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Influence of viscoelastic interfaces on
power transmission through an elastic
plate by finite piezoelectric transducers

Liling Tang and Feng Jin

Abstract

A finite elastic plate, partially covered by piezoelectric patches on two sides to periodically charge or recharge electronic

devices operating in a sealed armor, is considered to study the effects of a viscoelastic interface on the resonant

frequency, transformation ratio, efficiency, displacement and stress distributions of the structure. Based on the shear-

slip model, we apply the Fourier series method to analyze the symmetric thickness-twist modes of the system containing

an imperfect viscoelastic interface. An examination of the numerical results confirms the good convergence and high

precision of the Fourier series method. If an appropriate thickness ratio is chosen, the energy-trapping phenomenon is

well presented. The numerical results also reveal that the transformation ratio, efficiency and displacement of the system

decrease for weaker interfaces, whereas the resonant frequency is not sensitive to interface damping parameters. This

result could provide a theoretical guide to design high-performance piezoelectric plate transformers.
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1. Introduction

The conditions involved in powering electronic devices
that operate in a sealed armor or in other hazardous
environments, such as nuclear storage facilities, have
led to the current interest in periodically charging
and/or recharging batteries without perforating the
barrier. For instance, to ensure the reliability and per-
formance of nuclear stockpiles, piezoelectric trans-
ducers have been proposed, which generate acoustic
waves that propagate through a sealed armor and
transmit a small amount of power to the electronic
devices inside the sealed armor. Hu et al. (2003) first
examined the feasibility of this idea by investigating a
transmit and receive piezoelectric transducer (Zhang
et al., 2010) separated by a sealed armor (wall). This
transmission device uses the direct and indirect piezo-
electric effects as a means of generating stress waves
that are transmitted through the walls, where the
received wave is converted into an electric power
using a piezoelectric and then delivered to an electric
load. Recent theoretical and experimental studies on
the performance of such devices are available in the
literature (Sherrit et al., 2006; Bao et al., 2007;

Saulnier et al., 2006; Yang et al., 2008; Xu et al.,
2009). In a realistic situation, where the elastic wall is
only partially covered by finite piezoelectric patches,
vibration is confined within the covered area of the
plate, which is defined as ‘‘energy trapping’’ (Wang
et al., 2007; Yang and Guo, 2008; Liu et al., 2011)
and is useful in device mounting, mode interactions,
and so on.

The studies discussed above assume that the inter-
face is almost perfect. However, in addition to be
damaged under harsh conditions, the interface cannot
be perfect because of the presence of micro-defects and
diffusion impurities, which in turn have a significant
impact on the device performance (Fu et al., 2010;
Cao et al., 2009). Therefore, it is essential to consider
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possibly imperfect interfaces when designing and apply-
ing piezoelectric transformers. Comprehensive analyses
of imperfect interfaces are presented in two review art-
icles (Wang et al., 2000; Peter, 1992). Specifically, the
shear-lag model (Cheng et al., 1997; Handge, 2002),
which is the simplest description (treating the interface
bonding as a layer without thickness but with elasticity
and interface elastic strain energy), has been widely
applied to study imperfect interfaces both theoretically
(Fan et al., 2006; Li and Lee, 2010; Melkumyan
and Mai, 2008) and experimentally (Jin et al., 2005;
Lavrentyev and Rokhlin, 1998). However, most studies
have mainly focused on elastic imperfect interfaces, and
only a few have been carried out to investigate the effect
of imperfect viscoelastic interfaces, which are, in fact,
more realistic.

To better imitate a real situation, in this study we
simultaneously apply the structural damping and shear-
slip models, which simulate the effects of an imperfect
viscoelastic interface on the performance of a finite elas-
tic plate partially covered by piezoelectric patches on
two sides. Using the equations of linear elasticity and
piezoelectricity (Yang, 2005) to model the plate and the
transducers, respectively, we mainly discuss the effect of
the imperfect viscoelastic interface on the performance
of the device.

2. Structure

Consider a finite elastic plate, partially covered by
piezoelectric patches on two sides, such as that shown
in Figure 1. The two piezoelectric patches are made of
polarized ceramics with the z axis being the poling dir-
ection P or the six-fold axis (the z axis is determined by
the right-hand rule from the x and y axes in the figure).

The plate has thickness 2h, length 2L and is unbounded
in the z direction (only a cross-section is shown). We
consider it as a unit-thickness plate in the z direction.
It can be made either from a metal or from a dielectric.
If the plate is metallic, a very thin insulating layer is
assumed to be present between the transducer elec-
trodes and the plate. This insulating layer and the
bonding interface are treated—as a whole—as the
imperfect interface, as shown in Figure 1. Consider
the thickness field excitation because it’s easier to
excite the thickness mode when the thickness of the
piezoelectric patch is much smaller than its length.
(where v1¼V1exp(i!t) is a known time-harmonic driv-
ing voltage, v2 is an unknown output voltage, I1 and I2
are the output currents, and Z is the impedance of the
output circuit in the time-harmonic motions).

3. Governing equations

For the material orientation and electrode configur-
ation in Figure 1, the plate can be excited to the so-
called thickness-twist, anti-plane, or shear horizontal
(SH) mode (Yang, 2005; Yang, 2010) with:

ux ¼ uy ¼ 0, uz ¼ uðx, y, tÞ ð1Þ

3.1. Equations for the elastic plate

Consider a plate of an isotropic elastic material, the
nonzero shear stress components Tyz and Tzx are:

Tyz ¼ �
@u

@y
, Tzx ¼ �

@u

@x
ð2Þ

Figure 1. A finite elastic wall with two piezoelectric transducers.
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where � is the shear elastic constant. The governing
equation can then be described as:

r2u ¼ ��2u ð3Þ

where r2¼@2xþ @2y is the two-dimensional Laplacian,
� ¼ !ffiffiffiffiffiffi

�=�
p , and � is the mass density.

3.2. Equations for the transducers

For ceramics poled in the z direction, the displacement
components and electrical potential function are:

ux ¼ uy ¼ 0, uz ¼ uðx, y, tÞ, ’ ¼ ’ðx, y, tÞ ð4Þ

The nonzero stress and electric-displacement compo-
nents are given by:

Tzx

Tyz

� �
¼cruþ er’,

Dx

Dy

� �
¼eru� "r’ ð5Þ

where we have denoted c¼ c44, e¼ e15, and "¼ "11 for
convenience with c44, e15, and "11 to represent the elas-
tic-constant, piezoelectric, and dielectric-permittivity
coefficients of the piezoelectric material, respectively.
The governing equations can be obtained as:

cr2uþ er2’ ¼ �1
@2u

@t2
,

er2u� "r2’ ¼ 0,

ð6Þ

where �1 stands for the mass density. By introducing
the auxiliary function

� ¼ ’�
e

"
u ð7Þ

we obtain other expressions for the nonzero compo-
nents and the governing equations:

Tzx

Tyz

� �
¼cruþ er�,

Dx

Dy

� �
¼� "r� ð8Þ

r2u ¼ ��21u,

r2� ¼ 0
ð9Þ

where the wavenumber satisfies �1 ¼
!ffiffiffiffiffiffiffi
�c=�1
p , and

�c ¼ cþ e2

" is the effective piezoelectric stiffness.

3.3. Boundary and interface conditions

At the top and bottom surfaces, as well as at the inter-
faces, we have:

’ðhþ 2h1Þ ¼ v1, jxj5 a ð10aÞ

Tyzðhþ 2h1Þ ¼ 0, jxj5 a ð10bÞ

’ðh�Þ ¼ �v1, jxj5 a ð10cÞ

Tyzðh
�Þ ¼

Tyzðh
þÞ ¼ K0½uðh�Þ � uðhþÞ�, jxj5 a

0, a5 jxj5L

�
ð10dÞ

’ð�hþÞ ¼ �v2, jxj5 a ð10eÞ

Tyzð�h
�Þ

¼
Tyzð�h

þÞ ¼ K00½uð�h�Þ � uð�hþÞ�, jxj5a

0, a5 jxj5L

�
ð10fÞ

’ð�h� 2h2Þ ¼ v2, jxj5 a ð10gÞ

Tyzð�h� 2h2Þ ¼ 0, jxj5 a ð10hÞ

where ‘þ’ and ‘�’ mean positive approach and negative
approach along y coordinate respectively.

We apply the shear-slip model to calculate the influ-
ence of imperfect viscoelastic interfaces, thereby intro-
ducing K0 and K00, which are interface stiffness
parameters that describe how well two interfaces are
bonded. For perfect interfaces with a continuous dis-
placement across the joints, K0 ¼1 or K00 ¼1, whereas
K0 ¼ 0 or K00 ¼ 0 corresponds to the conditions at which
no elastic interactions are present at the interface. In
addition, there are traction-free boundary conditions at
the edges of the plate (x¼�L) and the transducers
(x¼�a). In the case of the transducers, the edges
have no electrodes and are therefore uncharged.

4. Theoretical analysis

The input voltage is known as time-harmonic. We use
the complex notation. All the fields contain an exp(i!t)
factor, which will be dropped in the following analysis
for convenience.

4.1. The elastic plate

Based on the edge conditions at x¼�L, we assume the
following symmetric field from the separation of the
variables:

u ¼ Uð yÞ cos
n�x

L
, n ¼ 0, 1, 2, . . . ð11Þ

Substituting equation (11) into equation (3) yields:

@2u

@y2
þ �2nu ¼ 0 ð12Þ
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where �n ¼ �2 � n�
L

� �2h i1=2
:

Then, the general solution for the u symmetric field
in the x direction can be written as:

u ¼ A0 sinð�0yÞ þ B0 cosð�0yÞ

þ
X1
n¼1

An sinð�nyÞ þ Bn cosð�nyÞ½ � cos
n�x

L

ð13Þ

where An and Bn are undetermined constants. From
equation (2), we obtain:

Tyz ¼ � �0 A0 cosð�0yÞ � B0 sinð�0yÞ½ �
�
þ
X1
n¼1

�n An cosð�nyÞ � Bn sinð�nyÞ½ � cos
n�x

L

)

ð14Þ

4.2. The upper transducer

Consider the following symmetric modes:

u ¼ Uð yÞ cos
m�x

a
, � ¼ �ð yÞ cos

m�x

a
m ¼ 0, 1, 2, . . .

ð15Þ

which already satisfy the edge conditions Txz¼ 0 and
Dx¼ 0 at x¼�a. Substitution of equation (15) into
equation (9) results in:

@2u

@y2
þ �2mu ¼ 0,

@2�

@y2
�

m�

a

� 	2
� ¼ 0 ð16Þ

where �m ¼ �21 �
m�
a

� �2h i1=2
:

The general solution for the u symmetric field in the
x direction is:

u ¼ C0 sinð�0yÞ þD0 cosð�0yÞ

þ
X1
m¼1

Cm sinð�myÞ þDm cosð�myÞ½ � cos
m�x

a
,

� ¼ G0yþH0 þ
X1
m¼1

Gm sinh
m�y

a
þHm cosh

m�y

a

h i

� cos
m�x

a
, ð17Þ

where Cm, Dm, Gm and Hm are undetermined constants.
The electric potential, the stress and the electric dis-
placement can be obtained by using equations (7)
and (8):

’ ¼ �þ
e

"
u ¼ G0yþH0 þ

e

"
C0 sinð�0yÞ þD0 cosð�0yÞ½ �

þ
X1
m¼1

Gm sinh
m�y

a
þHm cosh

m�y

a

n

þ
e

"
Cm sinð�myÞ þDm cosð�myÞ½ �

o
cos

m�x

a
,

Tyz ¼ cu,y þ e�,y

¼ c�0 C0 cosð�0yÞ �D0 sinð�0yÞ½ �þeG0

þ
X1
m¼1

c�m Cm cosð�nyÞ �Dm sinð�myÞ½ �
�

þe
m�

a
Gm cosh

m�y

a
þHm sinh

m�y

a

h io
cos

n�x

a
,

Dy ¼ �"�,y ¼ �"G0 �
X1
m¼1

"
m�

a

� Gm cosh
m�y

a
þHm sinh

m�y

a

h i
cos

m�x

a
ð18Þ

4.3. The lower transducer

Similar to equation (17), for the lower transducer
we have:

u ¼ E0 sinð�0yÞ þ F0 cosð�0yÞ

þ
X1
m¼1

Em sinð�myÞ þ Fm cosð�myÞ½ � cos
m�x

a
,

� ¼ N0yþ R0þ
X1
m¼1

Nm sinh
m�y

a
þ Rm cosh

m�y

a

h i

� cos
m�x

a
ð19Þ

where Cm, Dm, Gm and Hm are undetermined constants.
Similarly, the corresponding electric potential, stress
and electric displacement, which are needed for the
boundary conditions, are given by:

’ ¼ �þ
e

"
u ¼ N0yþ R0 þ

e

"
E0 sinð�0yÞ þ F0 cosð�0yÞ½ �

þ
X1
m¼1

Nm sinh
m�y

a
þ Rm cosh

m�y

a

n

þ
e

"
Em sinð�myÞ þ Fm cosð�myÞ½ �

o
cos

m�x

a
,

Tyz ¼ c�0 E0 cosð�0yÞ � F0 sinð�0yÞ½ � þ eN0

þ
X1
m¼1

c�m Em cosð�myÞ � Fm sinð�myÞ½ �
�

þe
m�

a
Nm cosh

m�y

a
þ Rm sinh

m�y

a

h io
cos

m�x

a
,

D12 ¼ �"N0 �
X1
m¼1

"
m�

a
Nm cosh

m�y

a
þRm sinh

m�y

a

h i

� cos
m�x

a
ð20Þ

1196 Journal of Vibration and Control 23(7)



4.4. Boundary, interface, and circuit conditions

By substituting equations (13), (14), (17), (18), (19), and
(20) into the boundary and interface conditions given in
equation (10), we obtain:

G0ðhþ 2h1Þ þH0 þ
e

"
C0 sin �0ðhþ 2h1Þ½

þD0 cos �0ðhþ 2h1Þ�

þ
X1
m¼1

Gm sinh
m�ðhþ 2h1Þ

a
þHm cosh

m�ðhþ 2h1Þ

a

�

þ
e

"
Cm sin �mðhþ 2h1Þ þDm cos �mðhþ 2h1Þ½ �

o
� cos

m�x

a

� 	
¼ V1, jxj5 a ð21aÞ

c�0 C0 cos�0ðhþ 2h1Þ�D0 sin�0ðhþ 2h1Þ½ �þ eG0

þ
X1
m

c�m Cm cos�mðhþ 2h1Þ�Dm sin�mðhþ 2h1Þ½ �
�

þ e
m�

a
Gm cosh

m�ðhþ 2h1Þ

a
þHm sinh

m�ðhþ 2h1Þ

a


 ��

� cos
m�x

a

� 	
¼ 0, jxj5a ð21bÞ

G0hþH0 þ
e

"
C0 sinð�0hÞ þD0 cosð�0hÞ½ �

þ
X1
m¼1

Gm sinh
m�h

a
þHm cosh

m�h

a

�

þ
e

"
Cm sinð�mhÞ þDm cosð�mhÞ½ �

o
cos

m�x

a

� 	
¼ �V1 , jxj5 a

ð21cÞ

��0 A0 cosð�0hÞ�B0 sinð�0hÞ½ �

þ
X1
n¼1

��n An cosð�nhÞ�Bn sinð�nhÞ½ �
� �

cos
n�x

L

¼

c�0 C0 cosð�0hÞ�D0 sinð�0hÞ½ �þ eG0

þ
X1
m¼1

c�m Cm cosð�mhÞ½
�

�Dm sinð�mhÞ�þ e
m�

a

� Gm cosh
m�h

a
þHm sinh

m�h

a


 ��

cos
m�x

a

� 	
,

xj j5a

0, a5 xj j5L

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

ð21dÞ

��0 A0 cosð�0hÞ�B0 sinð�0hÞ½ �

þ
X1
n¼1

��n An cosð�nhÞ�Bn sinð�nhÞ½ �
� �

cos
n�x

L

¼K0 C0 sinð�0hÞþD0 cosð�0hÞ�A0 sinð�0hÞ�B0 cosð�0hÞ
�

þ
X1
m¼1

Cm sinð�mhÞþDm cosð�mhÞ½ �cos


m�x

a

�

�
X1
n¼1

An sinð�nhÞþBn cosð�nhÞ½ �cos
n�x

L

� 	)
, xj j5a

�N0hþ R0 �
e

"
E0 sinð�0hÞ � F0 cosð�0hÞ½ �

þ
X1
m¼1

�Nm sinh
m�h

a
þ Rm cosh

m�h

a

�

�
e

"
Em sinð�mhÞ � Fm cosð�mhÞ½ �

o
� cos

m�x

a

� 	
¼ �V2, xj j5 a

ð21fÞ

��0 A0 cosð�0hÞ þ B0 sinð�0hÞ½ �

þ
X1
n¼1

��n An cosð�nhÞþBn sinð�nhÞ½ �
� �

cos
n�x

L

¼

c�0 E0 cosð�0hÞ þ F0 sinð�0hÞ½ � þ eN0

þ
X1
m¼1

c�m Em cosð�mhÞ½
�

þ Fm sinð�mhÞ�

þe
m�

a
Nm cosh

m�h

a




�Rm sinh
m�h

a

��

� cos
m�x

a

� 	
,

xj j5 a

0, a5 xj j5L

8>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>:

ð21gÞ

��0 A0 cosð�0hÞ þ B0 sinð�0hÞ½ �

þ
X1
n¼1

��n An cosð�nhÞ þ Bn sinð�nhÞ½ �
� �

cos
n�x

L

¼ K00 �A0 sinð�0hÞ þ B0 cosð�0hÞ
�

þ E0 sinð�0hÞ � F0 cosð�0hÞ

þ
X1
n¼1

�An sinð�nhÞ þ Bn cosð�nhÞ½ � cos
n�x

L

� 	

þ
X1
m¼1

Em sinð�mhÞ � Fm cosð�mhÞ½ �

� cos
m�x

a

� 	o
, xj5 a

ð21hÞ
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N0ð�h� 2h2Þ þR0

þ
e

"
E0 sin �0ð�h� 2h2Þ þF0 cos �0ð�h� 2h2Þ½ �

þ
X1
m¼1

Nm sinh
m�ð�h� 2h2Þ

a
þRm cosh

m�ð�h� 2h2Þ

a

�

þ
e

"
Em sin �mð�h� 2h2Þ þFm cos �mð�h� 2h2Þ½ �

o
� cos

m�x

a

� 	
¼ V2, jxj5a

c�0 E0 cos �0ð�h� 2h2Þ �F0 sin �0ð�h� 2h2Þ½ � þ eN0

þ
X1
m¼1

c�m Em cos �mð�h� 2h2Þ �Fm sin �mð�h� 2h2Þ½ �
�

þ e
m�

a
Nm cosh

m�ð�h� 2h2Þ

a




þRm sinh
m�ð�h� 2h2Þ

a

��
cos

m�x

a

� 	
¼ 0, jxj5a

ð21jÞ

Equations (21d) and (21g) are multiplied by cos p�xL
and then integrated (from –L to L) for p¼ 0, 1, 2, 3, . . .,
and the other equations (21) are multiplied by cos p�xa
and then integrated (from –a to a) for p¼ 0, 1, 2, 3, . . .
to obtain the linear algebraic equations for the undeter-
mined coefficients as follows:

If p¼ 0, the linear algebraic equations for the
undetermined coefficients are:

e

"
C0 sin �0ðhþ 2h1Þ þD0 cos �0ðhþ 2h1Þ½ �

þ G0ðhþ 2h1Þ þH0 ¼ V1

ð22aÞ

c�0 C0 cos �0ðhþ 2h1Þ �D0 sin �0ðhþ 2h1Þ½ � þ eG0 ¼ 0

ð22bÞ

e

"
C0 sinð�0hÞ þD0 cosð�0hÞ½ � þ G0hþH0 ¼ �V1 ð22cÞ

��0 A0 cosð�0hÞ � B0 sinð�0hÞ½ �2L

¼ c�0 C0 cosð�0hÞ �D0 sinð�0hÞ½ � þ eG0

� �
2a
ð22dÞ

�
�

K0
�0 cosð�0hÞ þ sinð�0hÞ

h i
A0

þ
�

K0
�0 sinð�0hÞ þ cosð�0hÞ

h i
B0

� sinð�0hÞC0 � cosð�0hÞD0

þ
1

2a

X1
n¼1

�
�

K0
�n cosð�nhÞ þ sinð�nhÞ

h i
An

n

þ
�

K0
�n sinð�nhÞ þ cosð�nhÞ

h i
Bn

o Z a

�a

cos
n�x

L
dx ¼ 0;

ð22eÞ

�
e

"
E0 sinð�0hÞ � F0 cosð�0hÞ½ � �N0hþ R0 ¼ �V2

ð22fÞ

��0 A0 cosð�0hÞ þ B0 sinð�0hÞ½ �2L

¼ c�0 E0 cosð�0hÞ þ F0 sinð�0hÞ½ � þ eN0

� �
2a
ð22gÞ

�
�

K00
�0 cosð�0hÞ þ sinð�0hÞ

h i
A0

�
�

K00
�0 sinð�0hÞ þ cosð�0hÞ

h i
B0

� sinð�0hÞE0 þ cosð�0hÞF0

þ
1

2a

X1
n¼1

�
�

K00
�n cosð�nhÞ þ sinð�nhÞ

h i
An

n

�
�

K00
�n sinð�nhÞ þ cosð�nhÞ�Bn

h io Z a

�a

cos
n�x

L
dx ¼ 0

ð22hÞ

�
e

"
E0 sin �0ðhþ 2h2Þ � F0 cos �0ðhþ 2h2Þ½ �

�N0ðhþ 2h2Þ þ R0 ¼ V2

ð22iÞ

c�0 E0 cos �0ðhþ 2h2Þ þ F0 sin �0ðhþ 2h2Þ½ � þ eN0 ¼ 0

ð22jÞ

If p> 0, the linear algebraic equations for the undeter-
mined coefficients can be written as:

e

"
Cp sin �pðhþ 2h1Þ þDp cos �pðhþ 2h1Þ
� �
þ Gp sinh

p�ðhþ 2h1Þ

a
þHp cosh

p�ðhþ 2h1Þ

a
¼ 0

ð23aÞ

c�p Cp cos �pðhþ 2h1Þ �Dp sin �pðhþ 2h1Þ
� �

þ e
p�

a

Gp cosh
p�ðhþ 2h1Þ

a

þHp sinh
p�ðhþ 2h1Þ

a

2
664

3
775 ¼ 0,

ð23bÞ

e

"
Cp sinð�phÞ þDp cosð�phÞ
� �

þ Gp sinh
p�h

a

þHp cosh
p�h

a
¼ 0

ð23cÞ

��p Ap cosð�phÞ � Bp sinð�phÞ
� �

L ¼ c�0 C0 cosð�0hÞ �D0 sinð�0hÞ½ � þ eG0

� �
�

Z a

�a

cos
p�x

L
dxþ

X1
m¼1

c�m
Cm cosð�mhÞ

�Dm sinð�mhÞ

" #(

� þe
m�

a
Gm cosh

m�h

a
þHm sinh

m�h

a


 �� �
Wmp,

ð23dÞ
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X1
n¼1

�
�

K0
�n cosð�nhÞ þ sinð�nhÞ

h in

An þ
�

K0
�n sinð�nhÞ þ cosð�nhÞ

h i
Bn

o
Wnp

� Cp sinð�phÞ þDp cosð�phÞ
� �

a ¼ 0,

ð23eÞ

�
e

"
Ep sinð�phÞ � Fp cosð�phÞ
� �

�Np sinh
p�h

a

þ Rp cosh
p�h

a
¼ 0

ð23fÞ

��p Ap cosð�phÞ þ Bp sinð�phÞ
� �

L ¼ c�0 E0 cosð�0hÞ þ F0 sinð�0hÞ½ � þ eN0

� �
�

Z a

�a

cos
p�x

L
dx

þ
X1
m¼1

c�m Em cosð�mhÞ þ Fm sinð�mhÞ½ �
�

þe
m�

a
Nm cosh

m�h

a
� Rm sinh

m�h

a


 ��
Wmp

ð23gÞ

X1
n¼1

�
�

K00
�n cosð�nhÞ þ sinð�nhÞ

h in

� An �
�

K00
�n sinð�nhÞ þ cosð�nhÞ

h i
Bn

o
Wnp

� Ep sinð�phÞ � Fp cosð�phÞ
� �

a ¼ 0,

ð23hÞ

�
e

"
Ep sin �pðhþ 2h2Þ � Fp cos �pðhþ 2h2Þ
� �
�Np sinh

p�ðhþ 2h2Þ

a
þ Rp cosh

p�ðhþ 2h2Þ

a
¼ 0

ð23iÞ

c�p Ep cos �pðhþ 2h2Þ þFp sin�pðhþ 2h2Þ
� �
þ e

p�

a
Np cosh

p�ðhþ 2h2Þ

a
�Rp sinh

p�ðhþ 2h2Þ

a


 �
¼ 0

ð23jÞ

where Wmp ¼
R a
�a cos

m�x
a cos p�xL dx, Wnp ¼

R a
�a cos

n�x
L

cos p�xa dx. When K0 ¼K00 ¼1, Equations (22) and

(23) have exactly the same expression as that obtained
by Yang et al. (2008), which confirms the accuracy of
the theoretical derivation. In addition, to calculate the
charge and current on the upper electrode of the the
upper transducer, we have:

Q1 ¼

Z a

�a

�Dyjy¼hþ2h1dx,

I1 ¼ Q1

�

¼ i!Q1

ð24Þ

Similarly, for the charge and current on the lower
electrode of the lower transducer, we obtain:

Q2 ¼

Z a

�a

Dyjy¼�h�2h2dx,

I2 ¼ �Q2

�

¼ �i!Q2

ð25Þ

For the output-circuit conditions of the time-harmo-
nic motions, we have:

I2 ¼ 2V2=Z ð26Þ

and substituting equations (25) and (20) into equation
(26) results in:

� i!

Z a

�a

�"N0 �
X1
m¼1

"
m�

a
Nm cosh

m�ð�h� 2h2Þ

a


(

þRm sinh
m�ð�h� 2h2Þ

a

�
cos


m�x

a

��
dx ¼

2V2

Z

ð27Þ

The input and output powers are given by equation (28)

P1 ¼
1

4
ðI1 � 2V

�
1 þ I�1 � 2V1Þ,

P2 ¼
1

4
ðI2 � 2V

�
2 þ I�2 � 2V2Þ

ð28Þ

where an asterisk denotes a complex conjugate. The
efficiency of the system can then be written as:

l ¼ P2=P1 ð29Þ

5. Numerical results and discussion

An elastic layer made of steel (with �¼ 2.69� 1011N/
m2 and �¼ 7850 kg/m3) is used as an example for the
numerical simulations. We assume that the upper and
lower transducers are both made from the piezoelectric
lead–zirconium–titanate-based ceramic (PZT-5H;
with c44¼ 2.30� 1010N/m2, e15¼ 17C/m2, "11¼ 1.505
� 10�8 F/m, and �1¼ 7500 kg/m3 (Auld, 1973)). As
geometric parameters, we choose a¼ 0.05m, L¼ 3a,
h¼ a/10, and h2¼ h1. Z0 ¼

1
i!C 0

(C0 ¼
"11a
h1
) is introduced

as a unit for the load. The effects of Z on piezoelectric
transformers performances are discussed by Hu et al.
(2003) and Yang et al. (2008), here, we fix Z¼ iZ0 for
convenience. We also fix V1¼ 220V and introduce the
fundamental thickness-shear frequency of the plate
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!0 ¼
�
2h

ffiffiffi
�
�

q
¼ 1:839� 106 rad=s in the following simula-

tions for convenience. The structural damping effect,
which exists in all systems, is introduced by assuming
that the elastic-material constant is complex (Holland
and EerNisse, 1968), that is, by replacing �and c44 by
�ð1þ iQ�1Þ and c44ð1þ iQ�1Þ, respectively. Generally,
different materials have different Q values ranging from
102 to 103 (Holland and EerNisse, 1968). In our calcu-
lations, we use Q¼ 103 in all cases for simplicity. We
also consider the two interface stiffness parameters K0

and K00 as a single complex interface stiffness K, given
by K¼K1þ iK2, in which K1 and K2 are real variables,
and the imaginary part describes the interface damping
to imitate a viscoelastic interface. Although this is actu-
ally impossible in practice, the treatment described
herein is helpful for investigating and understanding
the effects of imperfect viscoelastic interfaces on the
characteristics of piezoelectric transformers.

In the following discussion, we mainly focus on the
effect of an imperfect interface on the system based on
the energy-trapping phenomenon (Wang et al., 2007;
Yang and Guo, 2008; Liu et al., 2011). Hence, the
input frequency meets: !0ð1� R0Þ5!5!0 (Kong
et al., 2011), where R0 ¼

�1ðh1þh2Þ
�h .

5.1. Convergence and verification of the series

Firstly, we examine the convergence and verification of
the series for a perfect interface. Table 1 shows the first
resonance frequencies, transformation ratios, and effi-
ciencies for selected thickness ratios h1/h upon varying
the expansion term of the series. While the performance
of the transducer can be altered by changing the thick-
ness ratio h1/h, the convergence of the series does not
change. The transformation ratio and the efficiency
increase at higher h1/h ratios, whereas the first reson-
ance frequency decreases as h1/h increases. From the
results shown in Table 1, we conclude that ten expan-
sion terms are enough to ensure five significant figures
in the calculation. The term �n(�m) can be positive
under such conditions, and if relatively larger n and m
values are needed, �n and �m can be redefined with a
minus sign, and the sine and cosine functions in equa-
tions (13), (17) and (19) can be changed to hyperbolic
sine and cosine functions, respectively (He et al., 2011).
Therefore, all the following calculations are carried out
using ten terms in the series.

5.2. The effect of an imperfect viscoelastic
interface

Figure 2 shows the displacement distributions of the
central plate at the first resonance for selected thickness
ratios h1/h of a perfect interface. We can see that the
displacements are confined in the covered transducer

area at the first resonance, and when h1¼ 0.06h, the
displacement vanishes more rapidly at the two edges
of the elastic plate than that of other two thickness
ratios, revealing better effect of energy trapping. This
is because the mass of the transducer plays a dominant
role in this system. Without loss of any generality, we
choose h1¼ 0.06h in the following calculations,
although in reality, to obtain a high performance, an
appropriate thickness ratio should be considered after
careful calculations.

Figures 3–5 reveal the displacement u, and the stress
components Tyz and Tzx for the three trapped modes,
respectively. Clearly, the displacement and stress com-
ponent Tyz are symmetric about the y axis, which cor-
responds to the symmetric displacement field
hypothesis described in equation (13). On the contrary,

Figure 2. Displacement distributions of the central plate at the

first resonance for selected thickness ratios h1/h of a perfect

interface, (y¼ h, K¼1).

Table 1. Values of the resonance frequency, transformation

ratio, and efficiency, together with the expansion terms of the

series.

h1/h

(h2¼ h1)

Expansion

term

First resonance

frequency

(!/!0)

Transformation

ratio (jV2/V1j) Efficiency (	)

0.02 10 0.968367 0.150528 0.071541

11 0.968364 0.150527 0.071545

12 0.968369 0.150525 0.071548

0.04 10 0.932248 0.874249 0.411119

11 0.932240 0.874245 0.411118

12 0.932240 0.874244 0.411117

0.06 10 0.895638 1.652315 0.759494

11 0.895636 1.652318 0.759488

12 0.895634 1.652318 0.759486
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the stress component Tzx is anti-symmetric about the y
axis. Because of the effects of the two transducers, the
vibration is only confined in the region jxj< a, out of
where u, Tyz, and Tzx are almost equal to zero, which is

related to the so-called energy-trapping phenomenon.
The fact that Tyz is equivalent to zero in the region
a< jxj<L can be explained by the boundary condi-
tions of (10d) and (10f), which can certify the validity
of the numerical stimulation. When the energy-trapping

Figure 3. Displacement u of the first three trapped modes,

(h2¼ h1¼ 0.06h, K¼1): (a) first mode, ! ¼ 0:89563!0;

(b) second mode, ! ¼ 0:91975!0 and (c) third mode,

! ¼ 0:96962!0.

Figure 4. Stress component Tyz of the first three trapped

modes, (h2¼ h1¼ 0.06h, K¼1): (a) first mode, ! ¼ 0:89563!0;

(b) second mode, ! ¼ 0:91975!0 and (c) third mode,

! ¼ 0:96962!0.

Tang and Jin 1201



is happening, as the device is mounted by the part
where no vibration happens, the whole device vibration
will not be affected.

Figure 6 shows the transformation ratio V2=V1

�� �� and
the efficiency l as a function of the driving frequency at

h1¼ 0.06h for two selected interface situations
(as stated before, K¼1 means a perfect interface).
The transformation ratio reaches its maxima at the res-
onant frequencies (as expected), with the highest values
normally being observed at the first resonance.
However, not all the highest transformation ratios are
actually achieved at the first resonance, which depend
on the system parameters, such as the thickness ratio
h1/h, material and interface properties. The highest
transformation ratio is achieved at the fourth resonance
by Hu et al. (2003) because of different system param-
eters. In addition, the transformation ratio at the third
resonant frequency is so small that it can barely be
determined, which demonstrates that this parameter
decreases quickly upon increasing the resonance
mode. At higher resonances, the corresponding modes
have nodal points, and voltage cancellation usually
occurs along the y direction in the output portion.
Even though the efficiency is irregular throughout the
whole range of trapping frequencies, it reaches its max-
imum values near the resonant frequencies, with the
highest efficiencies also appearing at the first resonance.
If the interface becomes weaker, the resonant fre-
quency, the peak value of the transformation ratio,
and the efficiency all decrease accordingly, which
shows that an imperfect bonding interface can signifi-
cantly affect the behavior of piezoelectric transducer
systems.

Since the transformation ratio attains its maximum
value at the first resonance, the following discussion
will concentrate on the influence of the viscoelastic
interface on the first mode. The impacts of the inter-
face parameters K1 and K2 on the transformation
ratio, efficiency, and displacement distribution at
x¼ h are revealed in Figures 7, 8 and 9, respectively.
In Figure 7, set K¼ (k1þ 0.02i)� 1015N/m3, that is,
K2¼ 0.02� 1015N/m3, K1¼ k1� 1015N/m3, and K1 is
proportional to k1, which means the variations and
effects of k1 are equivalent to those of K1. Similarly,
set K¼ (1þ k2i)� 6� 1014N/m3 in Figure 8, with the
variations and effects of k2 being equivalent to those
of K2. The transformation ratio, efficiency, and dis-
placement peak at x¼ h increase upon increasing k1
but decrease when k1 remains constant and k2
increases. The reason for this is that an increase in
K2, which represents the interface damping, causes a
growth in the system’s damping, thereby leading to
higher energy wastage. On the other hand, the effect
of K1 on the resonant frequency is prominent, whereas
that of K2 is almost negligible, as shown in Figure
8(a). In fact, the resonant frequency is not sensitive
to K2, and the reason why changing this parameter
causes a small shift in the resonant frequency is
that we calculate the modulus of V2=V1

�� �� rather
than V2=V1.

Figure 5. Stress component Tzx of the first three trapped

modes, (h2¼ h1¼ 0.06 h, K¼1): (a) first mode, ! ¼ 0:89563!0;

(b) second mode, ! ¼ 0:91975!0 and (c) third mode,

! ¼ 0:96962!0.
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6. Conclusions

The shear-slip interface model is applied to study the
influence of the interface parameters of a viscoelastic
interface on a structure consisting of a finite elastic
plate, partially covered by piezoelectric patches on
two sides. We obtain a theoretical solution for the
symmetric thickness–twist mode in the x direction.
Numerical results confirm the good convergence
and high precision of the method. If an appropriate
thickness ratio h1/h is chosen, the energy-trapping
phenomenon is well presented, and the displacement
and stress component Tyz are found to be symmetric

about the y axis (inversely, the stress component Tzx

is anti-symmetric about this axis). The results also
suggest that an imperfect bonding interface can sig-
nificantly affect the behavior of piezoelectric trans-
ducer systems. If K2 is kept constant and K1 is
increased, the amplitudes of the transformation
ratio, efficiency and displacement—as well as the res-
onant frequency—of the system decrease. K2 affects
all the performance parameters in the opposite way,
except for the resonant frequency, which is not sen-
sitive to the interface damping parameter K2. These
observations reveal that the amplitudes of the trans-
formation ratio, efficiency and displacement decrease
for weaker interfaces, which can provide a theoretical

Figure 7. First resonance of the transformation ratio V2=V1

�� �� and the efficiency 	 versus the driving frequency for selected k1 values,

(K1¼ k1� 1015 N/m3, K2¼ 0.02� 1015 N/m3): (a) transformation ratio V2=V1

�� �� and (b) efficiency 	.

Figure 6. A few resonances of the transformation ratio V2=V1

�� ��and the efficiency 	 versus the driving frequency, (h2¼ h1¼ 0.06h):

(a) transformation ratio V2=V1

�� �� and (b) efficiency 	.
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guide for designing high-performance piezoelectric
plate transformers.
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