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Shear-horizontal surface waves in a half-space of piezoelectric
semiconductors

Chunlong Gu and Feng Jin*
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University, Xi’an, Shaanxi 710049, China

(Received 18 October 2014; accepted 18 January 2015)

We study the propagation of shear-horizontal waves near the surface of a
piezoelectric semiconductor half-space of crystals of class 6 mm with the
presence of a biasing electric field in the propagation direction. The three-
dimensional equations of linear piezoelectric semiconductors are used. A
transcendental equation that determines the dispersion relation is obtained and
solved numerically. Results show that the semiconduction affects the wave
speed and causes wave dispersion as well as attenuation, and that the waves
can be amplified by the biasing electric field.

Keywords: shear-horizontal surface waves; piezoelectric semiconductors;
dispersion relation; propagation and amplification of the Bleustein–Gulyaev
waves

1. Introduction

Piezoelectric materials have been widely used to make electromechanical devices. They
are usually treated as dielectric although some of them are in fact semiconductors [1].
An acoustic wave propagating in a piezoelectric crystal is accompanied by an electric
field. When the crystal is also semiconducting, the electric field produces currents and
space charge resulting in dispersion and acoustic loss [2]. The interaction between a
travelling acoustic wave and mobile charges in piezoelectric semiconductors is called
the acoustoelectric effect [3]. Acoustoelectric effect can also be realized using compos-
ite materials or structures of piezoelectric dielectrics and non-piezoelectric semiconduc-
tors [4,5]. In these composites, the acoustoelectric effect is due to the combination of
the piezoelectric effect and semiconduction in each component phase.

Researchers have made various attempts to make use of the semiconduction in cer-
tain piezoelectric materials for devices. It was found that an acoustic wave travelling in
a piezoelectric semiconductor can be amplified by the application of a dc electric field
[6–9]. This phenomenon is called acoustoelectric amplification of acoustic waves.
Through the electric field accompanying a propagating acoustic wave in a piezoelectric
semiconductor, carriers can be transported by the acoustic wave from one place to
another (acoustic charge transport) [10,11]. Relatively more recently, people have been
trying to use the electric field produced by mechanical deformations in a piezoelectric
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semiconductor to make devices such as strain sensors (piezoelectronics) [12] and energy
harvesters [13–16].

For acoustoelectric amplification and acoustic charge transport, people have studied
various wave propagation problems in piezoelectric semiconductors, e.g. [17–19]. In a
half-space of non-conducting piezoelectric ceramics or crystals of class 6 mm, it is well
known that a shear-horizontal surface wave can propagate and is called the
Bleustein–Gulyaev wave [20,21]. It was shown in [7] that in a composite structure of a
non-conducting piezoelectric half-space with a non-piezoelectric semiconductor film, the
Bleustein–Gulyaye wave can be amplified by a biasing electric field. In [7], the piezo-
electric effect and the semiconduction exist separately in the half-space and the film. In
this paper, we study the propagation and amplification of the Bleustein–Gulyaev wave
in a true piezoelectric semiconducting half-space without the need of a surface film.

2. Governing equations

The basic behaviour of piezoelectric semiconductors can be described by a linear phe-
nomenological theory [2,6,22]. Consider a one-carrier piezoelectric semiconductor. It is
under a uniform biasing electric field �Ej. The carrier charge and steady-state carrier den-
sity are q and �n, respectively. When an acoustic wave propagates through the material,
it produces an incremental electric field Ej and electric current Ji. The perturbation of
the carrier density is denoted by n. The linear theory for the small and dynamic signals
consists of the equations of motion (Newton’s law), Gauss’s law of electrostatics and
the conservation of charge:

Tji;j ¼ q€ui;
Di;i ¼ qn;

q _nþ Ji;i ¼ 0;
(1)

where ui is the displacement vector, Tij is the stress tensor, ρ is the mass density and Di

is the electric displacement vector. The Cartesian tensor notation and summation con-
vention for repeated indices are employed. A comma followed by an index denotes par-
tial differentiation with respect to the coordinate associated with the index. A
superimposed dot represents differentiation with respect to time t. The above equations
are accompanied by the following constitutive relations:

Tij ¼ cijklSkl � ekijEk ;
Di ¼ eijkSjk þ eijEj ;

Ji ¼ q�nlijEj þ qnlij�Ej � qdijn;j;
(2)

where the strain tensor Sij and the electric field Ek are related to the displacement ui and
the electric potential U by:

Sij ¼ ðui;j þ uj;iÞ=2;
Ei ¼ �U;i:

(3)

In (2), cijkl, ekij and εij are the elastic, piezoelectric and dielectric constants. μij and dij
are the carrier mobility and diffusion constants. With successive substitutions from (2)
and (3), we can rewrite (1) as equations for ui, U and n:
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cijkluk;lj þ ekijU;kj ¼ q€ui;
eikluk;li � eijU;ij ¼ qn;

_n� �nlijU;ij þ lij�Ejn;i � dijn;ij ¼ 0:
(4)

On the boundary of a finite body with a unit exterior normal ni, the mechanical
displacement ui or the traction vector Tijni, the electric potential U or the normal com-
ponent of the electric displacement vector Dini, the carrier density perturbation n or the
normal current Jini or the combinations of some of them may be prescribed [23].

3. Antiplane problems

Bleustein–Gulyaev waves belong to antiplane or shear-horizontal motions. In this sec-
tion, we specialize the general equations in the previous section to antiplane motions of
crystals of class 6 mm. Consider the piezoelectric semiconductor half-space in Figure 1.
Antiplane motions are described by the following fields:

u3 ¼ u3 x1; x2; tð Þ; u1 ¼ u2 ¼ 0;
U ¼ U x1; x2; tð Þ;
n ¼ n x1; x2; tð Þ:

(5)

In this case, some of the strain, stress, electric field, electric displacement and current
components vanish. For crystals of class 6 mm, the remaining stress, electric displace-
ment and current components are:

T13 ¼ c44u3;1 þ e15U;1;
T23 ¼ c44u3;2 þ e15U;2;
D1 ¼ e15u3;1 � e11U;1;
D2 ¼ e15u3;2 � e11U;2;
J1 ¼ q�nl11E1 � qd11n;1;

J2 ¼ q�nl11E2 þ qnl11�E2 � qd11n;2;

(6)

where �E1 ¼ 0 was assumed. �E2 is in the wave propagation direction and is kept for the
study of the acoustoelectric amplification of the waves. The substitution of (5) and (6)
into (1)1 (when the index i = 3) and (1)2,3 gives:

c44r2u3 þ e15r2U ¼ q€u3;
e15r2u3 � e11r2U ¼ qn;

_n� �nl11r2U� d11r2nþ n;2l11�E2 ¼ 0;
(7)

which are the equations needed for antiplane motions.

Figure 1. A piezoelectric semiconductor half-space and coordinate system.
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4. Propagation of surface waves

For surface waves propagating in the x2 direction over the half-space in Figure 1, we
look for a solution in the following form:

u3 ¼ Ae�kbx1eik x2�ctð Þ;
U ¼ Be�kbx1eik x2�ctð Þ;
n ¼ De�kbx1eik x2�ctð Þ;

(8)

where c is the wave speed, k is the wave number which is taken to be real and positive
and b describes the decay rate from the free surface at x1 = 0 which should have a posi-
tive real part. A, B and D represent the wave amplitudes. Substituting (8) into (7), can-
celling the common exponential factor, we obtain the following homogeneous linear
equations for A, B and D:

c44 b2 � 1
� �þ qc2

� �
Aþ e15 b2 � 1

� �
B ¼ 0;

e15k2 b2 � 1
� �

A� e11k2 b2 � 1
� �

B� qD ¼ 0;
�nl11k

2 b2 � 1
� �

Bþ d11k2 b2 � 1
� �þ ikc� ikl11�E2

� � ¼ 0:

(9)

For non-trivial solutions of A, B and D, the determinant of the coefficient matrix of (9)
must vanish, which yields an algebraic equation for b2. Denoting b2 � 1 ¼ a, we can
write the equation for b2 as a cubic equation for a:

a d11k2 c44e11 þ e215
� �

a2 þ d11e11qc2k2 þ ik c� l11�E2ð Þ c44e11 þ e215
� �� c44q�nl11

� �
a

�
þ ik c� l11�E2ð Þe11 � q�nl11½ �qc2� ¼ 0:

(10)

Since (10) has two factors, the three roots of (10) can be easily written as:

a1 ¼ 0;

a2 ¼ �b0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b02 � 4a0c0

p

2a0
;

a3 ¼ �b0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b02 � 4a0c0

p

2a0
;

(11)

where

a0 ¼ d11k2 c44e11 þ e215
� �

;
b0 ¼ d11e11qc2k2 þ ik c� l11�E2ð Þ c44e11 þ e215

� �� c44q�nl11;
c0 ¼ ik c� l11�E2ð Þe11 � q�nl11½ �qc2:

(12)

a depends on the wave speed c and the wave number k. Once a is known, b can be
obtained from a ¼ b2 � 1. Only the three roots of b with positive real parts are taken
and are denoted by bm (m = 1, 2, 3). Corresponding to each bm, the ratios among the
amplitudes A, B and D can be determined from (9) as:

Pm ¼ Am
Bm

¼ � e15 b2m�1ð Þ
c44 b2m�1ð Þþqc2

;

Qm ¼ Dm
Bm

¼ k2

q b2m � 1
� �

e15Pm � e11ð Þ:
(13)
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Then the general surface wave solution in the form of (8) satisfying (7) and the decay
condition at x1 ¼ þ1 can be written as:

u3 ¼
P3
m¼1

PmBme�kbmx1eik x2�ctð Þ;

U ¼ P3
m¼1

Bme�kbmx1eik x2�ctð Þ;

n ¼ P3
m¼1

QmBme�kbmx1eik x2�ctð Þ;

(14)

where Bm (m = 1, 2, 3) are undetermined constants. With (14), T13, D1 and J1 can be
calculated from (6) which are needed in boundary and continuity conditions.

We consider a unelectroded half-space. In the free space above the half-space, the
electric potential and the normal electric displacement component relevant to boundary/
continuity conditions can be written as [20]:

U0 ¼
P3
m¼1

Bmekx1eik x2�ctð Þ;

D0 ¼ �e0U0;1 ¼ �e0k
P3
m¼1

Bmekx1eik x2�ctð Þ;
(15)

which automatically satisfies the continuity of the electric potential, i.e. U ¼ U0 at the
surface of the half-space.

At the surface of the half-space, the remaining boundary and continuity conditions
are:

T13 ¼ 0;
_D1 þ J1 ¼ _D0;

n ¼ 0:
(16)

(16)2 represents the conservation of charge at the surface [23] which is more general
than the corresponding one in [20] because of semiconduction. Compared to the conti-
nuity conditions in [20] for non-conducting piezoelectrics, (16)3 is a new boundary con-
dition because of the additional equation from semiconduction. Physically it means that
the perturbation of the carrier density vanishes at the boundary. Substituting (14) and
(15) into (16), we obtain a system of homogeneous linear equations for Bm:

P3
m¼1

c44Pm þ e15ð ÞbmBm ¼ 0;

P3
m¼1

e15Pm � e11ð Þik2cbm þ �nl11 þ d11Qmð Þqkbm � ik2e0c½ �Bm ¼ 0;

P3
m¼1

QmBm ¼ 0:

8>>>>>>><
>>>>>>>:

(17)

The determinant of the coefficient matrix of (17) has to vanish, which gives an equation
that determines the wave speed c vs. the wave number k. The equation is solved numer-
ically. The wave speed thus determined is a complex number whose real and imaginary
parts represent the real or true wave speed and wave attenuation, respectively.
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5. Numerical results and discussion

For numerical results consider a half-space of ZnO with [24] c44 ¼ 43 GPa,
e15 ¼ �0:48 C/m2, e11 ¼ 7:61� 10�11 F/m, q ¼ 5700 kg/m3, q ¼ 1:602� 10�19 C,
l11 ¼ 1 m2/Vs and d11 ¼ l11kT=q [25]. k is the Boltzmann constant and T is the abso-
lute temperature. At room temperature, kT/qe = 0.026 V [25] where qe = 1.602 × 10−19

coulomb is the electronic charge. For the carriers, we consider holes with q = qe. Pres-
ent technology can make a material with �n of any value between zero and 1019/m3

[26,27]. �n will be varied in the following. We use the speed of the Bleustein–Gulyaev
wave in a non-conducting piezoelectric half-space as a normalizing speed:

v2BG ¼ �c44
q

1�
�k415

ð1þ e11=e0Þ2
" #

;�c44 ¼ c44 þ e215
e11

; �k215 ¼
e215

e11 �c44
: (18)

5.1. Effects of semiconduction on wave speed and attenuation

Consider the case without a biasing electric field first, i.e. �E2 ¼ 0. The basic effects of
semiconduction on the complex wave speed are shown in Figures 2a and b for different
values of the unperturbed carrier density �n.

The normalized real part of c or the true wave speed is shown in Figure 2a.
Different from the Bleustein–Gulyaev wave which is non-dispersive, the wave is disper-
sive now. The wave speed is smaller than one, showing that the semiconduction lowers
the wave speed. The effect is stronger for smaller values of k or long waves with low
frequencies but is still relatively weak, only about a few per cent. For large k or short
waves with high frequencies, the electric field reverses its direction quickly which is

Figure 2a. Effect of the steady-state carrier density �n on wave speed for �E2 ¼ 0.
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not helpful to conduction and therefore the effect of semiconduction is weak. At the
long wave limit, the wave speed approaches vBG for the same reason. When �n increases
or there are more carriers, the effect of semiconduction becomes stronger as expected.

The normalized imaginary part of c which describes wave attenuation is shown in
Figure 2b. It is always negative, showing wave amplitude attenuation instead of growth.

Figure 2b. Effect of the steady-state carrier density �n on wave attenuation for �E2 ¼ 0.

Figure 3a. Effect of the biasing electric field on wave speed.
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For short waves, the attenuation due to semiconduction is weak like in the case of the
wave speed shown in Figure 2a and is for the same reason. Somewhere between short
and long waves, there is a maximal attenuation at a particular value of k. For very long
waves (k ! 0), the attenuation becomes small again. These are not easy to explain and
were also observed in [18] for waves in structures with components of both non-piezo-
electric semiconductors and piezoelectric dielectrics.

5.2. Wave Amplification by the biasing electric field

Figures 3a and b show the effect of the biasing electric field �E2 on the complex wave
speed when �n ¼ 1015. c ¼ l�E2=cBG is the ratio between the carrier drift speed under
the biasing electric field and the speed of Bleustein–Gulyaev wave. When �E2 is present,
the effect of semiconduction on the wave speed is still qualitatively similar to the case
when �E2 ¼ 0 as shown in Figure 3a. However, the effect of �E2 on wave attenuation has
qualitatively different behaviours roughly divided by the case of c ¼ 1. When c is
roughly less than 1, we still have wave attenuation as in the case shown in Figure 2b.
When c is roughly larger than 1, the attenuation changes its sign and we in fact have
wave growth. This is the important phenomenon of wave amplification by a biasing
electric field in a piezoelectric semiconductor [6–9].

6. Conclusion

A shear-horizontal surface wave is shown to exist in a half-space of a piezoelectric semi-
conductor of crystals of class 6 mm. It generalizes the well-known Bleustein–Gulyaev
wave in a non-conducting piezoelectric half-space. The semiconduction affects the wave
speed and causes both dispersion and wave attenuation. The effect of semiconduction is
stronger for higher carrier densities as expected. It diminishes for short waves at high

Figure 3b. Effect of the biasing electric field on wave attenuation.
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frequencies. The surface wave can be amplified by a biasing electric field in the wave
propagation direction. The amplification occurs roughly when the carrier drift speed
under the biasing electric field exceeds the surface wave speed.
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