they differ from each other in the plastic regime.
The plastic portion of the characteristic strain is given by:

ep ¼ e�
s
Ec

ð12Þ

Once ep reaches the prescribed offset value, the yielding is defined. The characteristic stress versus characteristic strain
curves are then used to define the yield strength, initial yield surface, and its subsequent evolution.

Even though the solid material constituting the MFSSs is modeled as elastic-perfect-plastic, strain hardening effect of
the MFSSs is remarkable in tension due to their serious cell size and cell shape variance (see Fig. 4). It is thus not surprising
that different yield strengths will be obtained if different offset values are used to define yielding. The sensitivity of yield
strength and yield surface upon selected offset values of strain might bring troubles in the comparison of results, such as
0.3% (Deshpande and Fleck, 2000), 0.1% (Wicklein and Thoma, 2005) and the traditional value for solid material (0.2%) in
experimental studies as well as 0.01% (Alkhader and Vural, 2009) chosen for theoretical studies. Usually, it is preferable to
use relatively larger offset values in experimental studies and smaller values in numerical simulations or theoretical
analyses. In present paper, the offset value of 0.02% is adopted.

According to the definition presented above, the yield strength versus relative density curves of the MFSSs are obtained
and presented in Fig. 7. For comparison, the experimental results on the uniaxial tensile strength of the MFSSs (Zhao, 2011)
are also shown Fig. 7(a). The predicted results are slightly lower than the experimental ones, which is mainly attributed to
the larger offset strain value (0.2%) employed in the experimental study (Zhao, 2011) than that used in the present
theoretical investigation (0.02%). Nevertheless, the overall agreement between theory and experiment is very good. Recall
that the considered MFSSs are transverse isotropic and their deformations in the isotropic plane and in the thickness
direction are approximately independent of each other. A 2D model is believed to be adequate for their in plane behaviors.
It is seen from Fig. 1 that the developed 2D random beam models are very similar to the in plane microstructures of MFSSs.
With proper material parameters and boundary conditions employed, it is thus not too surprising that a good agreement is
achieved between the model predictions and available experimental results for the in plane stiffness, Poisson’s ratio and
yield strength (as shown in Figs. 5 and 7).



Fig. 7. Normalized (a) uniaxial strength and (b) equi-biaxial strength of porous metal fiber sintered sheets plotted as functions of relative density.

For comparison, the results for G-distributed Voronoi 2D foam without imperfections and honeycomb with a¼40% (representing significant cell edge

misalignment) from numerical simulations (Chen et al., 1999) are also included. Predicted data points are marked by symbols, with lines used for eye

guide only.
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With reference to Fig. 7, the curve fitted results are given as follows:

sut

ss
¼ 0:163rr ð13Þ

suc

ss
¼ 2:6246� 10�3rrþ4:6555� 10�1r2

r ð14Þ

sbt

ss
¼ 0:161rr ð15Þ

sbc

ss
¼�7:5454� 10�4rrþ4:7376� 10�1r2

r ð16Þ

where sut, suc, sbt, sbc are the uniaxial tensile strength, uniaxial compressive strength, equi-biaxial tensile strength and
equi-biaxial compressive strength, respectively. Similar to the elastic constants, the uniaxial and equi-biaxial tensile
strengths increase linearly with the relative density whereas the compressive strengths are higher order functions of the
relative density.

For different loading cases, it is now widely accepted that the mechanical properties of porous materials are dictated by
their microstructures via the deformation mechanisms of cell ligaments/edges. In the numerical simulations, the
deformation mechanisms of cell edges can be inferred from the relationship between the mechanical property and the
relative density. If the tensile loading is applied along the direction parallel to the fibers, the stretching dominated
deformation of the cell edges implies that (Gibson and Ashby, 1997; Grenestedt, 1999):

En

Es
¼
sn

y

ss
¼

1

2
rr ð17Þ

In comparison, if the angle between the tensile loading and the fibers is 45 degree, the bending dominated deformation
of the cell edges implies that:

En

Es
¼

1

4
r3

r ð18Þ

It is noted that the relationships between the tensile mechanical properties and relative density of the MFSSs (Figs. 5
and 7) follow linear relationships when the relative density is greater than 0.1, suggesting stretching dominated
mechanism with respect to Eq. (17). Under both equi-biaxial and uniaxial compressions, buckling of the cell edges is



Fig. 8. Predicted initial yield surfaces of porous metal fiber sintered sheets normalized by yield strength of steel fibers for selected relative densities

(0.075, 0.1, 0.125, 0.15, and 0.2, denoted by symbols). For comparison, the normalized yield surfaces of G-distributed Voronoi 2D foam with relative

density of 0.15 (Chen et al., 1999) is included as solid line.
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predicted for MFSSs, also implying stretching dominated deformation mechanism. In view of the above arguments, one
may conclude that, for MFSSs, the deformation mechanism of the cell edges is stretching dominated.

The asymmetry in tensile and compressive strengths is evident from Fig. 7. Similar feature has been found in the
experimental study of metallic foams (Deshpande and Fleck, 2001). For the MFSSs considered here, the difference is more
pronounced owing to the existence of long beams (fibers) which are prone to buckling. Indeed, for low relative densities,
the buckling effect is believed to be more pronounced so that MFSSs with low relative densities should not be used to
withstand compressive loading.
3.3. Yield surface and its evolution

From the simulated multiaxial stress versus strain curves, the yield surface and its evolution can be explored. Fig. 8
presents the initial yield surfaces in the equivalent stress versus mean stress plane for MFSSs with different relative
densities, denoted by various symbols. For comparison, the numerically simulated yield surface of G-distributed Voronoi
2D foams with relative density 0.15 (Chen et al., 1999) is included as solid line. The results of Fig. 8 demonstrate that the
compressive strengths are much lower than the tensile strengths. In the tension dominated regime, the MFSSs have
remarkably higher strength than that of Voronoi 2D foams. However, such a difference vanishes if the yield point lies on
mean stress axis, as expected, because it has been established that the cell edges of Voronoi 2D foams are relevant to
stretching under equi-biaxial macroscopic loading and relevant to bending under uniaxial macroscopic loading (Chen
et al., 1999).

In addition to the dependence of initial yield surfaces upon relative density as shown in Fig. 8, the post yield surfaces
(i.e., yield surface evolution) are also of great interest from theoretical and practical points of view. It should be pointed out
that, the present numerical simulations do not consider contact between adjacent cell edges (fibers) under compression,
and hence the stress versus strain curves exhibit softening following initial yielding (see Figs. 4 and 6) which is not
observed in experiment (Zhao, 2011). Actually, under compression, the contact between fibers inevitably leads to
hardened elasto-plastic response before densification. Thus, we assume that the compressive stress remains constant after
reaching the peak value despite its slight decreasing with waving from the simulated results. Under the assumption that
the yield surface is not extendable in the compression dominated regime, the random beam model predicted yield surfaces
and their evolution are plotted in Fig. 9(a) and (b) (denoted by symbols), respectively, for MFSSs with selected relative
densities (0.15 and 0.2). It can be seen that the yield surface in the tensile portion evolves in a geometrically similar
manner as the characteristic plastic strain increases from 0% to 0.06%. The solid lines in Fig. 9 represent theoretical model
predictions, as will be discussed in the following section.
4. Two dimensional constitutive model for MFSSs

The MFSSs are transversely isotropic with nearly zero Poisson ratios n31 and n32 (3 implying the thickness direction;
(Zhao, 2011)), which means their in-plane mechanical behaviors are nearly independent of the deformation in the
thickness direction. Accordingly, we propose here a 2D constitutive model for the in-plane stress versus strain responses of
MFSSs. To this end, it is observed from Fig. 9 that, in the equivalent stress versus mean stress plane, the yield points in the
compression dominated regime comply with a straight line. In the tension dominated area, however, the yield surfaces are
elliptical and evolve in a self-similar manner as the characteristic strain is increased. Consequently, a segmented yield
function for the 2D in-plane behavior of MFSSs is proposed as:

F1 ¼�
sm

suc
þ

se

2suc
�1¼ 0 ð19Þ



Fig. 9. The yield surface of a porous metal fiber sintered sheets with relative density of (a) 0.15 and (b) 0.2 at selected characteristic plastic stains of 0

(initial yielding), 0.02%, 0.04%, and 0.06%. Lines represent constitutive model predictions from Eqs. (19) and (20) while symbols denote numerical

simulation results from the random beam model.
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for the compression dominated regime and

F2 ¼
s2

m

A2
þ
s2

e

B2
�1¼ 0 ð20Þ

for the tension dominated regime. The intersection of the two functions ((19) and (20)) produces a vertex on the yield
surface. The material parameters suc in (19) and A and B in (20) are functions of the relative density and/or the
characteristic plastic strain, the latter composed of both volumetric plastic strain and equivalent plastic strain according to
Eq. (8).

Note that the yield surface F1 is not expandable in the compression dominated regime (see Fig. 9 and relevant
arguments in the previous section). The compressive strength suc is dependent upon the relative density and independent
of the characteristic strain and can thus be calibrated by the uniaxial compressive strength of MFSSs, i.e., Eq. (14) together
with Eq. (8). From the plastic characteristic stress versus strain curve under uniaxial tension, A and B in (20) can be
calibrated as:

A¼ sutðepÞ
2,B¼

4

3
sutðepÞ

2
ð21Þ

Substitution of (21) into (20) leads to:

F2 ¼ s2
mþ

3

4
s2

e�sutðepÞ
2
¼ 0 ð22Þ

where sutðepÞ is a function of the characteristic plastic strain ep and sutðepÞ equals the initial yield strength when ep¼0.
Since F1 cannot evolve toward the normal direction (perfect elasto-plastic), we assume that the evolution of F2 will only
extend the yield surface along the tangent direction, which is consistent with the plasticity theory of Koiter (1960) for
multi-yield surface constitutive models. The plastic strain is given by:

_ep
ij ¼

_l
@F2

@sij
i¼ 1,2 ð23Þ

where the proportionality factor _l is determined from the consistence condition of plasticity, as:

_F2 ¼
@F2

@sij

_s ijþ
@F2

@ep
_ep
¼
@F2

@sij

_s ijþ
@F2

@ep

@ep

@ep
ij

_ep

ij ¼ 0 i¼ 1,2 ð24Þ
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Here, for convenience, Einstein summation convention is applied with the assumption that 1 represents the x direction
and 2 represents the y direction.

To validate the 2D constitutive model presented above, the predicted yield surface and its evolution for MFSSs with
selected relative densities are compared in Fig. 9 with the numerical simulation results from the random beam model.
From Eqs. (8) and (13), one gets the uniaxial tensile yield strength.

sutðepÞ

ss
¼ 0:0256þ0:1394ep�0:585e2

p ð25Þ

for MFSS with rr¼0.15 and

sutðepÞ

ss
¼ 0:0328þ0:2060ep�0:8099e2

p ð26Þ

For rr¼0.2. Correspondingly, the uniaxial compressive yield strengths are obtained as suc¼3.5329 MPa for rr¼0.15
and 5.2979 MPa for rr¼0.2. The segmented yield surface and it evolution for MFSSs can thence be fully determined, as
shown in Fig. 9 as solid lines. The predictions from the constitutive model are found to agree well with those from the
random beam model for both relative densities.

5. Conclusions

The mechanical behavior of porous metal fiber sintered sheets is investigated with a two dimensional micromechanics
random beam model. A statistical method is employed to provide an estimation of the interval of 95% credence of the
simulation results from the developed model. Convergence of the predictions is guaranteed if the model size exceeds 140
times of the averaged cell size. The model is subsequently used to simulate the in-plane multiaxial stress versus strain
curves of MFSSs and predict the dependence of the elastic constants (Young’s modulus, Bulk modulus, and Poisson ratio)
and yield strength upon the relative density. The predictions agree well with available experimental results. It is
demonstrated that the Young’s modulus and uniaxial tensile yield strength of MFSSs are much higher than those of
G-distributed 2D Voronoi foams and honeycombs with similar degree of morphological defects and depend linearly upon
the relative density, indicating that the deformation mechanism of fiber stretching rather than bending prevails in MFSSs.

In addition to the elastic and plastic constants, the initial yield surface of MFSSs and it evolution are found to be
asymmetrical with respect to tension and compression. In the tension dominated regime of the von Mises equivalent
stress versus mean stress plane, the yield surface is elliptical in shape and expands in a self-similar manner, whilst it
follows a straight line and is not expandable in the compression dominated regime. Accordingly, an elastoplastic
constitutive model is proposed. The model can be fully calibrated in terms of uniaxial compression and tension results,
without recourse to multiaxial stress versus strain curves for the benefit of engineering applications. The predicted yield
surface of MFSSs from the constitutive model matches excellently with the numerical results obtained from the random
beam model.
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