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Sauerbrey’s equation may yield incorrect results when the upper layer is not rigidly attached onto

the quartz crystal plate. Thus, we investigate the effect of an imperfect interface on the anti-plane

vibration of a quartz crystal microbalance for detecting the characteristics of the upper transversely

isotropic porous layer. Both the stiffness and inertial effect of the porous layer, as well as the

influence of an inhomogeneous interface, are considered for an infinite or finite AT-cut (35�150 cut

deviating principal optic axis) quartz plate. The appearance of a weak interface is theoretically and

numerically revealed to excite a new thickness twist wave in an infinite quartz crystal plate.

Meanwhile, the non-uniform interface evidently changes the displacement and stress distributions,

which is totally different from the homogeneous interface. These findings prove effective guidance

for physical phenomenon explanations and experimental measurement in mass sensor devices.
VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4862559]

I. INTRODUCTION

A quartz crystal microbalance (QCM) is usually a quartz

plate or disk that is widely used to measure the characteris-

tics of an additional thin layer upon its surface.1 Specifically,

when a thin layer of another material is added to the crystal

surface, its resonant frequencies become lower mainly due to

inertia. Using this property, a QCM has been successfully

applied to detect the micro-mass changes, as well as the

chemical, biological and physical properties of thin layers

deposited on it.2–4

A porous medium is a material containing pores that are

typically filled with a fluid (liquid or gas), which has impor-

tant applications in sensor devices5 because of its particular

advantage of having very high area compared with a solid

deposit. For example, the energy losses in the GHz range

and forward reflection coefficient characteristics of a thin-

film bulk acoustic wave resonator can be improved by using

a porous silicon layer etching in the ZnO/Si composites.6

The sensitivity of the quartz crystal microbalances for QCM

can be enhanced evidently by replacing the conventional

electrode with porous alumina7 and gold electrodes.8

Furthermore, the refractive index can be lowered in the visi-

ble optical region if the porosity of the porous anodic alumi-

num oxide thin films embedded on the quartz substrate is

chosen properly.9 Most of the works about QCM with a po-

rous material are based on experimental equipment. To the

best of our knowledge, systematic theoretical investigations

about the application of porous material in QCM, which can

provide physical phenomena explanations and guidance for

experimental measurements, are still lacking.

Meanwhile, Sauerbrey’s equation provides linear relation-

ship between the resonance frequency shift of QCM and the

mass attached on the surface.10 Only the inertia of the

additional layer is considered, and its stiffness effect has been

ignored in this equation for simplification. However,

Sauerbrey’s equation may yield incorrect results, especially

when the additional mass layer is not attached rigidly,11 which

limit its practical application. Therefore, the present study

investigates the anti-plane vibration of quartz crystal plate with

a porous layer imperfectly bonded on its surface. Both the stiff-

ness and the inertial effects are included, which may compen-

sate the deficiency of Sauerbrey’s equation to some extent.

The shear horizontal (SH) or anti-plane vibration is

solved for an infinite AT-cut quartz plate using Mindlin’s so-

lution.12,13 This frequency equation can be reduced to some

previous classical outcomes for some special cases. A new

thickness twist wave, excited by imperfect interface, is

revealed through approximation analysis and perturbation

method. This kind of wave disappears when the interface

becomes perfect. Ignoring the small coupling coefficient c56,

the solutions of the finite crystal plate are obtained using the

trigonometric function expansion technique. Different from

that of a previous work,14,15 the interface is inhomogeneous

along the plate length direction. The frequency shift, as well

as the displacement and stress distributions, is examined, and

some conclusions are achieved.

II. BASIC EQUATIONS

A transversely isotropic porous layer with a thickness

2h0 imperfectly bonded on an infinite AT-cut quartz plate

whose thickness is 2h is shown in Figure 1. A particular cut

of a crystal plate refers to the orientation of the plate when

taken out of an anisotropic bulk crystal. As a consequence,

crystal plates with different cuts exhibit different anisotro-

pies in the coordinates that are normal and parallel to the

plate surfaces. The widely used AT-cut quartz plate is a spe-

cial case of rotated Y-cut quartz plate that is effectively

monoclinic in the plate coordinate system. Meanwhile,

quartz has very weak piezoelectric coupling;16 thus, for free
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vibration frequency analysis, this small piezoelectric cou-

pling can be neglected and an elastic analysis is sufficient.

In the following equations, the parameters with a super-

script “0” symbol represent variables in the porous layer. In

addition, the body forces and the viscosity of the upper fluid-

saturated layer are ignored. Following Biot’s theory,17 the

governing equations of quartz plate and porous layer can be

expressed as follows:

Tij;j ¼ q€ui; (1a)

T0ij;j ¼ q11€u0i þ q12
€U
0
i; r0;i ¼ q12€u0i þ q22

€U
0
i; (1b)

where a comma followed by subscript i denotes differentiation

with respect to the corresponding coordinate, and the dot

refers to time differentiation. Tij, ui, and q are the components

of the stress, displacement and mass density of the crystal

plate, respectively. For the porous layer, u0i are the compo-

nents of the solid phase displacements, and U0i are those of the

fluid phase displacements. r0 ¼ �bp is the reduced pressure

of the fluid (p is the pressure in the fluid and b is the porosity

of the medium). Mass coefficients q11, q22, q12 account for

the inertias of the solid and fluid phases, and the effects of the

momentum transfer between the two phases. Moreover, these

coefficients obey the following inequalities:17

q11 > 0; q22 > 0; q12 < 0; q11q22 � q2
12 > 0: (2)

The constitutive equations corresponding to quartz plate

and the porous layer can be expressed as follows:17,18

Tij ¼ cijklekl; (3a)

T0ij ¼ c0ijkle
0
kl þ m0ijE

0 ; r0 ¼ m0ije
0
ij þ R0E0; (3b)

where cijkl c0ijkl

� �
and ekl e0kl

� �
are the components of the elas-

tic coefficient and strain tensors in the crystal plate (porous

layer), respectively, and m0ij and R0 are the material parame-

ters in the porous layer. Moreover, the geometric equations

in the quartz plate and the porous layer can be written as

follows:17

eij ¼
1

2
ui;j þ uj;ið Þ; (4a)

e0ij ¼
1

2
u0i;j þ u0j;i

� �
; E0 ¼ U0i;i: (4b)

The constitutive equations of (3) can be represented in

terms of components as follows:17–19

T11

T22

T33

T23

T13

T12

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
¼

c11 c12 c13 c14 0 0

c12 c22 c23 c24 0 0

c13 c23 c33 c34 0 0

c14 c24 c34 c44 0 0

0 0 0 0 c55 c56

0 0 0 0 c56 c66

2
6666664

3
7777775

e11

e22

e33

2e23

2e13

2e12

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
(5a)

and

T011

T022

T033

T023

T013

T012

r0

8>>>>>>>>>>>><
>>>>>>>>>>>>:

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

¼

c011 c012 c013 0 0 0 m011

c012 c011 c013 0 0 0 m011

c013 c013 c033 0 0 0 m033

0 0 0 c044 0 0 0

0 0 0 0 c044 0 0

0 0 0 0 0 c066 0

m011 m011 m033 0 0 0 R0

2
666666666664

3
777777777775

�

e011

e022

e033

2e023

2e013

2e012

E0

8>>>>>>>>>>>><
>>>>>>>>>>>>:

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

; (5b)

with c066 ¼
c0

11
�c0

12

2
.

III. THICKNESS-SHEAR VIBRATION WITH A
PERFECTLY BONDED INTERFACE

First, we consider a relative simple example, i.e., the

thickness-shear vibration of QCM with u1 ¼ u1ðx2; tÞ,20 in

order to evaluate the properties of an additional porous layer. By

using of equations motioned above, we can, respectively, deduce

the governing equations in the quartz plate and porous layer

c66u1;22 ¼ q€u1; (6a)

c066u01;22 ¼ q0€u01; (6b)

where the relative density is q0 ¼ q11 �
q2

12

q22
, and the fluid

phase displacement satisfies U01 ¼ �
q12

q22
u01. The solutions can

be easily obtained as follows:

u1 ¼ A cosðax2Þ þ B sinðax2Þ½ � exp ixtð Þ; (7a)

u01 ¼ A0 cosða0x2Þ þ B0 sinða0x2Þ
� �

exp ixtð Þ; (7b)

where a ¼ xffiffiffiffiffiffiffiffi
c66=q
p and a0 ¼ xffiffiffiffiffiffiffiffiffiffi

c0
66
=q0

p are wavenumbers in the

quartz plate and porous layer. Hence, the corresponding non-

trivial stress components are, respectively,

T12 ¼ c66a �A sinðax2Þ þ B cosðax2Þ½ � exp ixtð Þ; (8a)

T012 ¼ c066a
0 �A0 sinða0x2Þ þ B0 cosða0x2Þ
� �

exp ixtð Þ: (8b)

FIG. 1. A QCM containing of a uniform porous layer imperfectly attached

on an infinite AT-cut quartz plate.
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The top of the porous layer and bottom of quartz plate

are traction free, and the displacement and stress components

cross the perfect interface at x2¼ h are continuous, which

indicates the following relations:21,22

x2 ¼ hþ 2h0 : T012 ¼ 0; (9)

x2 ¼ �h : T12 ¼ 0; (10)

x2 ¼ h : T012 ¼ T12; u01 ¼ u1: (11)

Substituting Eqs. (7) and (8) into the above boundary condi-

tions, i.e., Eqs. (9), (10), and (11), yields four linear homoge-

neous algebraic equations for coefficients A, B, A0, and B0

�A0 sin a0 hþ 2h0ð Þ
� �

þ B0 cos a0 hþ 2h0ð Þ
� �

¼ 0;

c66a �A sin ahð Þ þ B cos ahð Þ½ �
¼ c066a

0 �A0 sin a0hð Þ þ B0 cos a0hð Þ½ �;
A cos ahð Þ þ B sin ahð Þ ¼ A0 cos a0hð Þ þ B0 sin a0hð Þ;
A sin ahð Þ þ B cos ahð Þ ¼ 0:

(12)

The determinant of the coefficient matrix of Eq. (12) for

non-trivial solutions should disappear, which leads to the fol-

lowing dispersion relation:

c66a tan 2ahð Þ þ c066a
0 tan 2a0h0ð Þ ¼ 0: (13)

If there is no additional porous layer exists, i.e., h0¼ 0,

the frequency of thickness-shear vibration of quartz plate is

x ¼ mp
2h

ffiffiffiffiffi
c66

q

q
; ðm ¼ 0; 1; 2;…Þ with upper and bottom surfa-

ces traction free. Once an additional porous layer is imposed

on the surface of the crystal plate, its resonance frequency

will be changed, which can be calculated according to Eq.

(13). Comparing the two different values, we can make use

of the frequency shift caused by the additional porous layer

to evaluate some properties, for instance, the thickness h0,

elastic constant c066, and relative density q0. The present con-

tribution mainly aims to reveal the effect of imperfect inter-

face on the performance of QCM. Detecting the properties of

an additional porous layer by using of frequency shift is not

our emphasis, which will not be discussed for the time being

for simplification. The relatively similar proceeding can be

found in the work by Yang and colleagues.20,23

IV. ANTI-PLANE VIBRATION FOR AN INFINITE PLATE

The SH or anti-plane motions with only one displace-

ment component are allowed by the linear theory of aniso-

tropic elasticity without loss of any generality, and the

motion mode in Figure 1 can then be represented by the fol-

lowing displacement components:18,21,22

u1 ¼ u1 x2; x3; tð Þ; u2 ¼ u3 ¼ 0; (14a)

u01 ¼ u01 x2; x3; tð Þ; u02 ¼ u03 ¼ 0; U01 ¼ U01 x2; x3; tð Þ;
U02 ¼ U03 ¼ 0: (14b)

Therefore, in the linear theory of elasticity, the correspond-

ing stresses are represented as follows:16

T13 ¼ c55u1;3 þ c56u1;2; T12 ¼ c56u1;3 þ c66u1;2; (15a)

T013 ¼ c044u01;3; T012 ¼ c066u01;2: (15b)

Based on these relations, the governing equations in the

quartz plate and porous layer can be obtained as

follows:16,22,24

c66u1;22 þ c55u1;33 þ 2c56u1;23 ¼ q€u1; (16a)

c066u01;22 þ c044u01;33 ¼ q11€u01 þ q12
€U
0
1;

q12€u01 � q22
€U
0
1 ¼ 0: (16b)

A. Solution of the quartz plate

Given the presence of c56 and the related mixed deriva-

tive term, solutions to Eq. (16a) cannot be obtained in a sim-

ple and elegant manner by, e.g., the standard method of

separation of variables. Mindlin12,13 once constructed a

wave solution to Eq. (16a), which is particularly useful and

convenient for the present problem, i.e.,

u1 ¼ A cosðgx2Þ þ B sinðgx2Þ½ �cos n
c56

c66

x2 � x3

	 
� �
exp ixtð Þ;

(17)

where A and B are the undermined constants; x is the fre-

quency; and g and n are the wavenumbers in the x2 and x3

directions, respectively. Equation (17) satisfies Eq. (16a),

which requires

g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

v2
s

� n2 c55

c66

s
¼ p

2h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

x2
s

� c55

c66

2hn
p

	 
2
s

; (18)

with vs ¼
ffiffiffiffiffi
c66

q

q
, xs ¼ p

2h vs, and c55 ¼ c55 � c2
56

c66
. Thus, the

shear stress component that will be needed in the boundary

and continuity conditions is given by

T12 ¼ c66g �A sinðgx2Þ þ B cosðgx2Þ½ �

� cos n
c56

c66

x2 � x3

	 
� �
exp ixtð Þ: (19)

B. Solution of the porous layer

The governing equations of transversely isotropic po-

rous layer, i.e., Eq. (16b) can be abbreviated as follows:

u01;22 þ
c044

c066

u01;33 ¼
q0

c066

€u01: (20)

Similarly, the solution can be easily obtained as follows:

u01¼ Ccosðg0x2ÞþD sinðg0x2Þ
� �

cos n
c56

c66

h� x3

	 
� �
exp ixtð Þ;

(21)

where C and D are the undermined constants, and the wave-

numbers n and g0 satisfy the following relation:
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g0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

v2
0

� n2 c044

c066

s
¼ p

2h0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

x2
0

� c044

c066

2h0n
p

	 
2
s

; (22)

with v0 ¼
ffiffiffiffiffi
c0

66

q0

q
and x0 ¼ p

2h0
v0. Similarly, the corresponding

shear stress component in the porous layer is represented as

follows:

T012 ¼ c066g
0 �C sinðg0x2Þ þ D cosðg0x2Þ
� �

� cos n
c56

c66

h� x3

	 
� �
exp ixtð Þ: (23)

C. Boundary conditions and frequency equation

For the imperfect interface at x2 ¼ h, the classical shear-

lag model was utilized to simulate its effect, i.e.,14,15,24,25

T012 ¼ T12 ¼ K u01 � u1

� �
; (24)

where the tangential displacement at this interface may be

different from both sides of the interface to account for the

deformation of the interface. When K ¼ 0, the two parts lose

their mechanical interaction, and the case of K ¼ 1 is for

the perfect interface with continuous displacement across the

joint.14,15,24,25 Substituting the displacement and stress

expressions, i.e., Eqs. (17), (19), (21), and (23), into the

above boundary conditions, i.e., Eqs. (9), (10), and (24),

yields four linear homogeneous algebraic equations for coef-

ficients A, B, C, and D.

�C sin g0 hþ 2h0ð Þ
� �

þ D cos g0 hþ 2h0ð Þ
� �

¼ 0;

c66g �A sin ghð Þ þ B cos ghð Þ½ �
¼ c066g

0 �C sin g0hð Þ þ D cos g0hð Þ½ �;
c66g �A sin ghð Þ þ B cos ghð Þ½ �
¼ K C cos g0hð Þ þ D sin g0hð Þ � A cos ghð Þ � B sin ghð Þ

� �
;

A sinðghÞ þ B cosðghÞ ¼ 0: (25)

The determinant of the coefficient matrix for non-trivial

solutions should disappear, which leads to the following dis-

persion relation that determines the frequency for SH

vibration:

c066g
0

c66g
tan 2g0h0ð Þ 1� Cgh tan 2ghð Þ½ � þ tan 2ghð Þ ¼ 0; (26)

in which the non-dimensional number C ¼ c66

Kh describes how

well the porous layer and quartz plate are bonded. If the

interface is perfect, i.e., C ¼ 0, Eq. (26) can be reduced as

follows:

c066g
0

c66g
tan 2g0h0ð Þ þ tan 2ghð Þ ¼ 0; (27)

which has similar expression as that of Lee and Chang.26

Furthermore, when no additional porous layer exists,

i.e., h0 ¼ 0, 2gh ¼ mp can be obtained for different branches

m ¼ 0; 1; 2; :::. Hence,

X ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ Z2

p
; (28)

where X ¼ x
xs

and Z ¼
ffiffiffiffiffi
c55

c66

q
2hn
p

� �
. Equation (28) is the reso-

nance frequency of the anti-plane vibration for a free infinite

AT-cut quartz plate solved by Mindlin.12

D. Effect of the imperfect interface on the face shear
wave (m 5 0)

Figure 2 shows the dispersion curves of a free infinite

AT-cut quartz plate without additional mass layer, as previ-

ously depicted by previous researchers.12,27 The case of m ¼ 0

is the face shear wave, which is a straight line going through

the origin and is non-dispersive. The waves corresponding to

the curves of m 6¼ 0 are the thickness twist waves, which are

dispersive. The finite intercepts with the X axis are the cutoff

frequencies; below which, the wavenumber becomes pure

imaginary and the corresponding waves cannot propagate.

As a special case, the effect of imperfect interface on

the face shear wave (m ¼ 0) is considered in the following

presentation. For mass loading sensors or QCM, the coating

porous layers are usually very thin (2h0 � 2h); thus, the fol-

lowing approximations can be made:28

tan 2g0h0ð Þ ¼ 2g0h0: (29)

For the lowest mode of a bare AT-cut quartz plate, 2gh ¼ 0.

For the composite structure shown in Figure 1, the effect of

this additional porous layer can be regarded as a perturba-

tion.28 Putting 2gh ¼ d and using the fact that d is a very

small quantity, then

v2
0

v2
s

2q0h0

2qh
g02 1� 2C ghð Þ2
h i

þ g2 ¼ 0: (30)

When the interface is perfect, i.e., C ¼ 0, Eq. (30) is a linear

equation with only one unknown. Thus, the frequency

expression can be obtained as follows:

X ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ v2

0

v2
s

2q0h0

2qh

c044=c066

c55=c66

1þ 2q0h0

2qh

vuuuuut Z; (31)

FIG. 2. Dispersion curves of infinite AT-cut quartz plate with an additional layer.
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which determines the frequency of the face shear wave when

the infinite AT-cut quartz plate is covered by a transversely

isotropic porous layer. Both the stiffness and inertia of the

porous layer are included in present discussion. Figure 3

shows the frequency branches for different thicknesses of the

additional layer, with
c0

44

c0
66

¼ 1 and q0 ¼ 1500 kg=m3. The

curve is also a straight line going through the origin for dif-

ferent conditions. Thicker porous layer lowers the frequency

and slope, as shown in Figure 3.

For the imperfect interface (C 6¼ 0), Eq. (30) is a quad-

ratic equation with one unknown X2. With the introduction

of non-dimensional variables R ¼ 2q0h0

2qh and T ¼ v2
0

v2
s

c0
44
=c0

66

c55=c66
, Eq.

(30) can be reduced as follows:

p2CR

2
X4 � Rþ p2CR

2
T þ 1ð ÞZ2 þ 1

� �
X2

þ p2CRT

2
Z2 þ RT þ 1

	 

Z2 ¼ 0: (32)

Assuming M ¼ p2CR
2

, N ¼ Rþ p2CR
2

T þ 1ð ÞZ2 þ 1, and

Q ¼ p2CRT
2

Z2 þ RT þ 1
� �

Z2, the frequency solution can be

written as follows:

X1 ¼
N �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2 � 4MQ

p
2M

	 
1
2

; X2 ¼
N þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2 � 4MQ

p
2M

	 
1
2

:

(33)

Two resonance frequencies are available for imperfect inter-

faces, which is totally different from the perfect case, i.e.,

Eq. (31). By calculating the values, we can calculate that X1

corresponds to face shear wave, and X2 is the new thickness

twist mode with a cutoff frequency, which is excited by the

imperfect interface. When C ¼ 0, X2 disappears, and X1 is

equal to X in Eq. (31).

Figure 4 shows the dispersive relationship when the

upper porous layer is imperfectly bonded on the infinite AT-

cut quartz plate (m¼ 0). The red curve has a finite intercept

with the frequency axis. These intercepts are called cutoff

frequencies, below which, the wavenumber becomes pure

imaginary and the corresponding waves cannot propagate.

The appearance of this new thickness twist wave caused by

weak interfaces is qualitatively different from a classical

composite plate with perfect interfaces. When K decreases

or C increases, the interface bonding becomes weaker and

the frequencies of the waves become lower as expected. In

addition, the face shear branch when C 6¼ 0 is linear only at

a certain region. For example, these curves are kept straight

FIG. 3. Dispersive relationship of face shear wave for some selected thick-

ness of the porous layer with a perfect interface (m ¼ 0 and C ¼ 0).

FIG. 4. Dispersive relationship of the face shear wave when the upper po-

rous layer is imperfectly bonded on the infinite AT-cut quartz plate (m¼ 0):

(a) h0 ¼ h=20; (b) h0 ¼ h=5.

FIG. 5. A QCM with an inhomogeneous interface between the porous layer

and the AT-cut quartz plate.
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in the region Z < 2 for h0 ¼ h=20. With the increase in the

thickness of the porous layer, the linear region narrows, i.e.,

Z < 1 for h0 ¼ h=5, as shown in Figure 4(b).

V. EFFECT OF THE INHOMOGENEOUS INTERFACE
IN A FINITE AT-CUT QUARTZ PLATE

A fully distributed porous layer imperfectly embedded

in a finite AT-cut quartz plate is considered in this study, as

shown in Figure 5. The pure anti-plane vibration can be sep-

arated in the composite structure by properly choosing the

plate aspect ratio, i.e., length/thickness.27 Furthermore, in re-

alistic situations, the contact between two parts can be non-

uniform and, most probably, weaker at the corners of the

plate edges.29 To examine the effect of such inhomogeneous

interface stiffness distributions, the interface is considered as

functional graded, that is, the interface parameter gradually

changes along plate length direction.

A. Solution of the quartz plate

For the AT-cut quartz plates, c55¼ 68.81 GPa,

c56¼ 2.53 GPa, and c66¼ 29.01 GPa.16 The value of c56 is

very small compared with c55 and c66, therefore, the usual

approximation of neglecting the small c56 is followed

throughout the rest of the equations discussed in this arti-

cle.14,27 Based on this assumption, the governing field equa-

tion can be abbreviated as follows:

u1;22 þ
c55

c66

u1;33 ¼
q

c66

€u1: (34)

The solution can be obtained by expanded trigonometric

function along the x3 direction.14,27 Hereafter, exp ixtð Þ is

omitted for brevity

u1¼ A0 cosðg0x2ÞþB0 sinðg0x2Þ½ �

þ
X1

n¼1;2;3;…

An cosðgnx2ÞþBn sinðgnx2Þ½ �cosðanx3Þ; (35)

where A0, B0, An, and Bn are the undetermined constants,

and T13 ¼ 0 at x3 ¼ 6L is satisfied when

ap ¼ pp
L ; ðp ¼ 0; 1; 2;…Þ. In this equation, only the cosine

series solution in the x3 direction is considered for simplifica-

tion. Equation (35) satisfies (34) when

g2
p ¼

p2

4h2

x2

x2
s

� c55

c66

p
2h

L

	 
2
" #

; ðp ¼ 0; 1; 2;…Þ: (36)

The shear stress component, which will be used in the subse-

quent boundary conditions, is given by

T12 ¼ c66

(
g0 �A0 sinðg0x2ÞþB0 cosðg0x2Þ½ �

þ
X1

n¼1;2;3;…

gn �An sinðgnx2ÞþBn cosðgnx2Þ½ �cosðanx3Þ
)
:

(37)
B. Solution of porous layer

Similarly, the solution of Eq. (20) can be obtained using

the trigonometric function expansion technique

u01 ¼ A00 cosðg00x2Þ þ B00 sinðg00x2Þ
� �
þ

X1
m¼1;2;3;…

A0m cosðg0mx2Þ þ B0m sinðg0mx2Þ
� �

cosðamx3Þ;

(38)

where A00, B00, A0n, and B0n are the undetermined constants,

and T013 ¼ 0 at x3 ¼ 6L is satisfied. Equation (38) needs to

satisfy Eq. (20), which requires

g02p ¼
p2

4h2
0

x2

x2
0

� c044

c066

p
2h2

0

L

	 
2
" #

; p ¼ 0; 1; 2; :::ð Þ: (39)

The corresponding stress component T012 is

T012 ¼ c066

(
g00 �A00 sinðg00x2Þ þ B00cosðg00x2Þ
� �

þ
X1

m¼1;2;3;…

g0m �A0m sinðg0mx2Þ
�

þ B0mcosðg0mx2Þ�cosðamx3Þ
)
: (40)

FIG. 6. Non-dimensional frequency shift caused by different interfaces: (a)

First mode; (b) comparison for different modes.
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C. Boundary conditions and frequency equation

The top and bottom boundary conditions are the same as those in Eqs. (9) and (10). Instead of the stiffness coefficient, the

interface flexibility coefficient was used to simulate the effect of the inhomogeneous interface at x2 ¼ h30

sT012 ¼ sT12 ¼ u01 � u1; (41)

where s ¼ 1
K describes how well the two portions are bonded. Simultaneously, we regard this equation as a function of x3, i.e.,

s ¼ s0f x3ð Þ. Substituting Eqs. (35), (37), (38), and (40) into the boundary conditions Eqs. (9), (10) and (41) yields

g00 �A00 sin g00ðhþ 2h0Þ
� �

þ B00 cos g00ðhþ 2h0Þ
� �
 �

þ
X1

m¼1;2;3;…

g0m �A0m sin g0mðhþ 2h0Þ
� �

þ B0m cos g0mðhþ 2h0Þ
� �
 �

cosðamx3Þ ¼ 0; (42a)

c066

c66

g00 �A00 sinðg00hÞ þ B00 cosðg00hÞ
� �

þ
X1

m¼1;2;3;…

g0m �A0m sinðg0mhÞ þ B0m cosðg0mhÞ
� �

cosðamx3Þ
( )

¼ g0 �A0 sinðg0hÞ þ B0 cosðg0hÞ½ � þ
X1

n¼1;2;3;…

gn �An sinðgnhÞ þ Bn cosðgnhÞ½ � cosðanx3Þ; (42b)

A00 cosðg00hÞ þ B00 sinðg00hÞ � A0 cosðg0hÞ � B0 sinðg0hÞ
� �

þ
X1

m¼1;2;3;…

A0m cosðg0mhÞ þ B0m sinðg0mhÞ
� �

cosðamx3Þ

�
X1

n¼1;2;3;…

An cosðgnhÞ þ Bn sinðgnhÞ½ � cosðanx3Þ

¼ s0f ðx3Þc66 g0 �A0 sinðg0hÞ þ B0 cosðg0hÞ½ � þ
X1

n¼1;2;3;���
gn �An sinðgnhÞ þ Bn cosðgnhÞ½ � cosðanx3Þ

( )
; (42c)

g0 A0 sinðg0hÞ þ B0 cosðg0hÞ½ � þ
X1

n¼1;2;3;…

gn An sinðgnhÞ þ Bn cosðgnhÞ½ � cosðanx3Þ ¼ 0: (42d)

Multiplying Eqs. (42) by cosðapx3Þ for p ¼ 0; 1; 2; :::, respectively, and integrating the resulting equations from �L to L,

the following linear equations for the undetermined constants are obtained:

�A00 sin g00ðhþ 2h0Þ
� �

þ B00 cos g00ðhþ 2h0Þ
� �

¼ 0;

�A0m sin g0mðhþ 2h0Þ
� �

þ B0m cos g0mðhþ 2h0Þ
� �

¼ 0;
(43a)

g0 �A0 sinðg0hÞ þ B0 cosðg0hÞ½ � ¼ c066

c66

g00 �A00 sinðg00hÞ þ B00 cosðg00hÞ
� �

;

gn �An sinðgnhÞ þ Bn cosðgnhÞ½ � ¼ c066

c66

g0n �A0n sinðg0nhÞ þ B0n cosðg0nhÞ
� �

;
(43b)

A00 cosðg00hÞ þ B00 sinðg00hÞ � A0 cosðg0hÞ � B0 sinðg0hÞ

¼ c66s0

2L
g0 �A0 sinðg0hÞ þ B0 cosðg0hÞ½ �

ðL

�L

f ðx3Þdx3þ
X1

n¼1;2;3;…

gn �An sinðgnhÞ þ Bn cosðgnhÞ½ �
ðL

�L

f ðx3Þ cosðanx3Þdx3

( )
;

A0m cosðg0mhÞ þ B0m sinðg0mhÞ � Am cosðgmhÞ � Bm sinðgmhÞ

¼ c66s0

L
g0 �A0 sinðg0hÞ þ B0 cosðg0hÞ½ �

ðL

�L

f ðx3Þ cosðamx3Þdx3

(

þ
X1

n¼1;2;3;…

gn �An sinðgnhÞ þ Bn cosðgnhÞ½ �
ðL

�L

f ðx3Þ cosðanx3Þ cosðamx3Þdx3

)
; (43c)

�A0 sinðg0hÞ þ B0 cosðg0hÞ¼0;

�An sinðgnhÞ þ Bn cosðgnhÞ ¼ 0:
(43d)
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FIG. 7. Relative displacement and stress distributions of the first mode of the quartz plate with a homogeneous interface (f x3ð Þ ¼ 1, s0 ¼ 1� 10�15m3=N): (a)

Relative displacement u1; (b) relative stress T12.

FIG. 8. Relative displacement u1 of the first four symmetric modes of QCM with an inhomogeneous interface (f x3ð Þ ¼ 2� x3

L

� �2
, s0 ¼ 1� 10�15m3=N): (a)

First mode (X1 ¼ 0:94340825); (b) second mode (X2 ¼ 0:95176225); (c) third mode (X3 ¼ 0:96558775); (d) fourth mode (X4 ¼ 0:98461075).
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For the non-trivial solutions, the determinant of the

coefficient matrix has to vanish, and the frequency can then

be obtained.

D. Numerical simulation

For a numerical example, an AT-cut quartz plate, with

half length of L ¼ 20 mm, thickness of 2h ¼ 1 mm, and mass

density of the plate q ¼ 2649 kg=m3, is considered. The fol-

lowing parameters are used for the porous layer:31

c044 ¼ 7:5 GPa, c066 ¼ 5:535 GPa, q0 ¼ 1500 kg=m3, and

h0 ¼ 0:1 h. Equation (43) is a transcendental equation, in

which the frequency cannot be solved using an explicit

expression. Thus, the following iterative procedure was

adopted for numerical computations.32 For an initial value of

x, the determinant of the coefficient matrix, presented in the

left hand of Eq. (43), was evaluated, and a fixed but small in-

crement was added to the frequency until the value of the de-

terminant changed its sign. The “bisection method” was then

applied to locate the root correction to a chosen number of

decimal places. In the following discussion, this study

mainly focuses on the energy trapping phenomenon, i.e.,

ð1� RÞ < X < 1 for the uniform porous layer.12,14,15

Meanwhile, three different kinds of interfaces were adopted

as follows:

f0 x3ð Þ ¼ 1; f1 x3ð Þ ¼
x3

L

	 
2

; f2 x3ð Þ ¼ 2� x3

L

	 
2

: (44)

f0 x3ð Þ ¼ 1 is the homogeneous weak interface. f1 x3ð Þ
¼ x3

L

� �2
is related to the case that the interface is weaker at the

corners of the plate edges and the porous layer perfectly

bonded at the crystal plate center. f2 x3ð Þ ¼ 2� x3

L

� �2
corre-

sponds to the circumstance that the interface flexibility coeffi-

cient reaches its maximum at the center of the plate, which

may be induced by local defect at x3 ¼ 0, such as the micro-

pore or fine crack. Taking the case of f2 x3ð Þ ¼ 2� x3

L

� �2
, for

example, four frequencies are always found when using 10

FIG. 9. Relative stress component T12 of the first four symmetric modes of QCM with an inhomogeneous interface (f x3ð Þ ¼ 2� x3

L

� �2
, s0 ¼ 1� 10�15m3=N):

(a) First mode (X1 ¼ 0:94340825); (b) second mode (X2 ¼ 0:95176225); (c) third mode (X3 ¼ 0:96558775); (d) fourth mode (X4 ¼ 0:98461075).
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and 11 terms in the series: X1 ¼ 0:94340825,

X2 ¼ 0:95176225, X3 ¼ 0:96558775, and X4 ¼ 0:98461075.

Seven significant figures are used to ensure sufficient accuracy

of the frequencies. In this case, the corresponding modes also

converged well, without noticeable differences. Therefore, all

calculations below are based on calculations using 10 terms in

the series.

Fortunately, g2
p and g02p for p ¼ 0; 1; 2;… is positive in

this case, thereby reducing the complexity of the numerical

simulation. When a large p is indeed needed, g2
p and g02p can

be redefined with a minus sign and the sine and cosine func-

tions in Eqs. (35) and (38) can be changed to hyperbolic sine

and cosine functions, respectively.14,29

The frequency shift can be defined as Dx ¼ x0 � �x,

where x0 and �x represent the frequencies of the plate when

the interface is imperfect and perfect, respectively. Figure

6(a) provides the non-dimensional frequency shift DX of the

fundamental mode as a function with the interfacial flexibil-

ity coefficient s0 for different kinds of interfaces, such as Eq.

(44). The relationship between the frequency change and the

interfacial parameter is linear for the homogeneous weak

interface, which can be proved by Chen et al.,33 and can be

used to measure the level of the interface bonding. The inho-

mogeneity of the interface does not change its linear rela-

tionship. However, the slope has been changed because of

the inconsistency of the interface. If the interface coefficient

is judged according to the uniform interface, some bias error

may occur. Meanwhile, higher mode has a larger frequency

shift than the fundamental mode, as shown in Figure 6(b).

This variation is not evident when f x3ð Þ ¼ x3

L

� �2
because this

interface approaches closer to the perfect case compared

with the other two cases.

In the following figures, the values of the displacement

and stress components are normalized in such a way that the

maximal displacement is equal to one.14,15 When the inter-

face is uniform, i.e., f x3ð Þ ¼ 1, no inhomogeneous factor

exists in the calculation model (Figure 5). Thus, only one

term of the trigonometric function series is enough for the

numerical simulation. Meanwhile, the stress and

displacement distributions along the x3 direction must be

uniform from a physical point of view. The displacement

and stress variations of the fundamental mode in the AT-cut

quartz plate in Figure 7 have proven its correctness. Other

higher modes have the same tendency, which are not

depicted one by one. Moreover, stress T12 remains zero at

the bottom surface x2 ¼ �h, which is decided by Eq. (10),

validating the accuracy of our calculation to some extent.

Taking the case of f x3ð Þ ¼ 2� x3

L

� �2
as an example, the

non-uniform interface evidently changed displacement and

stress distributions, as shown in Figures 8 and 9. These dis-

placement and stress distributions are all symmetric about

the x2 axis because only cosine function along x3 direction is

considered. Along the x2 direction, the displacement is anti-

symmetric, whereas the stress is symmetric. The stress com-

ponent remains zero at all times at x2 ¼ �h, as shown in

Figure 9. The first, second, third, and fourth modes have two,

four, six, and eight points with zero value along the plate

length, respectively. Notably, this case is not the energy trap-

ping phenomenon that is due to the non-zero values of dis-

placement and stress at the edge x3 ¼ 6L.

Figure 10 shows the displacement comparison of the

first mode for the three interfaces above. Mostly, the maxi-

mum of amplitude takes place at the edges of the plate when

the interface is non-uniform, such as f x3ð Þ ¼ x3

L

� �2
, which

can be used to explain the phenomenon that the connected

portion was first isolated near the plate edge.

VI. CONCLUSION

The solutions for the anti-plane vibration of an infinite

and finite AT-cut quartz plate with transversely isotropic po-

rous layer imperfectly bonded on its surface were obtained.

Based on some simplification and perturbation solutions, a

new thickness twist wave caused by the imperfect interface

was revealed in an infinite crystal plate. Meanwhile, the

inhomogeneity of the interface was also investigated in a fi-

nite quartz plate by the trigonometric function expansion

technique. The frequency, displacement, and stress distribu-

tions changed evidently because of the non-uniform inter-

face, which should be given more attention in sensor

application.

Frankly speaking, it may be more pronounced in longi-

tudinal modes, e.g., the thickness-extensional modes, rather

than in shear modes of a plate by evaluating the porosity of

the additional fluid- or air-filled solid layer according to the

frequency shift of a resonator, which needs to be proved the-

oretically and experimentally in the near future.
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