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Abstract: Interest in time resolved flow cytometry is growing. In this 
paper, we collect time-resolved flow cytometry data and use it to create 
polar plots showing distributions that are a function of measured 
fluorescence decay rates from individual fluorescently-labeled cells and 
fluorescent microspheres. Phasor, or polar, graphics are commonly used in 
fluorescence lifetime imaging microscopy (FLIM). In FLIM measurements, 
the plotted points on a phasor graph represent the phase-shift and 
demodulation of the frequency-domain fluorescence signal collected by the 
imaging system for each image pixel. Here, we take a flow cytometry cell 
counting system, introduce into it frequency-domain optoelectronics, and 
process the data so that each point on a phasor plot represents the phase 
shift and demodulation of an individual cell or particle. In order to 
demonstrate the value of this technique, we show that phasor graphs can be 
used to discriminate among populations of (i) fluorescent microspheres, 
which are labeled with one fluorophore type; (ii) Chinese hamster ovary 
(CHO) cells labeled with one and two different fluorophore types; and (iii) 
Saccharomyces cerevisiae cells that express combinations of fluorescent 
proteins with different fluorescence lifetimes. The resulting phasor plots 
reveal differences in the fluorescence lifetimes within each sample and 
provide a distribution from which we can infer the number of cells 
expressing unique single or dual fluorescence lifetimes. These methods 
should facilitate analysis time resolved flow cytometry data to reveal 
complex fluorescence decay kinetics. 
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1. Introduction 

Flow cytometry is a powerful means for analysis of single cells. It has been exploited for 
many decades mainly because it provides knowledge about the distribution and heterogeneity 
of phenotypes of individual cells within cell populations. Flow cytometers collect data on the 
number of cells that have a particular phenotype (or genotype and shape), often with the help 
of fluorescent agents bound to receptors, proteins, nucleic acids, organelles, or other places 
within or on the surface of the cell. Flow cytometers can be configured in different ways to 
collect different kinds of data. For example, an instrument can detect (i) multiple fluorescence 
emission colors from every single cell; (ii) a full spectrum of fluorescence emission from 
individual cells; (iii) light scattered by individual cells in different directions; and (iv) 
fluorescence decay times, represented as the average fluorescence lifetime. The first three 
approaches are consistently used and available on commercial cytometers. The last, the 
measurement of time-resolved signals [1–5], is not so widely used. 

We have recently worked to advance time-resolved flow cytometry by building and 
modifying cytometers to measure fluorescence lifetimes. We have demonstrated instruments 
that use digital laser modulation or pulsation, high speed data acquisition, and digital signal 
processing to provide fluorescence lifetime-based values for cell counting or sorting that 
operate at rates of thousands of cells per second [6–9]. These approaches for measuring 
fluorescence lifetimes with flow cytometers have involved both frequency-domain as well as 
time-domain methods. 

We and others have demonstrated different versions of time-resolved flow cytometry [3, 
7–14], and the main objective for augmenting flow cytometers to detect fluorescence 
lifetimes is to enhance cytometric data with a quantitative parameter that is independent of the 
measured fluorescence intensity [11, 15–17]. As a parameter, fluorescence lifetime can be 
used to discriminate among spectrally overlapping fluorescence signals as well as to validate 
the fluorescence intensity changes that arise from quenched fluorophores such as during 
Förster resonance energy transfer (FRET) events like those arising from changes in 
association state of tagged cytoplasmic proteins. A variety of cellular applications might 
include use of fluorescence lifetimes to discriminate among multiple exogenous fluorophores 
labeled to cell surface receptors (i.e. immunofluorescence), to correlate the fluorescent protein 
intracellular location with fluorescence decay kinetics, to sort cells that express fluorescent 
proteins with high quantum yields (because QY is proportional to the fluorescence lifetime), 
or to detect shifts in cellular metabolism for large populations of cell using autofluorescence 
lifetime shifts of the bound state of NADH [15, 18–21]. These listed applications are but a 
few among many reasons to measure the decay kinetics of fluorescent species in order to 
understand intracellular biochemistry and molecular events, or to detect protein 
conformational changes. 

Among the various time-resolved flow cytometry systems described in the literature, none 
measure the presence of multiple fluorescence lifetime components in a single color channel. 
We have sought to address this gap by developing laser-pulsed systems [8] and by exploiting 
square-wave modulation [9], an extension of work on double-frequency modulation systems 
[22]. Issues in getting these systems to work include low signal to noise and modulation depth 
in the fluorescence signals collected at high frequencies, frequency aliasing, required high 
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frequency bandwidth in the detection and data acquisition hardware, and time-consuming data 
analysis steps. Here, we describe another approach, phasor plotting. This approach can be 
used with existing systems to measure two independent fluorescence decay-dependent values 
from individual cells, obtained at a single frequency, and can indicate whether or not the 
measured signal can be attributed to a single or dual-lifetime component. 

In this letter we show how to take cytometry data and generate phasor plots to determine 
independent fluorescence lifetime components in a measured signal from a single cell. A 
phasor plot combines the phase shift, φ, and demodulation, m, parameters from a frequency-
domain fluorescence measurement. Within a phasor plot, points on a graph are at a radial 
distance from the pole, which is equal to the measured demodulation, m. The angle between 
the phasor axis (x-axis) and the radius is called the phasor angle, which is equal to the angle 
of phase shift, φ, as shown in Fig. 3. Presenting data in this fashion provides a visual tool to 
reveal differences in fluorescence lifetimes as a result of the phase shift and demodulation 
values. 

The fluorescence lifetime imaging microscopy (FLIM) and fluorimetry communities have 
been implementing phasor plots for several years [19, 23–27] because of the ease with which 
one can visualize distributions of multiple lifetime components taken from the different pixels 
comprising images of groups of cells. The use of phasor plots can aid evaluation of 
intracellular release of therapeutics from nanoparticles that are taken up by cells [20], detect 
changes in the metabolism (i.e. metabolic mapping) of single cancer cells, neurons, and other 
tissue types [21], fingerprint photo-activatable fluorescent proteins [28], and quantify FRET 
events in cells. In these examples the use of microscopy allows relatively small numbers of 
cells to be evaluated, and use of flow cytometry offers the potential to collect data from a 
significantly larger cell population at a rapid rate and to use the data as a basis of cell sorting. 

As a step toward demonstrating the use of full phasor plots, we have previously adopted a 
method that constructs pseudo-phasor plots for fluorescence activated cell sorting [14]. This 
approach provided a means to perform real-time analysis of φ, and m dependent values. 
Herein we extend this analysis to the construction of full phasor plots. We use these to 
visualize multiple lifetime components for single cells during a cytometry run. We 
demonstrate the utility of these methods with measurements of fluorescence microspheres, 
Chinese hamster ovary (CHO-K1) cells labeled with one or two fluorophores, and 
Saccharomyces cerevisiae cells expressing two spectrally overlapping fluorescent proteins. 

2. Materials and methods 

2.1 Single lifetime component experiment 

For proof of concept studies, we first took fluorophores that decay (on average) following 
single exponential fluorescence kinetics. We used fluorescently labeled microspheres 
(fluorescein, Catalog Code: 891; and propidium iodide, Catalog Code: 892, Bangs 
Laboratories Inc., Fishers, IN). When excited at 488nm both fluorophores are highly quantum 
efficient with known fluorescence lifetimes (4 ns +/− 0.2 ns for fluorescein, and 16 ns+/− 0.5 
ns for propidium iodide, respectively [29, 30]). We suspended the microspheres (7 to 9 µm) 
in DI water to a concentration of 1 × 106 /mL, and measured them using 496-nm long pass 
and 488-nm band pass filter for fluorescence and side scatter detection, respectively. 

2.2 Dual-lifetime component experiment 

To examine the use of phasor plots for samples with dual lifetimes, viable mammalian cells 
were fixed and stained with two different fluorophores. CHO-K1 cells were fluorescently 
labeled with ethidium bromide (EB) and fluorescein isothiocyanate (FITC). Standard cell 
culture techniques were applied (i.e. cell growth in DMEM/F12 media, Life technologies, 
Grand Island, NY; supplemented with 10% fetal bovine serum; and incubated at 80% relative 
humidity, with 5% CO2 at 37 °C). At slightly under full confluence, cells were collected, 
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centrifuged, and re-suspended in phosphate buffered saline to obtain three treatment samples 
each having a concentration of ~106 cells/mL. Each population was fixed and prepared for 
fluorescent labeling (95% ethanol solution + RNase at 30 µL of 1 µg/mL). The following 
treatments were prepared for the three groups, respectively: (1) ethidium bromide at a 
concentration of 20 mg/L, (2) FITC at a concentration of 10 mg/L, (3) EB and FITC at 
concentrations of 20 mg/L and 10 mg/L, respectively. Prior reports indicate that FITC and EB 
have approximate fluorescence lifetimes of 4 ns +/− 0.2 ns and 19 ns +/− 0.2 [31, 32]. 

2.3 Yeast cell experiment 

Saccharomyces cerevisiae cells constitutively expressing fluorescent protein variants were 
cultured and measured. We cultured a yeast strain that expressed teal fluorescence protein, 
TFP, as well as a strain that expressed a tandem, TFP, which is linked to dark-state converted 
citrine fluorescence protein, TFP-dCit. We described development of these fluorescent 
protein constructs previously [14]. The benefit of these variants are that they emit in similar 
spectral ranges yet have different fluorescence lifetimes. TFP has an average lifetime of 2.85 
ns +/− 0.2, while TFP is linked to dCit, it has an average fluorescence lifetime of 1.6 ns +/− 
0.2 [14]. 

2.4 Time-resolved flow cytometer and data acquisition system 

All cells and microspheres were counted using a time-resolved FACSVantageTM SE flow 
cytometer (Becton Dickinson, CA). Unless otherwise noted the basic cytometry components 
(i.e. fluidics, photodetectors, CellQuestTM Pro analysis software) were not modified. The 
components of the flow cytometer we did modify for time-resolved analysis are illustrated in 
Fig. 1. The instrument was aligned with a 488-nm laser (150 mW solid state OBIS, Coherent, 
Inc., Santa Clara, CA) for microsphere and CHO-K1 cell measurements. Yeast samples were 
measured with an aligned 445-nm laser (150 mW solid state OBIS, Coherent, Inc., Santa 
Clara, CA). For time-resolved measurements, the laser sources (488-nm and 445-nm) were 
digitally modulated (25 MHz) with an arbitrary function generator (Tektronix Inc., Beaverton, 
model AFG3120) and focused to an approximate spot size of 20 µm. The fluorescence signals 
and side scattered optical signals were detected using photomultiplier tubes (PMTs, R1477-
04, Hamamatsu Photonics, CA), and the resulting outputs were amplified (60 dB, DC-100, 
Advanced Research Instruments, CO) then digitized with a 250 mega samples per second data 
acquisition system (Innovative Integration, X5-210M, Simi Valley, CA). The data system was 
controlled by a graphical interface for gating and analysis (Kytos software, DarklingX, Los 
Alamos, NM). 
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Fig. 1. Frequency-domain flow cytometry system used for the generation of phasor plots. A 
laser-excited sample is driven by pressurized fluidics. The samples (depicted by circles and 
ovals) transit the laser beam (represented by blue dashed line), which is modulated by a 
function generator. Fluorescence (yellow dashed line directed to PMT2) and side scattering 
signals (blue dashed line before PMT1) are focused onto the side of two similar PMTs 
(Hamamatsu, San Diego, model R1477-04). The full cytometry waveforms are collected with a 
250 MSPS high-speed Innovative data acquisition system. After collection of the full 
waveforms, MATLAB was used to build phasor plots for analyses of multiple lifetime 
components. 

2.5 Phasor plot analysis 

We generated phasor plots by collecting the modulated fluorescence emission signals and 
calculating the phase shift, φ, and reduction in the amplitude, m, relative to the excitation 
signal. Our work can be described by the following theory (proved by G. I. Redford and R. 
M. Clegg [23]). Firstly, the excitation laser beam is mathematically represented by: 

 0( ) cos( ),EE t E E tω ω φ= + +  (1) 

where ω is the angular frequency of the excitation modulation, E0 and Eɷ are the DC (average 
signal) and AC intensity (amplitude of the modulation), and φE is the phase of the excitation. 
Eω/E0 is the depth of the excitation modulation, ME. Similarly, the modulated fluorescence 
emission signal is: 

 0( ) cos( ),FF t F F tω ω φ= + +  (2) 

where φF is the fluorescence phase, and the depth of fluorescence modulation is MF = Fω/F0. 
The relative phase shift, φ = φF - φE, and relative depth of modulation, m = MF/ME, are 
correlated to fluorescence lifetime by Eqs. (3) and (4), which are: 

 tan ,φωτ φ=  (3) 

 
2

1
and, ,

1 ( )m

m
ωτ

=
+

   (4) 

where τφ and τm are known as phase and demodulation lifetimes. The phase and demodulation 
lifetimes are equal for single exponentially decaying fluorophores [23]. 
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We create a phasor plot with Eq. (5) by setting τφ of Eq. (3) equivalent to τm of Eq. (4). 
Representing these data in a graph also involves coordinate transformation (Eq. (6) and (7)) 
and then translation (Eq. (8)) and simplification (Eq. (9)). Finally, we graph the function 
represented by Eq. (9) is graphed with a radius of 0.5 centered at the coordinate [0.5, 0] in the 
first quadrant. The origin [0, 0] is the pole of the phasor plot. 

 2

1

2
1 sin

( 1) ,
cosm

φ
φ

− =  (5) 

 cos ,x m φ=  (6) 

 sin ,y m φ=   (7) 

 2 2

1

2

1
1 ,

y

x x y+

 
 = −  
 

 (8) 

 2 2 .x y x+ =  (9) 

Applying the above methods to experimental data is straightforward. The demodulation 
and phase values are calculated directly from flow cytometry fluorescence and side scatter 
measurements, which become digitized waveforms subsequent to PMT detection and signal 
amplification. Therefore, two waveforms, or a ‘correlated set’ is collected, where one set 
represents the passage of a single cell or particle through the excitation source. These discrete 
waveform sets (see Fig. 2(a) as an example of one waveform) are compiled into a digital .csv 
file by the data acquisition system. Next, a MATLAB algorithm imports the data file and 
applies a discrete Fourier transform (DFT) on each set of correlated (side scatter and 
fluorescence) waveforms. The output of the DFT is a frequency spectrum with an obvious 
dominant frequency. See Fig. 2(b) as an example of the frequency spectrum result where a 
1MHz simulated waveform was processed resulting with a spectrum output with a dominant 
1MHz frequency. 

 

Fig. 2. Modulated flow cytometry waveform (a) and the resulting frequency spectrum output 
(b) after applying a discrete Fourier transform to the data. In this example the modulation 
frequency was 1 MHz. 

Processing the correlated data sets into a single phasor plot is then finalized by calculating 
two values subsequent to the DFT: the signal phase and demodulation. For the resultant 
dominant frequency the phase of the side scattered and fluorescence signals are calculated. 
That is, the phase angles of the complex DFT output at the fundamental frequency are 
calculated. The final phase shift for each correlated set is then obtained by subtracting the two 
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phase values, φ = φfluorescence - φscattering. This assumes that the phase of the side scattered signal 
has a “zero” fluorescence lifetime value, as it is the best representation of the excitation signal 
phase. The demodulation, m, is derived by taking the ratio of the peak alternate current (AC) 
intensity and total direct current (DC) intensity from the DFT frequency spectrum output. A 
constant modulation depth of the excitation is assumed. These calculations are possible by 
calibrating the instrumentation and finding the phase shift and demodulation for samples with 
a known single exponential fluorescence lifetime. We chose to use fluorescein microspheres 
because fluorescein is known to have a single lifetime component of 4 ns [33]. 

 

Fig. 3. The transfer from a raw data of an event (a) to one dot in the phasor plot where the dots 
located on semicircle indicate single lifetimes (b). The location [1, 0] represents 0 ns, and the 
location of origin [0, 0] represents an infinite lifetime. Fluorescence lifetimes along the 
semicircle increase counter-clockwise to the left. In this coordinate system the measured value 
is the intensity-weighted average of the lifetime components. The magnitude of the vector 
equals the demodulation of the measured event m, and the angle between x-axis and vector 
equals the phase shift φ. The line joining the lifetime components notes the location of the 
measured event. In this example, the measured event is located in the middle of the line joining 
single lifetimes of 4 ns and 19 ns. The plot reveals the event consists of an equivalent fraction 
of 4 ns and 19 ns components. The solid lines represent the phase shift and demodulation 
vector for the dual-lifetime simulation, and the dashed lines represent single lifetime 
component vectors thereof. 

After collecting the phase shift φ and demodulation m, we are able to plot a semicircle as a 
reference line, (see again Eq. (9)), and then add all calculated phase shifts, φ, and 
demodulation, m, values, where each dot on the phasor plot represents one event (i.e. 
microsphere or cell’s passage through the laser). The method for generating a phasor plot is 
also illustrated in Fig. 3. Figure 3(a) is a plot of two correlated cytometric waveforms, or 
digitized signals from fluorescence and side scatter PMTs taken during frequency domain 
measurements. For every event, or cell, both waveforms are collected by our data acquisition 
system. Subsequent conversion into a phasor plot is straightforward; the φ is located at its 
appropriate angle between the x-axis and the radius, and m is located at its respective distance 
from the pole (i.e. radius length). Figure 3(b) is an example phasor plot of a simulated 
fluorescence signal consisting of 50% of a 4-ns lifetime component and 50% of 19-ns 
fluorescence lifetime component. Note that the ‘dot’ location is in the middle of the line that 
joins the two lifetime components (4 ns and 19 ns). A difference in modulation lifetime and 
phase lifetime is immediately apparent by these plots; any point that deviates into the interior 
semicircle and does not lie on the line itself indicates the presence of multiple fluorescence 
lifetimes in the signal. Ultimately the intensity percentage of a two-lifetime component signal 
can be calculated based on vector addition represented by [23]: 

 ,measure a br ar br= +  
 (10) 

#262834 Received 8 Apr 2016; revised 14 May 2016; accepted 4 Jun 2016; published 20 Jun 2016 
© 2016 OSA 27 Jun 2016 | Vol. 24, No. 13 | DOI:10.1364/OE.24.014596 | OPTICS EXPRESS 14603 



where a and b are fractional factors of the lifetime components. 

3. Results and discussion 

3.1 Single lifetime component experiment 

Phasor plotting results after cytometry measurements of microspheres labeled with 
fluorophores with single exponential decay are presented in Fig. 4. The centroid of the 
distribution of single lifetime events is located, as expected on the semicircle of the phasor 
plot, indicating a single lifetime component. 

The red population in Fig. 4 shows data for fluorescein microsphere phase and modulation 
lifetimes, and the blue in Fig. 4 shows data for the PI-labeled microspheres. As can be seen in 
the phasor plot, the PI microsphere fluorescence lifetime is longer and shows on the plot 
represented by a larger phase shift and lower demodulation value. The fluorescein 
microspheres have shorter decay kinetics, and have a shorter phase shift and longer 
demodulation time. The fluorescence lifetime of fluorescein microspheres was calculated as 
4.0 ns +/− 1.5 and 16 ns +/− 2 for the PI microspheres. These average fluorescence lifetimes 
match published values. Also seen in Fig. 4 is a large variation in the microsphere data. A 
substantial distribution in the values is present due to the fact that each fluorescent particle 
passes through the laser in under 10 µs, which limits the amount of light collected, as opposed 
to FLIM where the detector exposure time is one to three orders of magnitude longer. 
Moreover, these commercially available fluorescent microspheres containing a single 
fluorophore are made with a relatively low fluorophore concentration so that they can be used 
for referencing, cytometry alignment, and calibration. As a consequence our flow cytometric 
measurements had an overall lower signal to noise ratio (SNR) leading to broad scatter 
distribution of events in the phasor plots. 

 

Fig. 4. Phasor plot representations from fluorescence data on single fluorophore-labeled 
microspheres. The red population is data from fluorescein microspheres and the blue is of PI 
microspheres, with the calculated value of their respective fluorescent lifetimes shown by the 
open marker on the semicircle. 
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3.2 Dual-lifetime component experiment 

Phasor plot results that represent the distributions of cells labeled with one and/or two unique 
fluorochromes are presented in Fig. 5. From Fig. 5 it is apparent that the FITC (red dots) and 
EB (blue dots) stained cells are located on the semicircle in the phasor plot, indicating single 
exponential decay of these fluorophores. Likewise, the dual-stained cell data points (brown 
dots) are located along a dashed line that joins the central location of the FITC and EB data 
points. Based on the location of dual-stained cells, about 65% of the contribution to the 
intensity signal is owing to EB and 35% owing to FITC. The figure shows how these plots 
can resolve signals from species with two different lifetimes and estimate the proportion of 
each species in labeled cells. 

 

Fig. 5. Phasor plot representation of cells labeled with FITC (red dots), EB (blue dots), and a 
combination of FITC and EB (brown dots), with the open markers being the calculated values 
of the fluorescent lifetimes of FITC and EB on the phasor semicircle. 

3.3 Dual-lifetime yeast cell experiment 

Phasor plot results from measured fluorescence from Saccharomyces cerevisiae cells are 
presented in Fig. 6. The red population in Fig. 6(a) represents TFP expressing yeast cells, and 
the blue population in Fig. 6(b) represents TFP-dCit expressing yeast cells. As shown in Fig. 
6(a), the centroid distribution of TFP measurements is on the semicircle, indicating single 
exponential decay, consistent with our previous work [14]. The center of the TFP-dCit 
distribution in Fig. 6(b) is not on the semicircle, indicating that these cells show multi-
exponential decay. Figure 6(c) is a phasor plot created after time-resolved cytometry 
measurements of a mixture of TFP and TFP-dCit yeast cells. There are two cell populations in 
this phasor plot (TFP and TFP-dCit yeast) are distinguishable by their fluorescence lifetime 
values. But from Fig. 5(d), we noticed the populations are not distinguishable by fluorescence 
intensity alone, because both cell types express proteins that emit in the same spectral 
wavelength bandwidth. 
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Fig. 6. Phasor plot representations of yeast cells expressing different fluorescent protein 
constructs. (a), (b), and (c) are the phasor plots of cells producing TFP, TFP linked to dark 
citrine fluorescence protein, and an equal mixture of cells that express either TFP or TFP-dCit, 
respectively. (d) is a dot plot of two parameters (side scatter and fluorescence intensity) where 
the blue dots represent TFP-dCit expressing cells and the red dots represent the TFP expressing 
cells. 

4. Conclusions 

In this study, we have demonstrated the ability to make phasor plots from time resolved flow 
cytometry data. We present plots of fluorescence signals from microspheres, mammalian 
cells, and yeast cultures labeled with single and dual fluorescence lifetime components. This 
approach takes time-resolved flow cytometry measurements and transforms the data into 
phase and demodulation values. To-date, time-resolved flow cytometry data sets have been 
limited to single fluorescence lifetime measurements mainly owing to the limitations in data 
acquisition speeds and digitization rates as well as the need to perform real-time signal 
processing at cell sorting event rates. However, with the increases in data system sampling 
rates we are able to show significant advances toward measuring multi-lifetime data from 
single cells. With a flow cytometry based polar plot, we are able to visualize when and if data 
from a single cell or particle in each data set includes more than one fluorescence lifetime 
value. The ability to perform this calculation in real-time is only limited by time required to 
perform the digital signal processing, and we demonstrated the feasibility of real time 
processing for batches of 1000 microspheres and cells. However, as an ‘off-line’ 
measurement, the number of events counted is essentially limitless. 

When phasor plots are used in FLIM microscopy, each point on the plot represents the 
fluorescence lifetime and demodulation for a single image pixel. In these plots we describe 
here, each point represents the same values for an individual cell or particle in the cytometry 
run. Such plots display more information than the fluorescent lifetime alone. In such plots, 
points from cells with single lifetime values lie on a semicircle (“the universal semicircle”), 
while points from cells with complex decays or multiple lifetime values lie inside the 
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semicircle. The locations of the points therefore indicate whether the population distribution 
is of single, double, or multiple lifetimes within the population. Additionally, the vector 
representation of the phasor plot allows calculation of the relative amount of a given 
fluorophore that may be present within cells/microspheres that have more than one 
components. 

There are advantages of phasor plotting with flow cytometry over traditional time-
resolved flow cytometry; these are related to the ease with which the φ and m alone can be 
graphed, observed, and used for analysis as individual measurements as compared to the 
usual measurement of the fluorescence lifetime, τ. In order to graph a fluorescence lifetime 
cytometry histogram, the values of φ and m are first calculated then translated into 
fluorescence lifetime values using Eqs. (3) and (4) and subsequently turned into list-mode 
data. Thus the phasor plot simplifies the computational steps. Moreover, a phasor plot will 
reveal not only differences in fluorescence lifetimes among measured cells and particles, but 
also indicate if the signal is composed of one or more fluorescence lifetime component, which 
simple plots of τ do not. In fact, if more than one fluorescence lifetime component is to be 
determined with frequency-domain flow cytometry approaches without phasor analysis, then 
multiple modulation frequencies are required. In flow, the ability to shift laser modulation 
frequencies to carry out multiple measurements on a cell or particle is limited because cells 
pass the detector very quickly, on the order of microseconds. Finally, compared to traditional, 
or intensity-based flow cytometry, plots of φ and m, show distributions of data that are 
independent of a spectral emission wavelength range. This means that the future flow 
cytometers might gather data without a need to separate emission based on color, allowing a 
simplified flow cytometry configuration and the ability to collect more light due to the fact 
that spectral spillover is no longer important 

As the instrumentation has become more common, the use of fluorescence lifetime 
measurements in cytometry assays has increased, and with it the desire to interpret 
fluorescence signals that contain multiple fluorescence lifetime values. The brief 
demonstration we provide here builds upon our prior work using pseudo-phasor plots for cell 
sorting [14]. Additionally, it builds on prior work from Redford and Clegg over a decade ago 
[23], and on work by modern FLIM communities who now embrace phasor plots to analyze 
bulk fluorescence decay signals that may contain more than one fluorescence lifetime 
component. Future work will involve analysis of more complex lifetime systems with cells 
with three or more fluorescence lifetime components. Such plots would contain data points 
that form three vertices of a triangle on the phasor plot, which can be mapped to three 
different individual single lifetime components. Other improvements will include using these 
plots in real-time analysis in cytometry systems capable of cell sorting based on the 
fluorescence decay kinetic parameters. These improvements will allow phasor plots to be 
used to their full advantage, for example for counting and sorting populations of cells based 
on differences in Förster resonance energy transfer, differences in fluorescent protein 
expression, or differences in cell metabolism to facilitate metabolic mapping [34]. 
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