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Abstract 

A combined analytical and numerical study is carried out for the structural stiffness, 

collapse strength and minimum mass design of foam-filled corrugated sandwich 

beams under transverse three-point bending. Both close-celled aluminum foam and 

polymer foam as the filling material are considered. Based upon a 

micromechanics-based model, effective elastic constants of foam-filled corrugations 

are derived using the homogenization method. To analytically predict the initial 

collapse strength, six different failure modes are considered, with the effect of loading 

platen width accounted for. Finite element simulations are performed to validate the 

analytical predictions, with good agreement achieved. Minimum mass design is 

obtained as a function of structural strength, and the influence of foam material and 

loading platen width is quantified. The structural efficiency of foam filling to 

reinforce the sandwich is assessed on the basis of equal mass and the underlying 

mechanisms explored. It is shown that polymer foam-filled corrugations are more 

weight efficient than unfilled ones of equal mass. 

 

Keywords: Foam-reinforced corrugated sandwich; Three-point bending; Analytical 

model; Minimum mass 

 

1. Introduction 

By mingling the advantageous attributes of stochastic foams and periodic lattices, 

hybrid-cored sandwich structures can be constructed for high stiffness, strength and 

energy absorption. Such hybrid sandwich cores include pin-reinforced foams [1-4], 

polymer foam-filled polymer lattices [5,6], polymer foam-filled fibre reinforced 

composite lattices [7,8], polymer foam-filled metallic lattices [9,10], and metallic 

foam-filled metallic lattices [11-13]. Existing studies focused mainly on the 

out-of-plane compression behavior of these novel structures, while only a few 

concerned about their bending performance [14-17].  
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Among the hybrid foam-lattice cores studied thus far, metallic corrugations filled 

with either polymer or metallic foams received special attention on account of their 

relatively low manufacturing cost and good structural performance. Vaziri et al. [9] 

found numerically that sandwich plates with polymer foam-filled metallic corrugated 

cores can perform as well, or nearly as well, as plates of the same weight with unfilled 

cores in terms of: (i) basic core responses to crush, shear and stretch, (ii) clamped 

plate response to quasi-static punch load, and (iii) plate response to impulsive load. 

Using a combined experimental and theoretical study, Yan et al. [11] and Han et al. 

[12] studied the quasi-static uniaxial compression behavior of metallic corrugated 

sandwiches filled with close-celled aluminum foams, while Yu et al. [13] explored the 

corresponding dynamic crushing responses. It is demonstrated [11-13] that foam 

filling can dramatically increase the specific compression strength and specific energy 

absorption of corrugated sandwich cores. Subsequently, based upon mainly 

experimental measurements, Yan et al. [17] studied the transverse three-point bending 

(i.e., bending plane normal to corrugation axis, as shown in Fig. 1) behaviors of 

metallic corrugated sandwich beams filled with aluminum foams. While filling of 

aluminum foam led to dramatically increased bending stiffness and strength of the 

sandwich, its mass also increased considerably [17]. Under transverse three-point 

bending, it is uncertain whether filling a corrugated core with foam can result in a 

larger failure load than that of an empty core with equal mass. 

As a companion study of Yan et al. [17], this article explores further the concept of 

foam filling to reinforce corrugated sandwiches in three-point bending, with emphasis 

placed upon minimum mass design, structural efficiency assessment and 

strengthening mechanisms analysis. In particular, different from the Yan et al. [17], 

the benefit of foam filling is assessed on the basis of equal mass and both aluminum 

and polymer foams having high porosities are considered as the filling material.  

This study firstly derives analytical expressions of both the stiffness and initial 

collapse strength for foam-reinforced corrugated sandwich beams in transverse 

three-point bending. Subsequently, minimum mass designs are carried out to quantify 

the structural efficiency of foam-filled corrugations on the basis of equal mass. The 
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underlying strengthening mechanisms are explored and collapse mechanism maps 

constructed. Finally, finite element (FE) simulations are performed to visualize the 

failure modes of different foam-corrugation combinations and to validate the 

analytical model predictions. 

 

2. Stiffness and strength of foam-filled corrugated sandwich beams 

Consider a foam-filled corrugated sandwich beam subjected to transverse 3-point 

bending with span length L and overhang H, as depicted in Fig. 1. Relevant geometric 

variables are: face sheet thickness ft , corrugated member thickness t , corrugated 

member length l , corrugation angle  , core height c , and sandwich beam width b. 

The volume fraction   of the corrugated members and density c  of the unit cell 

in the sandwich core are given by: 

 (1 )c s f       (1) 

 
2

sin 2

t

l



   (2) 

where s  and f  represent the density of the corrugated member material and 

foam, respectively. Let sE  and   denote the Young’s modulus and Poisson ratio of 

the corrugated member material; while fE  and f  denote the Young’s modulus 

and Poisson ratio of the foam. 

It is assumed that the corrugated members are perfectly bonded to the face sheets 

and no sliding occurs when subjected to loading. It is further assumed that the 

corrugated members and the filling foam keep close contact with each other during 

deformation, even though slip may occur at the interface. 

 

2.1. Effective elastic constants of foam-filled corrugated core 

To analyze the structural response of the sandwich beam under 3-point bending, 

the effective elastic constants of its foam-filled core are obtained with the 

homogenization method. For periodic lattice cores, the homogenization method has 

been widely used to calculate their equivalent elastic structural performance 
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[14,18-20]. Using this approach, Liu et al. [19-20] derived the effective stiffness 

matrix of empty (unfilled) corrugated cores.  

The foam-filled corrugated core may be analyzed at two different scales: (a) at the 

macroscale, it is treated as a homogeneous continuum solid; (b) at the microscale, the 

foam fillers and the corrugated members are separately considered. The derivation of 

micro-macro relations for such a periodic medium relies on the analysis of its 

representative volume element (RVE, or unit cell).  

2.1.1. Homogenization of foam-filled corrugated core  

As schematically shown in Fig. 2a, when subjected to a y z  plane macroscopic 

strain E , the corrugated member may be characterized as an Euler-Bernoulli beam of 

unit width (along the x -direction), clamped at both ends, since it is typically 

100~1000 times stiffer than the foam filler. For a unit cell containing two corrugated 

beam members surrounded by foam filling, analogous to the analysis of 

pin-reinforced foam cores [14], its macroscopic strain energy density may be written 

as: 

 b fG G G    (3) 

 
          

2

1

1 1
2

2

T
i i i i i

b p p

i

G g


 
     

 u u K u   (4) 

    
2

1

1 1
1

2

if

f hjkl hj kl p

i

G C E E g


 
   

 
   (5) 

where bG  and fG  are the strain energy of the beam members and foam filler, 

respectively,   represents the current volume of the unit cell, superscript/subscript 

f  denotes the foam, and 
 

u
i

 is the global nodal displacement vector for the i-th 

inclined beam characterized by end nodes   and   (Fig. 2b): 

 
( ) ( )

u T u
i T i e   (6) 

 
  ( )

, , , , ,
i Ti e

x xw v w v         u   (7) 
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Here,  
u

i e
 is the nodal displacement vector under local coordinates (y, z), T is the 

transformation matrix between local and global coordinates (see Appendix), and e 

denotes values in local coordinates. The global nodal displacement vector for the i-th 

beam may be written as: 

 
   

( )

1 1, ,0,0,0,0u
i Ti

     (8) 

where 1  and 2  denote the projections of displacements Δ  of the end nodes of 

the inclined beam (Fig. 2a), given by: 

             0
sin

c


Δ EN                       (9) 

with  

  22 23

1 2

33

, , .E       Δ m r
TE E

sym E

 
    
 

  (10) 

Here, 0N  is the unit vector along which the beam member is initially aligned. 

In Eq. (4), ( )i

pu  is the nodal displacement vector of the i-th beam induced by 

lateral normal stress ( )ip  (Fig. 2b), which represents the coupling effect between the 

beam and foam: 

 
( ) ( )e

u T u
i T i

p p   (11) 

 

( )
( ) 0 0 0 0 0u

T
i

i

p

p
l

E

 
  
 

  (12) 

The effect of shear stress on the lateral surface of the beam is ignored. The strain 

energy contributed by lateral normal stress ( )ip  may be divided into two parts: one is 

related to elongation of the i-th beam, as calculated in Eqs. (11) and (12); the other, 

related to compression on beam lateral surface and represented by 
 i
pg  in Eqs. (4) 

and (5), is eliminated during summation of the total strain energy in Eq. (3). 

   The macroscopic deformation of the foam in a unit cell is approximately equal to 

that of the unit cell, as shown in Eq. (5). Therefore, with close contact assumed 

between beam members and foam filler, ( )ip  is assumed to be uniformly distributed 
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on beam lateral surface, and can be approximately calculated as: 

 
( ) 2 2

22 22 23 33 22 23 232i f f fp n n n n       (13) 

  2 22 23, ,n     σ C E
T f fn n    (14) 

where 
2n  is the unit vector normal to the outer surface of the beam and the stiffness 

matrix fC  of the foam is given in Appendix.  

In Eq. (4), 
( )

K
i

 is the global stiffness matrix that satisfies the transformation 

between local and global coordinates: 

 
( ) ( )K T K Ti T e i   (15) 

where 
( )Ke i

 is the elementary stiffness matrix of the i-th beam, as given in Appendix. 

Let the macroscopic strain vector of the unit cell be defined as: 

    1 2 3 4 5 6 11 22 33 23 13 122 2 2Ξ
T T

E E E E E E          (16) 

Then the effective stiffness of the unit cell may be calculated as:  

 

2
H

ij

i j

G
C



 

  (17) 

where the superscript H denotes the homogenized effective stiffness. The y z  

plane macroscopic effective stiffness H
C  of a foam-filled corrugated core may 

thence be obtained using Eqs. (16) and (17), as: 
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where 

  
2

2 2

22 23
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s
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   (21) 

In Eq. (18), the first two terms represent separately the stiffness contribution of 

stretching and bending deformation mechanisms for the corrugated members, the 

third term represents the contribution of lateral stress due to foam filling (i.e., 

beam-foam coupling effect) on the deformation of corrugated members, and the 

fourth term represents the contribution of foam filling. When 1t l   and 

1f sE E   (as assumed in this paper), the stiffness contributions by the bending 

deformation of corrugated members and the coupling effect may be neglected. Thus 

only the first and fourth terms in (18) remain, which is similar to the simple estimate 

of Vaziri et al. [9]. 
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The homogenized effective stiffness of a foam-filled corrugated core may also be 

obtained when the corrugated members are modeled as Timoshenko beams, if the 

elementary stiffness matrix formulation of Euler-Bernoulli beam is replaced by that of 

Timoshenko beam. However, numerical examples show that the Euler-Bernoulli beam 

model is accurate enough to model the behavior of the present corrugated members. 

Hence, for simplicity, only results for Euler-Bernoulli beams are presented hereafter.  

As mentioned by Liu et al. [19], when 1t l  , the effective stiffness matrix 

obtained with simply supported beam ends is nearly identical to that obtained with 

clamped ends. In other words, the supporting conditions of the corrugated members 

have negligible influence on the macroscopic stiffness of the sandwich core. 

 

2.2. Sandwich stiffness 

The macroscopic mid-span deflection   of a sandwich beam loaded in 3-point 

bending is the sum of its flexural and shear deflections [21]: 

 
   

3

48 4

s

eq eq

FLFL

EI GA


     (22) 

where  
eq

EI  and  
eq

GA  represent the equivalent flexural rigidity and equivalent 

shear rigidity of the sandwich beam, and s  is the shear coefficient [22]: 

 
 

 

 

( )

eq eq

s

eqeq

EQ GA

EI Gb
    (23) 

For a lightweight sandwich beam, the face sheets have negligible contribution to 

its shear stiffness, and the core has negligible contribution to its bending stiffness, 

resulting in: 

  
2

s f

j jeq
j

E bt d
EQ E Q    (24) 

 44( ) H

eq j j

j

Gb G b bC    (25) 

  
2

2

s f

j jeq
j

E bt d
EI E I    (26) 

http://www.efunda.com/formulae/solid_mechanics/beams/index.cfm
http://www.efunda.com/formulae/solid_mechanics/beams/index.cfm
http://www.efunda.com/formulae/solid_mechanics/beams/index.cfm
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   44

H

j jeq
j

GA G A bdC    (27) 

Here, the spacing d of the mid-planes of the face sheets is given by fd c t  ; Q  is 

the first moment about the neutral axis of the portion of the cross-sectional area above 

the neutral axis; 
44

HC  is the effective shear modulus of the sandwich core in 2-3 plane; 

and jE , jG , jI , jQ , jb  and jA  are the effective Young’s modulus, effective 

shear modulus, first moment, second moment, beam width and area of the cross 

section of the j-th layer (j = 1,2,3), respectively. Substitution of (24)-(27) into (23) 

leads to 1s  . Then Eq. (22) is reduced to the expression given by Allen [23]. 

   Later in Section 4, the above analytical predictions of structural stiffness are 

validated against FE simulation results. 

 

2.3. Failure initiation loads 

In the present study, either polymer foam or aluminum foam is taken as the filling 

material, while the face sheets and the corrugated members are assumed to be made of 

the same metal material. For a foam-filled corrugated sandwich beam subjected to 

transverse 3-point bending, six different failure modes are identified: 1. face yielding 

(FY), 2. face wrinkling (FW), 3. core shear with corrugated member buckling (CSB), 

4. core shear with corrugated member yielding (CSY), 5. indentation with corrugated 

member buckling (INDB), and 6. indentation with corrugated member yielding 

(INDY). Note that, under transverse 3-point bending, each of these failure 

mechanisms can occur in a foam-reinforced corrugated sandwich beam, as confirmed 

by FE simulations (see Section 4).  

To facilitate the current theoretical analysis, planar deformation (plane strain) of 

the sandwich beam is assumed. Thus, the face sheets and corrugated members have 

effective Young’s modulus 2(1 )s sE E    and yielding stress 2 3Y Y  , 

while the foam material has effective Young’s modulus 
2(1 )f f fE E   . 

Experimentally it was found that the elastic strain limit p  corresponding to the 
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onset of plateau stress 
p  has a value on the order of 2-4% for polymer foams and 

1-2% for aluminum foams [14]. For metallic corrugated members, the yielding strain 

Y  typically falls in the range of 0.1-1%. Thus, it is reasonable to assume that the 

onset of yielding in corrugated members is prior to that in the foam fillers. 

When failure is initiated in a foam-filled corrugated sandwich beam under 3-point 

bending, relevant formulae governing the six different failure modes are derived as 

follows, with the effect of loading platen width accounted for. 

 

2.3.1. Face yielding 

Plastic collapse of metallic face sheets occurs when the axial stress within the face 

sheet reaches the yielding strength Y . With the pressure under the loading platen of 

width a  (Fig. 1) assumed uniform, the maximum moment within the sandwich beam 

may be written as ( - 2) 4M F L a , rather than 4M FL . With the contribution 

of foam-filled corrugated core to bending strength neglected, the collapse force for 

face yielding is determined by equating the maximum bending moment to the plastic 

collapse moment of the section, yielding: 

 
4

2

f

FY Y

bt d
F

L a



  (28) 

When the width of loading platen is neglected, implying concentrated force loading, 

(28) is reduced to the following classical expression [17,24]: 

 
4 f

FY Y

bt d
F

L
   (29) 

 

2.3.2. Face wrinkling 

As a local elastic instability of the face sheet involving short wavelength elastic 

buckling, face wrinkling only occurs in the compressive face sheet supported by a 

unilateral elastic foundation (foam filling) between two neighboring corrugated 

members. The critical wrinkling force crP  may be calculated as [25]: 
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 2

2

2 ,                           Simply supported ends

4 2 ,           Clamped ends

s

cr s
s

f

kE I

P E I
kE I

l






 




  (30) 

where the elastic coefficient of the elastic foundation k , the effective wrinkling 

length fl , and the second moment of face sheet I  are: 

 

3

, 2 / tan ,
12

f f

f

E b bt
k l c I

c
                (31) 

It follows that the wrinkling stress of the face sheet 
FW  is given by: 

 
2

2

,                            Simply supported ends
3

,       Clamped ends
3 3

f f

cr
FW

f
f f f

f

E E t

cP

t b t E E tE

l c





  
  
  

  
   

    
   

  (32) 

While the simply supported condition neglects the rotational restraints at the joints 

and underestimates the critical load associated with local buckling, the clamped 

condition overestimates the critical load. For conservative estimation, the simply 

supported condition is employed in all subsequent analysis. 

Analogous to (28), the collapse load for face wrinkling may be written as: 

 
4

2
FW FW

btd
F

L a



  (33) 

The transition from face wrinkling to face yielding is:  

 
23f Y

s fcr

t

c E E


  (34) 

 

2.3.3. Core shear with corrugated member buckling or yielding 

For a sandwich beam having thin face sheets, it is usually assumed that the shear 

force is carried mainly by its core. For sandwich beams with metallic face sheets, two 

competing modes can be expected [24], as illustrated in Fig. 3: Mode A comprises 

plastic hinge formation in face sheets at mid-span of the sandwich, with core shear 

over the whole length except for the region beneath the loading platen (L+2H-a), 

rather than (L+2H) [24]; Mode B consists of plastic hinge formation in face sheets 
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both at mid-span and at the outer supports, with core shear only over the span length 

excluding the region beneath the loading platen (L-a), rather than L [24]. On equating 

the external work to the internal work dissipated within the core and at plastic hinges 

of the face sheets, the collapse force of Mode A and Mode B for the present 

foam-filled sandwich beam under transverse 3-point bending may be derived as: 

 

2

23

2

23

2 2
2 1 ,             Mode A

4
2 ,                               Mode B

f cY

Y

CS

f cY

Y

bt H
bc

L a L a
F

bt
bc

L a





  
    

   
 


  

  (35) 

where 
23

cY  denotes the core shear strength. The switch from Mode A to Mode B for 

the overhang satisfies the relation: 

 

2

23

1

2

f Y

cY

t
H

c





  (36) 

In the present study, it is assumed the overhang exceeds the transition value so that 

failure due to core shear is by Mode B. For core shear in Mode B, two kinds of failure 

modes may be considered: elastic buckling and yielding of corrugated members. 

For the foam-filled core, the core shear strength 23

cY  may be expressed as  

  23 23sin 2 (1 )
2

cY foam

c


         (37) 

where c  is the collapse stress of the corrugated members and 23

foam  is the shear 

stress of the filling foam given by 

 
 23 

sin 2

f cfoam

s

G

E





   (38) 

When elastic buckling occurs, the buckling stress of a corrugated member buried 

in the foam matrix, which is treated as a superposition of Winkler type elastic 

foundations [25], may be obtained as: 

 
22

 ,                            Simply supported ends
3 cos

 

 ,        Clamped ends
3 3 cos

f s

c

f ss

E E t

c

E EE t t

l c












 
  

 
 

  (39) 
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Thus, the collapse stress of a corrugated member with simply supported ends (as a 

conservative analysis) is given by:  

 
         if            corrugated member buckling

 3 ccos

,                            otherwise            corrugated member yielding

f s

c Y
c

Y

E E t
 

 




 

 



  (40) 

For corrugated members surrounded by foam filling, the transition from buckling 

to yielding is: 

 
23 cosY

cr s f

t

c E E

 
  (41) 

 

2.3.4. Indentation with corrugated member buckling or yielding 

As shown in Fig. 4, the indentation failure involves the formation of four plastic 

hinges within the top face sheet adjacent to the indenter as well as compressive 

collapse of the underlying core [24]. Correspondingly, the collapse load of indentation 

is given by: 

 33 332 cY cY

IND f YF bt ab      (42) 

where 33

cY  is the compressive strength of the core: 

 
2

33 c 33sin (1 )cY foam         (43) 

and 33

foam  is the compressive stress of the foam:  

 
33 2sin

f cfoam

s

E

E





   (44) 

   Similar to core shear failure, when elastic buckling and yielding of corrugated 

members are taken into account for indentation failure, Eqs. (40) and (41) are 

applicable to indentation. However, the stress states of the corrugated members in the 

failure zones of core shear and indentation are different, as shown in Figs. 3 and 4. 

This results in the different buckling modes of corrugated members as shown in 

Figs. 10d-e. 
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3. Minimum mass optimization and failure mechanism maps 

In this section, the goal is to optimize the geometric parameters of foam-filled 

corrugated sandwich beams to achieve minimum mass design for a prescribed 

structural load index ( )YF F bL . 

The mass per width of the sandwich beam is: 

  2 s f cW t c L     (45) 

The corresponding non-dimensional expression is defined by a mass index 

2

sW W L . For convenience, relevant non-dimensional geometric and material 

parameters are defined as:  

 ,     ,     ,     ,     ,     f f s f f ft t c t t c c c L a a L d c t           (46) 

 cos , (1 )c c s ft                    (47) 

 ˆ, ,c c Y f s FW FW Y    E E E               (48) 

It follows that:  

 23 23

ˆ(1 )
sin(2 )

2 (1 )sin(2 )

cY cY

Y c

f

E 
  

 

 
       

  (49) 

 
2

33 33 2

ˆ
sin (1 )

sin

cY cY

Y c

E
    



 
      

 
  (50) 

And the expressions for W  and F  may be rewritten as: 

 2                 (Sandwich mass)f cW t c c    (51) 

 
24 ( 1) (1 2)                 (Face yielding)FY f fF t t c a     (52) 

 
24 ( 1) (1 2)                  (Face wrinkling)FW f f FWF t t c a     (53) 

 
2 2

234 (1 ) 2         (Core shear)cY

CS fF t c a c      (54) 

 33 332            (Indentation)cY cY

IND fF t c a      (55) 

 

3.1. Minimum mass design 

To minimize M , the sequential quadratic programming (SQP) algorithm coded 

in MATLAB is employed, subjected to the constraints that none of the failure modes 
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detailed in Eqs. (52)-(55) occurs. The optimization is performed by imposing limits 

on the following geometric parameters: 0.01t  , 0.01c  , o o10 80  , and 

1%  , which are so chosen for ease of fabrication.  

 

3.1.1. Influence of foam filling 

To quantify the contribution of foam filling on structural efficiency, minimum 

mass optimizations for corrugated sandwich beams with and without foam filling as 

functions of structural load index F  are compared in Fig. 6. The face sheets and 

corrugated members are all made of 304 stainless steel, with fixed loading platen 

width 0.04a  . To fill the interstices of the corrugated core, a series of Rohacell 

polymer foams with varying densities (i.e., Rohacell 31, 51, 71, 110 and 200) and one 

aluminum foam identical to that used by Yan et al. [17] are employed, with material 

properties listed in Table 1. To find the best foam that maximizes the structural 

efficiency, two fictitious Rohacell foams, i.e., R10 and R20 with low densities of 10 

kg/m
3
 and 20 kg/m

3
, are additionally considered. Their elastic modulus is extrapolated 

using the following fitting function [26] (see also Fig. 5): 

  
1.17

0.8117f fs f fsE E     (56) 

where fs  and fsE  denote the density and Young’s modulus of the solid parent 

material of the polymer foam.  

For brevity, let RC10, RC20, RC31, RC51, RC71, RC110, RC200 and AC denote 

corrugate-cored sandwiches filled with Rohacell 10 (R10), Rohacell 20 (R20), 

Rohacell 31 (R31), Rohacell 51 (R51), Rohacell 71(R71), Rohacell 110 (R110), 

Rohacell 200 (R200) and aluminum foam, respectively. Let Empty refers to empty 

corrugated sandwiches. 

   It is striking to find that, in terms of structural efficiency, the sandwich beams 

considered may be classified into two categories, as shown in Fig. 6: for sandwiches 

filled with foams stiffer than R51, a weaker foam enhances the structural efficiency 

(Fig. 6a); for sandwiches filled with foams weaker than R51, a weaker foam 

deteriorates the structural efficiency (Fig. 6b). Further, as shown in Fig. 6c, the 
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sandwich filled with R51 performs best among all the sandwich types considered. 

The results of Figs. 6a-b demonstrate that, on the basis of equal mass, corrugated 

sandwiches filled with polymer foams (Rohacell) are structurally more efficient than 

empty sandwiches. In contrast, the structural efficiency of corrugated sandwiches 

filled with aluminum foam is inferior to that of empty sandwiches of equal mass. 

Under 3-point bending, the superiority of polymer foam-filled sandwiches over 

empty ones is more obvious at lower load levels, which gradually diminishes as the 

load is increased. For heavily loaded cases (e.g., 0.006F  ), the empty sandwiches 

can even outperform those filled with polymer foams. To interpret the above 

phenomena, the transition of failure modes along the minimum mass optimal path is 

presented in Fig. 6d for each type of sandwich beam. For foams weaker than R51, the 

failure modes of buckling including FW, CSB, and INDB dominate at low values of 

F . In comparison, for foams stiffer than R51, the failure modes of material yielding 

including FY, CSY, and INDY dominate over the whole range of F .  

The structural enhancement due to polymer foam filling is attributed to increased 

buckling resistance of face sheets or corrugated members due to the lateral support of 

the foam matrix. The final structural efficiency is a trade-off between mass addition 

and enhanced buckling resistance of constituent members, both attributed to foam 

filling. Hence, for buckling failures (FW, CSB, INDB), a stronger structural efficiency 

is achieved with denser foams due to larger strengthening effect of buckling resistance; 

for material yielding failures (FY, CSY, INDY), a weaker structural efficiency is 

achieved with denser foams, as no further strengthening is gained by increasing the 

foam density.  

As the structural load is increased, material yielding gradually dominates. 

Consequently, the positive strengthening effect of foam filling on face sheets or 

corrugated members diminishes, while the negative effect of additional mass due to 

foam filling becomes prominent. As a result, the structural efficiency deceases and, at 

sufficiently large load levels, becomes even worse than that of empty sandwiches. 

Corresponding to each minimum mass design, relevant geometric parameters 
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including 
ft , t , c , and   can be obtained simultaneously. However, for brevity, 

the results are not presented here.  

 

3.1.2. Influence of loading platen width 

Besides the influence of foam fillers, it is also instructive to explore the effect of 

loading platen width on minimum weight design. In Fig. 7, selected results for RC51 

sandwich beams with 0a  , 0.04, 0.08, 0.12, 0.2 and 0.3 are presented. 

It is seen from Fig. 7a that the normalized width of loading platen a  affects 

significantly the structural efficiency of sandwich beams, even if when a  is 

relatively small, and thus its effect should not be neglected. As a  is increased, the 

RC51 sandwich becomes structurally more efficient, but the sensitivity of its 

minimum mass to a  decreases. Correspondingly, Fig. 7b presents the transition of 

failure modes along the minimum mass optimal path for different values of a . It is 

intriguing to find that: for 0a  , material yielding failures (FY, CSY and INDY) 

dominate in the whole load range; while for larger a , collapses including FW, CSB 

or INDB dominate low and intermediate values of F , and the range of such 

collapses increases with increasing a . This enables the foam strengthening effect of 

buckling resistance to cover a larger range of F  for larger a . Additionally, the load 

bearing capacity corresponding to each failure mode increases as a  is increased; see 

Eqs. (52)-(55). This may help explain why a larger a  corresponds to a better 

structural efficiency. 

 

3.1.3. Influence of sandwich material make 

In addition to 304 stainless steel, high strength Al alloy (see Table 1) is also 

considered as the parent material for face sheets and corrugated members. In this case, 

as shown in Fig. 8, corrugate-cored sandwiches filled with foam R110, rather than 

R51, perform best: for sandwiches filled with foams stiffer than R110, a weaker foam 

enhances the structural efficiency (Fig. 8a); while, for sandwiches filled with foams 

weaker than R110, a weaker foam reduces the structural efficiency (Fig. 8b). Together 
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with the results shown in Fig. 6, this implies that as the yielding strength/strain of the 

parent material for face sheets and corrugated members is increased, the density (and 

specific elastic modulus) of the foam filler should be increased to maximize the 

structural efficiency of the sandwich.  

Unless otherwise stated, 304 stainless steel is used in the remaining portion of this 

paper. 

 

3.2. Failure mechanism maps 

Two failure mechanism maps are constructed for foam-filled corrugated sandwich 

beams, with fixed loading platen width of 0.04a   and fixed corrugation angle of 

o65  , to explore the dependence of collapse modes on face sheet thickness ft  

(normalized by core height) and core height c  (normalized by span length), as 

shown in Fig. 9. The designs of the two maps differ only in the volume fraction of 

corrugated members in the core: 1.7%   for Fig. 9a, and 8.3%   for Fig. 9b. 

To aid the selection of minimum mass geometries, contours of W  and F  are also 

added to each map. 

For 1.7%   as shown in Fig. 9a, the active failure modes are FY, FW, CSB and 

INDB, but CSB and INDB dominate the map. With diminishing F , the trajectory of 

minimum mass design traces firstly along the boundary between CSB and INDB 

regimes (indicating simultaneous failure by core shear and indentation), then along 

that between FY and INDB, and finally along that between FW and FY. 

For 8.3%   (see Fig. 9b), the active failure modes are FY, FW, CSY and INDY, 

with failures of material yielding (i.e., FY, CSY and INDY) dominating the map. A 

comparison with Fig. 9a reveals that, as   is increased, the failure mode of 

corrugated member buckling disappears, and regimes of core shear and indentation 

shrink. Minimum mass designs lie along the boundary between CSY and INDY 

regimes, through partially the boundary between FY and INDY, and finally through 

FY regime. 
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4. Finite element simulations 

4.1. Finite element model 

To validate the analytical predictions presented in the previous sections, 2D finite 

element simulations for foam-filled corrugated sandwich beams under transverse 

3-point bending are performed using the commercially available FE code ABAQUS 

(version 6.10). The foam material is modeled using four-node plane strain 

quadrilateral elements with reduced integration (CPE4R). The face sheets and 

corrugated members are modeled using 2-node Timoshenko beam elements (B21). As 

shown in Fig. 10a, the mesh is denser in the vicinities of the central loading platen and 

the rolling supports. The embedded element technique is invoked to simulate the 

mutual effect between foam matrix and corrugated members. Perfect bonding between 

the core and the face sheets is assumed in all cases. 

In the FE model, the face sheets and corrugated members are treated as isotropic 

ideally plastic, modeled by the J2 flow theory. As for the foam filler, the constitutive 

model developed by Zhang et al. [27] for polymer foams is adopted. The loading 

platen and rolling supports are modeled as rigid. Contacts between the bottom face 

sheet and the rollers as well as between the upper face sheet and the loading platen are 

handled by a contact algorithm using a friction coefficient of 0.01. The calculation is 

performed by prescribing an increasing displacement of the loading platen at slow rate 

so that the whole process is quasi-static. No attempt is made to conduct a post-peak 

study, and the analysis is interrupted shortly after achieving the maximum load. The 

geometric dimensions considered for the foam-filled corrugated sandwich beams are 

listed in Table 2, for which all the possible failure modes mentioned in Section 2.3 are 

included. 

 

4.2. Comparison of FE calculations with analytical predictions 

FE simulation results for six sandwich specimens, named as A1, A2, A3, A4, B1 

and B2 listed in Table 2, are obtained, which collapse by FY, FW, CSB, INDB, CSY, 

and INDY, respectively. The failure modes of A1, A2, A3 and A4 are presented in 
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Figs. 10b-e. Accordingly, the normalized load ( )YF F bL  as a function of 

normalized loading platen displacement L  is plotted in Fig. 11. For comparison, 

analytical predictions for sandwich stiffness and strength are also included. 

As shown in Table 2 and Fig. 11, the failure modes, structural stiffness and 

strength obtained with FE calculations are in good agreement with the analytical 

predictions. It is noted that the analytically predicted strengths for the failure modes 

are all lower than the FE calculated peak loads, for the following reasons: 1) For FY 

and FW, the analytical predictions neglect the strength contribution of the core; 2) For 

FW, CSB and INDB, the rotational constraints offered by the adjoining face sheets or 

core members are neglected in the buckling models; 3) For corrugated member 

yielding of CSY and INDY, the present FE simulations reveal that, even though the 

corrugated core members have yielded, the strength of the sandwich has not been 

fully realized so that it can withstand further load increases. 

As for the failure modes, while only FY and INDY at the initial failure have been 

identified in the experiments for corrugated sandwiches filled with close-celled 

aluminum foams [17], all the possible failure modes, i.e., FY, FW, CSB, CSY, INDB, 

and INDY, have been explored in present FE calculations for corrugated sandwiches 

filled with polymer foam R51.  

The great difference between foam-filled and empty corrugated sandwiches under 

transverse 3-point bending is mainly about the failure of the core: for empty 

sandwiches, only failures of corrugated members (either buckling or yielding) due to 

shear force are considered [28,29]; for foam-filled sandwiches, besides the corrugated 

member failure due to shear force (i.e., CSB and CSY), the effect of indentation 

stresses on corrugated member failure (INDB and INDY) has also been taken into 

account. For corrugated member buckling in foam-filled sandwiches, it can be found 

from Figs. 10d-e that: for CSB, the corrugated member buckles under shear load so 

that one member in a unit cell is in tension and the other buckles in compression; 

whereas, for INDB, the two corrugated members of one unit cell beneath the loading 

platen both buckle in compression. Due to the lateral support of foam filling, the face 
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sheets and corrugated members in a foam-filled sandwich buckle with smaller buckle 

wave lengths than those in an empty sandwich [28]. 

 

5. Concluding remarks 

An analytical study is carried out to assess the enhancement effect of foam filling 

on the deformation and failure behavior of metallic corrugated sandwich beams in 

transverse 3-point bending. The structural stiffness, initial failure strength and failure 

modes predicted by analytical models are compared with the results of finite element 

simulations to validate the present approach. Both aluminum and polymer foams as 

filling material are considered. 

On the basis of equal mass, the structural efficiency of corrugated sandwiches 

filled with aluminum foams is inferior to that of the empty ones, while those filled 

with polymer foams (Rohacell) are structurally more efficient than the empty ones 

especially at relatively low load levels. The structural enhancement due to polymer 

foam filling is attributed to increased buckling resistance of face sheets and 

corrugated members due to lateral support of foam matrix. For buckling failures (FW, 

CSB, INDB), a larger structural efficiency is achieved with a denser foam due to 

larger strengthening effect of buckling resistance. For material yielding failures (FY, 

CSY, INDY), the structural efficiency decreases with increasing foam density, as no 

further strengthening is gained by increasing the foam density. As the load is 

increased, the failure modes of face wrinkling and corrugated member buckling 

disappear, replaced by material yielding. By increasing the width of loading platen, 

the foam-reinforced corrugated sandwich becomes structurally more efficient. 

Under 3-point bending, the best performance of a metallic corrugate-cored 

sandwich is achieved by filling with a foam of matching density. As the yielding 

strength/strain for the parent material of the face sheets and corrugated members is 

increased, the density (and specific elastic modulus) of the foam filler should be 

increased to maximize the structural efficiency of the sandwich.  
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Appendix 

For Euler-Bernoulli beams, the elementary stiffness matrix is: 
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K   (A.1) 

where A  and I  are the cross-sectional area and moment of inertia of the beam, 

respectively. 

The transformation matrix between local and global coordinates for one 

corrugated member as shown in Fig. 2a is given by: 

 

cos sin 0 0 0 0

sin cos 0 0 0 0

0 0 1 0 0 0

0 0 0 cos sin 0

0 0 0 sin cos 0

0 0 0 0 0 1

 

 

 

 

 
 

 
 

  
 
 
 
 

T   (A.2) 

The elastic constants of the filling foam are: 
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Fig. 1. Foam-reinforced corrugated sandwich beam in transverse 3-point bending. 
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(a)                                        (b) 

Fig. 2. Homogenization of foam-filled corrugation in plane strain state: (a) kinematics of a 

corrugated member; (b) a corrugated member subjected to nodal forces/moments and lateral 

pressure. 

 

 

 

Fig. 3. Schematic of foam-reinforced corrugated core shear failure: (a) Mode A and (b) Mode 

B, with stress state of corrugated members in core shear highlighted. 

 

 

 

Fig. 4. Schematic of foam-reinforced core indentation failure, with stress state of corrugated 

members under indentation highlighted. 
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Fig. 5. Normalized elastic modulus of foam materials (used in present study) plotted as a 

function of their relative density. 
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(a)                                             (b) 

 

(c) 
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(d) 

Fig. 6. Minimum mass optimization for 304 stainless steel corrugated sandwiches filled with 

selected foam materials ( 0.04a  ): (a) minimum mass comparison for sandwiches filled 

with foams stiffer than R51; (b) minimum mass comparison for sandwiches filled with foams 

weaker than R51; (c) minimum mass plotted as a function of foam density for three specific 

structural loads; (d) transition of failure mode along optimal path. Optimization of empty 

corrugated sandwiches is carried out using the theoretical formulae presented by Valdevit et al. 

[29]. 
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(a) 

 

(b) 

Fig. 7. Effect of loading platen width a  upon minimum mass design of 304 stainless steel 

corrugated sandwiches filled with R51: (a) optimal path of minimum mass; (b) transition of 

failure mode along optimal path. 
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(a) 

 

(b) 

Fig. 8. Minimum mass optimization of high strength Al alloy corrugated sandwich beams 

filled with selected foam materials ( 0.04a  ): (a) minimum mass comparison for 

sandwiches filled with foams stiffer than R110; (b) minimum mass comparison for 

sandwiches filled with foams weaker than R110. 
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(a) 

 

(b) 

Fig. 9. Collapse mechanism map of 304 stainless steel corrugated sandwich filled with 

polymer foam R51 ( o65   and 0.04a  ), with corrugated member volume fraction fixed 

at (a) 1.7%   and (b) 8.3%  . Contours of W  and F  are also added. Gray arrows 

trace the path of minimum mass design with decreasing F . 
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(a) 

 

 

(b)                                               (c)  

 

 

(d)                                               (e)  

 

Fig. 10. Finite element simulations of foam-filled sandwich beams subjected to transverse 

three-point bending: (a) FE model and (b-e) typical failure modes captured by FE calculations: 

(b) specimen A1, failed by face yielding; (c) specimen A2, failed by face wrinkling; (d) 

specimen A3, failed by core shear with corrugated member buckling, and (e) specimen A4, 

failed by indentation with corrugated member buckling. For clarity, the simulated 

deformations are exaggerated by 2~5 times. 
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                      (c)                                              (d) 

Fig. 11. Quasi-static responses of foam-filled sandwich beams in transverse 3-point bending, 

corresponding to the failure modes of Figs. 10b-e: (a) specimen A1; (b) specimen A2; (c) 

specimen A3; (d) specimen A4. 
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Table 1: Mechanical properties of (a) foams and (b) base materials of face sheets and 

corrugated members. 

Material Density Young’s modulus  
Poisson 

ratio 

Initial uniaxial 

compressive yield 

stress 

(a) Foam f  (g/cm3) 
fE (MPa) 

f  
p  (MPa) 

Rohacell 10 0.010 10 0.3 - 

Rohacell 20 0.020 23 0.3 - 

Rohacell 31 0.031 36 0.2 0.4 

Rohacell 51 0.052 70 0.3 0.8 

Rohacell 71 0.075 105 0.25 1.7 

Rohacell 110 0.110 180 0.28 3.6 

Rohacell 200 0.205 350 0.17 9 

Al foam 0.540 405 0.30 13.14 

(b) Base material s (g/cm3) 
sE (GPa)   

 

Y (MPa) 

304 stainless steel 7.9 210 0.3 210 ( Y  0.001) 

High strength Al alloy 2.7 70 0.33 490 ( Y  0.007) 

Note: Mechanical properties of polymer foam Rohacell series are obtained from manufacturer 

(ROHM) data sheets. Properties of Rohacell 10 and 20 (marked in italic) are extrapolated 

using fitting function Eq. (56), as shown in Fig. 5. Al foam refers to close-celled aluminum 

foam used in Yan et al. [17]. Both 304 stainless steel and high strength Al alloy in present 

study are treated as elastic-perfectly plastic materials. 

 

 

 

Table 2: Comparison of analytical predictions and finite element simulations of foam-filled 

corrugated sandwich beams under transverse 3-point bending. 

Specimen ft c  c L  L (mm)      (%) 

Analytical 

failure 

mode 

FE 

failure 

mode 

FE peak 

load F  

(kN)  

Analytical/

FE peak 

load 

A1 0.03 0.05 300 o65   1.7 FY FY 19.5 0.934 

A2 0.012 0.05 300 o65  1.7 FW FW 8.2 0.910 

A3 0.04 0.13 150 o65  1.7 CSB CSB 38.2 0.901 

A4 0.02 0.2 150 o65  1.7 INDB INDB 36.7 0.936 

B1 0.15 0.17 150 o65  8.3 CSY CSY 725.8 0.873 

B2 0.05 0.25 150 o65  8.3 INDY INDY 559.2 0.852 

Note: The material make of both the face sheets and corrugated members is 304 stainless steel. 

The foam filler is Rohacell 51. The loading platen width is fixed at 0.04a  (normalized by 

span length). 
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