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An analytical study is carried out on the cut-off frequencies of Lamb waves in freestanding thin

films made of various functionally graded elastic, piezoelectric, or piezoelectric–piezomagnetic

materials. Results show that the set of cut-off frequencies is a union of two series of approximate

arithmetic progression, in which the differences are inversely proportional to the definite integral of

a function of the material parameters along thickness. Given the simple and universal relationship

between cut-off frequencies and material parameters, this study provides theoretical guidance not

only for nondestructive evaluation in engineering applications but for designing high-performance

sensors based on Lamb waves. VC 2011 American Institute of Physics. [doi:10.1063/1.3640478]

Since Sir Lamb published the detailed treatise on Lamb

waves in 1917,1 Lamb waves have been widely used in engi-

neering applications, such as nondestructive evaluations

(NDEs), transducers, resonators, sensors, and so on, because

of their high sensitivity and low attenuation.2,3 Many investi-

gators have explored a number of propagation characteristics

in various thin films made of different homogenous materi-

als, such as elastic,2 piezoelectric,4,5 and piezoelectric–

piezomagnetic materials.6 Such characteristics include the

dispersion properties, wave structures, and cut-off frequen-

cies of Lamb waves.

As a kind of inhomogeneous material, functionally

graded materials (FGMs) have recently been proposed to

solve problems in the thermal protection systems of aerospace

structures, thereby drawing more interest from various engi-

neering fields.7 With the development of material technology,

the concept of FGM has been used not only for common elas-

tic materials but also for smart materials, including piezoelec-

tric and piezoelectric–piezomagnetic materials. Demands

from ultrasonic technology and NDE fields have driven

research on the wave propagation characteristics in such struc-

tures. Although many reports focus on the propagation charac-

teristics of Lamb waves in various inhomogeneous plates,8–10

most of them primarily discuss dispersion properties and

wave structures. Few studies regarding the cut-off frequencies

of Lamb waves in inhomogeneous plates have been pub-

lished.9,11 Regardless of whether an analytical9 or numerical

method8 is used, complex mathematical calculations are nec-

essary to obtain numerical results for wave propagation char-

acteristics in certain inhomogeneous structures. This

complexity in analysis has always been an obstacle to the

practical application of the results.

Given that various smart materials, including piezoelec-

tric and piezoelectric–piezomagnetic materials, are widely

used in micro-electro-mechanical systems, many studies

have focused on wave propagation behaviors in structures

made of such materials. As an important wave propagation

characteristic, cut-off frequencies can be used not only for

corrosion detection and thickness measurement in different

structures but also for various sensors and transducers.12,13

The cut-off frequencies can be calculated by examining the

limiting condition k!0.2 Consider that Lamb waves propa-

gate in a thin film made of inhomogeneous materials, such as

FGMs, functionally graded piezoelectric materials (FGPMs),

and functionally graded piezoelectric–piezomagnetic materi-

als (FGPPMs), and that the thickness of the thin film is h.

These are transverse isotropic materials; the xoy coordinate

plane is an isotropic plane, the polling direction of the

FGPM and FGPPM is the same as the positive direction of

the z-axis, and Lamb waves propagate along the positive

direction of the x-axis (Fig. 1). Thus, the displacement vector

is given by u ¼ uðx; z; tÞ, v ¼ 0, w ¼ wðx; z; tÞ. The electrical

and the magnetic potential is u ¼ uðx; z; tÞ and

w ¼ wðx; z; tÞ, respectively.

We first discuss the most complex problem, i.e., Lamb

wave propagation in an FGPPM thin film. For brevity,

exp½ikðx� ctÞ� is omitted; k is the wave number, c is the

phase velocity, and i ¼
ffiffiffiffiffiffiffi
�1
p

. Considering the limiting con-

dition k ! 0, the governing equations are as follows:

ðc44u
0 Þ
0
þ qx2u ¼ 0; (1)

ðc33w
0 þ e33u

0 þ f33w
0 Þ
0
þ qx2w ¼ 0; (2)

ðe33u
0 � e33w

0 þ g33w
0 Þ
0
¼ 0; (3)

ðl33w
0 þ g33u

0 � f33w
0 Þ
0
¼ 0; (4)

where c33 and c44, e33, f33, e33, l33, and g33 are the elastic,

piezoelectric, piezomagnetic, dielectric, magnetic, and mag-

netoelectric coefficients, respectively, and q is the density of

the FGPPM. These are functions of thickness. The symbol

“´” represents the first differential with respect to z.

FIG. 1. FGM, FGPM, or FGPPM thin films and Cartesian coordinates.
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Furthermore, the governing equations of the electrical

and magnetic potentials in air are

u
00

j ¼ 0; w
00

j ¼ 0; (5)

where j ¼ 1; 2 denotes the physical variable of the upper and

bottom half-spaces in air, respectively.

Stresses rz and rxz, electrical displacement Dz, and mag-

netic induction Bz are shown as follows:

rz ¼ c33w0 þ e33u
0 þ f33w

0; rxz ¼ c44u0; (6)

Dz ¼ e33w0 � e33u
0 � f33w

0; Bz ¼ f33w0 � g33u
0 � l33w

0:

(7)

The boundary conditions must be satisfied. The traction-free

condition at z ¼ 0; h is

rz ¼ 0; rxz ¼ 0: (8)

We discuss only the electrical and magnetic open cases,

1. At z ¼ 0, u ¼ u1, Dz ¼ Dz1, w ¼ w1, Bz ¼ Bz1;
2. At z ¼ h, u ¼ u2, Dz ¼ Dz2, w ¼ w2, Bz ¼ Bz2:

Moreover, considering attenuation tendency at infinity,

we obtain the solution of Eq. (5) as uj ¼ C1j,wj ¼ C2j, where

C1j and C2j, j ¼ 1; 2 are undetermined constants. Considering

these solutions, Eq. (7), and electrical and magnetic open

boundary condition, we can rewrite Eqs. (3) and (4) as

e33u
0 � e33w

0 þ g33w
0 ¼ 0; l33w

0 þ g33u
0 � f33w

0 ¼ 0: (9)

Substituting Eq. (9) into Eq. (2) yields

ðcEw0Þ
0
þ qx2w ¼ 0; (10)

where cE is an equivalent elastic coefficient and satisfies

cE ¼ c33 þ e33

e33l33 � f33g33

e33l33 � g2
33

þ f33

f33e33 � e33g33

e33l33 � g2
33

:

Similarly, we obtain that cE ¼ c33 in an FGM film and

cE ¼ c33 þ e2
33=e33 in an FGPM film.

To solve Eqs. (1) and (10), we use the Wentzel–

Kramers–Brillouin (WKB) method and obtain the solu-

tions,10,11 expressed as

u ¼ ðqc44Þ�1=4

�
a1cos

�ðz

0

ffiffiffiffiffiffiffiffiffiffiffi
q=c44

p
dzxn

�

þ a2sin

�ðz

0

ffiffiffiffiffiffiffiffiffiffiffi
q=c44

p
dzxn

��
; (11)

w ¼ ðqcEÞ1=4

�
b1cos

�ðz

0

ffiffiffiffiffiffiffiffiffiffi
q=cE

p
dzxn

�

þ b2sin

�ðz

0

ffiffiffiffiffiffiffiffiffiffi
q=cE

p
dzxn

��
: (12)

By substituting Eqs. (11) and (12) into traction-free condi-

tions, we obtain a set of homogeneous linear algebraic equa-

tions for determining a1, a2, b1, and b2. Considering

sufficient and necessary condition for the existence of a non-

trivial solution, we have

tan

 ðh

0

ffiffiffiffiffiffiffiffiffiffiffi
q=c44

p
dzxnT

!

¼ Að0ÞA0ðhÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q0=c440

p
� A0ð0ÞAðhÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qh=c44h

p
A0ð0ÞA0ðhÞ þ Að0ÞAðhÞx2

nT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q0qh=c440

c44h

p xnT ;

(13)

tan

 ðh

0

ffiffiffiffiffiffiffiffiffiffi
q=cE

p
dzxnL

!

¼ Bð0ÞB0ðhÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
q0=cE0

p
� B0ð0ÞBðhÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
qh=cEh

p
B0ð0ÞB0ðhÞ þ Bð0ÞBðhÞx2

nL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q0qh=cE0

cEh

p xnL;

(14)

where AðzÞ ¼ ðqc44Þ�1=4
and BðzÞ ¼ ðqcEÞ�1=4

, the sub-

scripts 0 and h represent the parameter at the bottom and

upper surfaces of the film, respectively, and xnT and xnL are

cut-off frequencies xn that satisfy Eqs. (11) and (12),

respectively.

Observing Eq. (13) when the material properties slowly

vary along the thickness and xnT and xnL are large

parameters, the right side of the equation approaches zero.

Hence, we have
Ð h

0

ffiffiffiffiffiffiffiffiffiffiffi
q=c44

p
xnT ! np; specifically,

xnT ! np=
Ð h

0

ffiffiffiffiffiffiffiffiffiffiffi
q=c44

p
. Similarly, we can deduce thatÐ h

0

ffiffiffiffiffiffiffiffiffiffi
q=cE

p
xnL ! np from Eq. (14); specifically,

xnL ! np=
Ð h

0

ffiffiffiffiffiffiffiffiffiffi
q=cE

p
. Consequently, we have

DnðxTÞ ¼ xðnþ1ÞT � xnT ! p

�ðh

0

ffiffiffiffiffiffiffiffiffiffiffi
q=c44

p
dz;

DnðxLÞ ¼ xðnþ1ÞL � xnL ! p

�ðh

0

ffiffiffiffiffiffiffiffiffiffi
q=cE

p
dz:

(15)

Thus, the series of xnT and xnL can be considered two ap-

proximate arithmetic progressions, in which the difference is

the ratio of p to the definite integral of
ffiffiffiffiffiffiffiffiffiffiffi
q=c44

p
and

ffiffiffiffiffiffiffiffiffiffi
q=cE

p
along the thickness, respectively, as shown in Eq. (1).

From Eqs. (13) and (14), we deduce the cut-off frequen-

cies in a homogenous thin film. The results agree with the

TABLE I. Cut-off frequencies of Lamb waves xnTh and xnLh (Hzm) in different thin films.

Homogenous Type 1 Type 2 Type 3 Type 4 Type 5 Type 6 Type 7

n xnTh xnLh xnTh xnLh xnLh xnLh xnLh xnLh xnLh xnTh xnLh

1 7947.67 17344.94 8330.46 18142.85 17418.69 17355.22 17312.59 17340.49 17344.84 7601.36 16564.45

2 15895.34 34689.88 16655.66 36275.20 34839.42 34710.73 34626.81 34681.21 34689.68 15171.34 33097.42

3 23843.01 52034.82 24982.03 54409.88 52259.7 52066.18 51940.66 52021.88 52034.52 22748.27 49637.38

4 31790.68 69379.76 33308.69 72545.15 69679.86 69421.61 69254.42 69362.54 69379.36 30326.93 66179.08

5 39738.35 86724.7 41635.47 90680.65 87099.98 86777.03 86568.15 86703.19 86724.19 37906.30 82721.49
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analytical solutions for the cut-off frequencies of Lamb waves

in a homogenous thin film.2 Comparing the result for the nu-

merical example published in Ref. 9 with the results obtained

by Eqs. (13) and (14), we find they are in full agreement.

We provide an example to show the effect of the gradi-

ent properties on the cut-off frequencies of Lamb waves in

an FGPPM plate. FGPPM parameters are assumed to be in

the following form:

f ðzÞ ¼ f ð0Þ þ a½f ðhÞ � f ð0Þ� z
h
þ ð1� aÞ½f ðhÞ � f ð0Þ� z

h

� 	2

;

where a is the graded coefficient; f0 and fh stand for the ma-

terial parameters at z ¼ 0 and z ¼ h, respectively. In the fol-

lowing calculation, some values of parameters f0 are chosen

to be6 c33 ¼ 218GPa, c44 ¼ 48GPa, e33 ¼ 6:9C=m2, f33

¼ 358N=Am, e33¼ 5:1�10�9C=Vm, l33¼98�10�6Ns2=C2,

g33¼2:73�10�9Ns=VC, and q¼7:5�103kg=m3. A relative

variation coefficient of the material parameters,

dðf Þ¼ðfh� f0Þ=f0, and seven different types of material var-

iations are discussed: type 1: dðc33Þ¼dðc44Þ¼0:2; type 2:

dðe33Þ¼0:2; type 3: dðf33Þ¼0:2; type 4: dðe33Þ¼0:2; type 5:

dðl33Þ¼0:2; type 6: dðg33Þ¼0:2; and type 7: dðqÞ¼0:2. In

these types, the unlisted material parameters are constants.

When a¼1, the material parameters vary along the thickness

linearly. The first five values of xnTh and xnLh obtained by

Eqs. (13) and (14), respectively, are discussed (Table I). The

presence of a homogenous thin film indicates that all param-

eters are constants so that f ðzÞ¼ f ð0Þ.
In types 2–6, the material gradient property does not

affect the series of cut-off frequencies xnTh so that only the

series of xnLh in these structures are listed in Table I. The se-

ries of xnTh in the structures made of types 2–6 is the same

as that in the homogenous piezoelectric–piezomagnetic thin

films. When c33, c44, e33, and f33 increase with thickness, the

cut-off frequencies in the FGPPM thin film become larger

than those in the homogenous thin film. By contrast, when

e33, l33, g33, and q increase with thickness, the cut-off fre-

quencies in the FGPPM thin film become smaller than those

in the homogenous thin film. Table I also shows that for the

same variation of material parameters, the variations in

c33, c44, and mass density q significantly affect the cut-off

frequencies. The variations in e33, f33, and e33 affect the cut-

off frequencies relatively less than do the others, whereas the

variations in l33 and g33 almost do not affect the cut-off fre-

quencies at all.

Consider the application in NDE. The gradient coeffi-

cient can be evaluated by measuring the cut-off frequencies

of Lamb waves in an FGPPM thin film. The set of cut-off

frequencies can be considered a union of two series of ap-

proximate arithmetic progression, in which the difference is

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c440=q0

p
=h and p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cE0=q0

p
=h, respectively. We define the

normalized value of the difference as

y1 ¼
�
p

�ðh

0

ffiffiffiffiffiffiffiffiffiffiffi
q=c44

p
dz�
��

p
ffiffiffiffiffiffiffiffiffiffiffiffi
c0=q0

p .
h

�
;

y2 ¼
�
p

�ðh

0

ffiffiffiffiffiffiffiffiffiffi
q=cE

p
dz

���
p
ffiffiffiffiffiffiffiffiffiffiffiffi
c0=q0

p .
h

�
:

Figure 2 shows the relationship between the gradient coeffi-

cient and normalized value of the difference of cut-off fre-

quency series y1 and y2. The relationship between the

difference of the series and gradient coefficient becomes

almost linear. The result provides a method with which to

determine the gradient coefficient in inhomogeneous thin

films using Lamb waves.

In summary, when the variation in material parameters

is continuous and derivable, and the surface of the film is

traction-free, unelectroded, and unmagnetized, regardless of

how complicated the variation in material parameters along

the thickness and multi-field couples in the material is, the

cut-off frequencies of Lamb waves in these inhomogeneous

plates can be solved using two simple equations which are

related to
ffiffiffiffiffiffiffiffiffiffiffi
q=c44

p
and

ffiffiffiffiffiffiffiffiffiffi
q=cE

p
, respectively. This study also

reveals that the elastic parameters and density significantly

affect cut-off frequencies, some piezoelectric and piezomag-

netic parameters affect cut-off frequencies relatively less than

do others, and the others do not or almost do not affect the

cut-off frequencies.
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