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Abstract
We study the effect of semiconduction on mechanical-to-electrical energy conversion through a
theoretical analysis on the thickness-extensional vibration of a piezoelectric semiconductor plate
driven mechanically. An analytical solution is obtained. A ZnO plate is used as a numerical
example. Results show that both the electrical output power and the energy conversion efficiency
are sensitive to semiconduction at a moderate carrier density of 1015 m−3, and that the effect of
the dissipation due to semiconduction can be comparable to the effect of material damping when
the material quality factor is in the usual range of 102–103.

Keywords: piezoelectric semiconductors, thickness-extensional vibration, output electrical
power, energy conversion efficiency

(Some figures may appear in colour only in the online journal)

1. Introduction

Piezoelectric materials are widely used to make electro-
mechanical transducers for converting electric energy to
mechanical energy or vice versa. Relatively recently, because
of the rapid development of wireless electronic devices,
operating these devices without a wired power source has
become an important issue. One approach is to harvest power
from the operating environment. Piezoelectric materials are
natural candidates for devices that scavenge ambient power
by converting mechanical energy into electric energy for
powering small electronic devices with a low power
requirement. Such a piezoelectric device is called a piezo-
electric generator or energy harvester. Piezoelectric energy
harvesters have received broad and sustained attention [1, 2].

Piezoelectric materials are usually used and treated as
dielectrics (insulators) without electrical conduction. In fact,
there is no sharp line separating conductors from insulators.
Real materials more or less have some electrical conduction

[3]. For example, in acoustic wave devices made from quartz
piezoelectric crystals which are usually considered as good
insulators, the small Ohmic conduction and the related dis-
sipative effects need to be considered when calculating the Q
value (quality factor) of the devices [4−6] because the other
dissipative effects in quartz such as material damping are also
very small.

Another origin of conduction in piezoelectric materials is
that some of them are semiconductors [7], e.g., the widely
used ZnO and AlN films and fibers. In these materials, in
addition to carrier drift under an electric field which is asso-
ciated with Ohmic conduction, carrier diffusion also con-
tributes to the current. Piezoelectric semiconductors have
been used to make devices for acoustic wave amplification [8
−11] and acoustic charge transport [12, 13] based on the
acoustoelectric effect, i.e., the motion of carriers under the
electric field accompanying an acoustic wave. Recently, pie-
zoelectric semiconductors such as ZnO are also used for
mechanical energy harvesting and conversion to electric

Smart Materials and Structures

Smart Mater. Struct. 24 (2015) 025021 (7pp) doi:10.1088/0964-1726/24/2/025021

0964-1726/15/025021+07$33.00 © 2015 IOP Publishing Ltd Printed in the UK1

mailto:jinfengzhao@263.net
http://dx.doi.org/10.1088/0964-1726/24/2/025021
http://crossmark.crossref.org/dialog/?doi=10.1088/0964-1726/24/2/025021&domain=pdf&date_stamp=2015-01-08
http://crossmark.crossref.org/dialog/?doi=10.1088/0964-1726/24/2/025021&domain=pdf&date_stamp=2015-01-08


energy [14−17]. Taking ZnO nanowires for example, they
have been applied in energy harvester [18−21], which address
the potential for nanoscale energy harvesting.

At present there is little understanding of the effects of
conduction/semiconduction on energy conversion in piezo-
electric materials. In this paper we examine these effects by
studying the thickness-extensional vibration of a piezoelectric
semiconductor plate driven by mechanical loads with an
electrical output. Conductions of Ohmic and diffusive origins
are both considered. A theoretical analysis is performed using
the linear theory of acoustoelectricity.

2. Governing equations

The basic behavior of piezoelectric semiconductors can be
described by a linear phenomenological theory [8, 22].
Consider a one-carrier piezoelectric semiconductor whose
carrier charge and steady state carrier density are q and n̄,
respectively. When an acoustic wave propagates through the
material, it produces an electric field Ej and an electric current
Ji. The perturbation of the carrier density is denoted by n. The
linear theory for small and dynamic signals in a piezoelectric
semiconductor consists of the equations of motion (Newton’s
law), Gauss’s law of electrostatics, and the conservation of
charge:

ρ= ̈
=

̇ + =

T u

D qn

qn J

,

,

0, (1)

ji j i

i i

i i

,

,

,

where ui is the displacement vector, Tij is the stress tensor, ρ is
the mass density, and Di is the electric displacement vector.
The Cartesian tensor notation and the summation convention
for repeated indices are employed. A comma followed by an
index denotes partial differentiation with respect to the
coordinate associated with the index. A superimposed dot
represents differentiation with respect to time t. The above
equations are accompanied by the following constitutive
relations:

ε
μ

= −
= +
= −

T c S e E

D e S E

J qn E qd n

,

,

¯ , (2)

ij ijkl kl kij k

i ijk jk ij j

i ij j ij j,

where the strain tensor Sij and the electric field Ek are related
to the displacement ui and the electric potential ϕ by

ϕ
= +
= −

( )S u u

E

/2,

. (3)

ij i j j i

i i

, ,

,

In (2), cijkl, ekij and εij are the elastic, piezoelectric and
dielectric constants. μij and dij are the carrier mobility and
diffusion constants. With successive substitutions from (2)

and (3), we can write (1) as five equations for ui, ϕ and n:

ϕ ρ

ε ϕ

μ ϕ

+ = ̈
− =

̇ − − =

c u e u

e u qn

n n d n

,

,

¯ 0. (4)
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ikl k li ij ij

ij ij ij ij

, ,

, ,

, ,

On the boundary of a finite body, the mechanical dis-
placement ui or the traction vector, the electric potential ϕ or
the normal component of the electric displacement vector, the
carrier density n or the normal current, or the combinations of
some of them may be prescribed [3].

3. Thickness-extensional motion of a plate

Consider an unbounded piezoelectric semiconductor plate of
crystals of class 6 mm with the c axis along x3 as shown in
figure 1. This includes widely used materials such as ZnO and
AlN. The two surfaces of the plate are driven by a time-
harmonic surface normal stress p. The plate surfaces are
electroded. We consider the relatively simple case of Ohmic
or non-rectifying contact between the plate and the electrodes.
The electrodes are joined by an output circuit whose impe-
dance is Z in harmonic motions. The plate is driven into pure
thickness-extensional motion [23] by the surface stress with
one displacement component =u u x t( , )3 3 along with
ϕ ϕ= x t( , )3 and =n n x t( , ).3 We denote the relevant elastic,
piezoelectric and dielectric constants by =c c,33 =e e,33 and
ε ε= .33 Similarly, the relevant mobility and diffusion coef-
ficient are denoted by μ μ=33 and =d d.33 Then (4) takes the
following form:

ϕ ρ
εϕ

μϕ

+ = ̈
− =

̇ − − =

cu e u

eu qn

n n dn

,

,

¯ 0. (5)

,33 ,33

,33 ,33

,33 ,33

We also denote =T T ,33 =S S,33 =D D,3 and =J J.3 The
mechanical boundary conditions at the plate surfaces where

= ±x h3 are

ω=T p texp(i ). (6)

The free charge per unit area Q3 on the electrode at x3 = h
is given by

= −Q D. (7)3

Figure 1. A piezoelectric semiconductor plate and coordinate
system.
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The current per unit area that flows out of the electrode at
x3 = h is

= − ̇I J Q . (8)3

We denote the potential difference between the two
electrodes by a voltage V through

ϕ ϕ= − = − =( ) ( )x h x h V . (9)3 3

For time-harmonic motions, we use the usual complex
notation. For example,

ω= { }( ){ }V Q I J V Q I J t, , , Re ¯ , ¯ , ¯, ¯ exp(i ) . (10)3 3

The common time-harmonic factor will be neglected. We
have the following relation for the output circuit:

=I V Z¯ ¯ / . (11)

When Z is infinite, we effectively have an open circuit.
When Z = 0, the electrodes are shorted. Note that in general Z
may be a function of ω, which depends on the structure of the
output circuit. (6) and (11) are similar to the two corre-
sponding boundary conditions in [23] for a piezoelectric
dielectric plate. Since we are considerating a semiconductor
plate with one more field n and one more equation (5)3, we
need another boundary condition which we take to be the
prescription of the carrier density perturbation near the
boundary:

=n n , (12)0

which is experimentally measurable.

4. Analytical solution for time-harmonic thickness-
extensional vibration

We look for a solution in the following form:

⎧
⎨⎪

⎩⎪
ω

ϕ ω
ω

=
=
=

ξ

ξ

ξ

u A t

B t

n C t

e exp(i ),

e exp(i ),

e exp(i ),

(13)

x

x

x

3

3

3

where A, B, C and ξ are undetermined constants. The sub-
stitution of (13) into (5) leads to a system of homogeneous
linear equations for A, B and C:

⎧
⎨
⎪⎪

⎩
⎪⎪

ξ ρω ξ

ξ εξ

μξ ξ ω

+ + =

− − =

+ − =

( )

( )

c A e B

e A B qC

n B d C

0,

0,

¯ i 0.

(14)

2 2 2

2 2

2 2

The common exponential factor will be dropped in the fol-
lowing. For nontrivial solutions of A, B or C, the determinant
of the coefficient matrix of (14) has to vanish. This yields the

following algebraic equation for ξ:

⎡
⎣⎢

⎤
⎦⎥ξ ρω μ

ε
ξ ρω ξ ω ξ+ − + − =( ) ( )( )c

qn
c d

¯
¯ i 0. (15)2 2 2 2 2 2

(15) has six roots:
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ξ
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=

= ± − ′ + ′ − ′ ′
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= ± − ′ − ′ − ′ ′
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A

B B A C

A
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4

2
,

4

2
, (16)
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3,4

2

5,6

2

where
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⎝

⎞
⎠
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ω
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′ = − +

′ = +

A cd

B
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C
qn

¯ ,
¯

i ¯,

¯
i . (17)

2

2

Because of the symmetry in the problem, only three of the
above six roots are needed to construct a solution with the
necessary symmetry. We denote

λ ξ

λ ξ

λ ξ

= =

= = − ′ + ′ − ′ ′
′

= = − ′ − ′ − ′ ′
′

B B A C

A

B B A C

A

0,

4

2
,

4

2
. (18)

1 1

2 3

2

3 5

2

Then the displacement, electric potential and carrier density
perturbation can be written as

⎧
⎨⎪

⎩
⎪⎪

α λ α λ

ϕ λ λ

β λ β λ

= +

= + +

= +

( ) ( )
( ) ( )

( ) ( )
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(19)

2 2 2 3 3 3 3 3

1 3 2 2 3 3 3 3

2 2 2 3 3 3 3 3

where A1, A2 and A3 are undetermined constants and

α
λ

λ ρω
β

μλ
ω λ

=
−

+
=

−
=

e

c

n

d
m,

¯

i
, ( 2,3). (20)m

m

m
m

m

m

2

2 2

2

2

With (19), the stress, electric displacement and current com-
ponents needed for the boundary conditions can be expressed
as

⎧

⎨

⎪⎪⎪⎪

⎩
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α λ λ

α λ λ

α ε λ λ

α ε λ λ ε

μ β λ λ

μ β λ λ μ

= +

+ + +

= −

+ − −

= − +

− + −

( )
( )

( )
( )

( )
( )

( )
( )

T c e A x

c e A x eA

D e A x

e A x A

J q n d A x

q n d A x qn A

( ) cosh

( ) cosh ,

( ) cosh

( ) cosh ,

¯ cosh

¯ cosh ¯ .

(21)

2 2 2 2 3

3 3 3 3 3 1

2 2 2 2 3

3 3 3 3 3 1

2 2 2 2 3

3 3 3 3 3 1

With the symmetry in the problem, we only need to consider
the boundary conditions at =x h.3 Substituting (19) and (21)
into (6), (11) and (12), we obtain the following three linear

3

Smart Mater. Struct. 24 (2015) 025021 P Li et al



equations for A1, A2 and A3:

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦
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α λ λ α

λ λ

β λ β λ
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2 2

2 2 2 2

3 3

3 3 3 3

The solution of (22) for A1, A2 and A3 is given by
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0

The average input mechanical power per unit plate area
during a period is given by [23]

⎡
⎣⎢

⎤
⎦⎥= +( )P pv p v2

1

4
* , (25)1 3

* 3

where v3 is the thickness-extensional velocity component and
an asterisk represents complex conjugate. The average output
electrical power per unit plate area can be calculated from

[23]

= +

= +

=

( )P IV I V

I I Z Z

I Z

1

4
¯ ¯* ¯* ¯

1

4
¯ ¯*( *)

1

2
¯ Re{ }. (26)

2

2

Then the efficiency of the conversion of the input mechanical
power into the output electric power is [23]

η =
P

P
. (27)2

1

5. Numerical results and discussion

For numerical results we consider a plate of ZnO with [24]
=c 211 GPa, =e 1.32 Cm−2, ε = × −8.85 10 11 F m−1,

ρ = 5700 kg m−3, = × −q 1.602 10 C,19 μ = 1350
cm2 V−1 s−1 and μ=d kT q/ [25]. k is the Boltzmann constant
and T is the absolute temperature. T = 300 °K is used. The
mechanical damping of the material is introduced through
replacing the relevant elastic constant c by a complex number

+ −c Q(1 i )1 where Q is a real, positive and large number. It
can describe viscoelastic behaviors of the material. To focus
on the dissipation due to semiconduction, we must leave the
effect of material damping out, i.e., Q is set to infinity, in
figures 2–6. For the surface mechanical load, p= 1 Nm−2 is
used in our calculation. We only consider surface mechanical
load and set n0 = 0. The plate thickness is 2h= 2 cm except in
figure 5. The steady state carrier density n̄ can range from
zero to 1019 m−3. The load impedance of the output circuit is
taken to be Z= (1 + i)Z0 except in figure 6. We introduce the
following frequency to normalize the driving frequency:

ω π
ρ

=
h

c

2

¯
, (28)s

which is the fundamental thickness-extensional frequency of
the plate and is equal to ωs= 9.993 × 10

5 rad s−1

when h= 1 cm.
Figure 2 shows the basic behavior of the energy con-

version in the plate, i.e., the output power P2 versus the
driving frequency ω. Only symmetric modes of thickness-
extensional motion are considered, such as equation (19), the
displacement, electric potential and carrier density perturba-
tion are all odd functions about mid-plane of the plate x3 = 0.
No anti-symmetric modes of thickness-extensional motion are
included. Therefore, the output is significant only at a series
of discrete frequencies which are the odd thickness-exten-
sional resonant frequencies of the plate. They are close to 1, 3,
and 5, … when normalized by ωs. The difference between
figures 2(a) and (b) is that in (a) the steady state carrier
density =n̄    0 and there is no dissipation due to conduction,
while in (b) there is a moderate =n̄ 1014 m−3. Because of the
resistive component in Z, the resonances are not singular even
when =n̄    0. Sufficient data points are used to capture the
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Figure 2. Output electrical power per unit plate area versus driving
frequency with h = 1 cm, Q=∞ and Z = (1 + i)Z0: (a) =n̄ 0; and (b)

= × −n̄ 1 10 m .14 3

Figure 3. Efficiency versus driving frequency with h = 1 cm, Q=∞,
and Z= (1 + i)Z0.

Figure 4. Effect of n̄ with h= 1 cm, Q=∞, and Z = (1 + i)Z0: (a) P2

near the first resonance; and (b) efficiency at the first two resonances.

Figure 5. Effect of the plate thickness 2h and n̄ on P2 near the first
resonance with Q=∞, and Z = (1 + i)Z0.
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maxima accurately. Compared to (a), P2 is significantly
lowered in (b) by n̄ and the related semiconduction as
expected.

Figure 3 shows the basic behavior of efficiency versus
driving frequency at the first few resonances for the same two
values of =n̄ 0 and = × −n̄ 1 10 m14 3 as those used in
figure 2. When =n̄ 0, there is no energy loss in the plate and
the efficiency is identically equal to one. However, for a
moderate = × −n̄ 1 10 m14 3 and the related dissipation in the
plate due to semiconduction, the efficiency drops sig-
nificantly. The efficiency is still relatively high near reso-
nances. At the first resonance it is as high as 90%. This is not
surprising piezoelectric generators [23].

For a closer look at the effect of the steady state carrier
density n̄ on the output power P2, in figure 4(a) we plot P2

near the first resonance for a series of values of n̄. Clearly,
once n̄ reaches the level of −10 m14 3 or higher, P2 becomes
very sensitive to n̄. A larger n̄ implies more dissipation due to
semiconduction and a weaker resonance as expected. In
figure 4(b) the efficiency at the first two resonances are shown
for multiple values of n̄. It can be seen that the efficiency of
the energy conversion is also sensitive to n̄ and is significantly
lowered once n̄ reaches −10 m14 3 and above. From perspective
of physics, it has been revealed that a too high carrier density
would screen the piezoelectric charges, thus resulting in a
lower or even vanishing output current [26, 27]. Hence, the
output power P2 has been reduced evidently, which indicates
that the increasing of carrier density is not beneficial for
improving the output power [26].

Figure 5 shows the output power P2 at the first resonance
for different plate thickness 2h and two values of n̄. For each
plate thickness, the corresponding ωs is used so that the
normalized resonant frequency is always close to 1. For the
same plate thickness, there are two curves for different n̄. The
difference between the two curves varies as the plate thick-
ness changes. At the high frequency end with a small h, the
electric field in the plate reverses its directions very quickly
which makes it difficult for semiconduction to happen sig-
nificantly. Therefore the peaks are higher for smaller values of

h and the difference between the too curves with the same h
also become smaller at the high frequency end with a small h.

Figure 6 shows the effect of the load impedance Z and n̄
on P2 near the first resonance. P2 is sensitive to both, showing
that in this case the dissipation due to semiconduction is
comparable to the output power.

Figure 7 is the only figure in which the effect of the
material mechanical damping described by Q is included. For
the values of Q and n̄ shown, the efficiency is about equally
sensitive to both. A smaller Q or a larger n̄ means more
dissipation due to either material damping or semiconduction
and hence a lower efficiency as expected.

6. Conclusion

The output electrical power and the energy conversion effi-
ciency assume maxima at or near the plate thickness-exten-
sional resonant frequencies. The efficiency can be very high
as also seen from [23]. The output power and the efficiency
are both sensitive to the semiconduction. Specifically, for a
ZnO plate with mm thickness and MHz resonant frequencies,
when the initial carrier density is moderate and is of the order
of 1015 m−3, the dissipative effect due to semiconduction is
significant and comparable to the effect of material mechan-
ical damping when the material quality factor Q varies from
20 to 1000.
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