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a b s t r a c t

An analytic model is developed to investigate the wave propagation and sound

transmission characteristics of an infinite sandwich structure reinforced by two sets of

orthogonal rib-stiffeners when subjected to convective fluid-loaded pressure. The rib-

stiffeners are assumed to be identical and uniformly spaced, which can exert not only

tensional forces and bending moments but also torsional moments on the facesheets.

Inertial terms of the tensional forces, bending moments and torsional moments are

introduced to account for inertial effects arising from the mass of the rib-stiffeners.

With the surrounding acoustic fluids restricted by the acoustic wave equation,

fluid–structure coupling is considered by imposing velocity continuity condition at

fluid–panel interfaces. By applying the Bloch theorem for periodic structures, the

structural and acoustic responses are expressed in a superposition form of space

harmonics for a given wavenumber. The application of the virtual work principle for one

periodic element yields two infinite sets of simultaneous algebraic coupled equations,

which are numerically solved by truncating them in a finite range insofar as the solution

converges. The validity and feasibility of the analytic model is qualified by comparing

model predictions with existing results, in which the necessity and advantage of the

exact modeling of rib-stiffener motions are also demonstrated. Specifically, the

influences of inertial effects arising from rib-stiffener mass, the periodicity spacing of

rib-stiffeners, and the airborne as well as structure-borne paths on the transmission of

sound across the sandwich structure are quantified and conclusions of significant

practical implications are drawn.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Lightweight sandwich structures consisting of two parallel plates (as the facesheets) reinforced by sets of spatially
periodic rib-stiffeners (as the core) form a class of structural elements of practical importance in a wide range of
engineering applications, such as aircraft fuselages and ship/submarine hulls (Dozio and Ricciardi, 2009; Fahy and
Lindqvist, 1976; Langley et al., 1997; Lee and Kim, 2002; Mace, 1981, 1996; Mead and Yaman, 1991; Xin and Lu, submitted
for publication). Typically, these periodic rib-stiffeners construct identical and uniformly spaced sets having a repetitive
structural geometry in either one- or two-dimensions. Since aerospace and marine vehicles are usually subjected to sound
excitation and/or dynamic impact (Graham, 1995; Hambric et al., 2004; Lucey, 1998; Maury et al., 2001; Xin et al., 2009b),
the wave propagation and acoustic characteristics of these periodic structures become increasingly important for
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predicting the internal and external sound pressure levels. When the wavelength of flexural wave in the periodically
rib-stiffened structure is much greater than stiffener separation, the structure can be approximately regarded as an
orthotropic plate. At relatively high frequencies, the wavelength is on the same order as the stiffener separation, and hence
the spatially periodic rib-stiffeners should be modeled exactly to comprehend the dynamic and acoustic characteristics of
the structure as a whole (Lee and Kim, 2002; Mace, 1980a, b, 1996; Xin and Lu, submitted for publication). The aim is to
formulate a physically based analytic model of desirable accuracy for the vibroacoustic response of the sandwich structure,
which can in due course be employed in conjunction with optimization techniques to design more effective lightweight
soundproofing structures.

A rich literature (e.g., Fahy and Lindqvist, 1976; Lee and Kim, 2002; Mead, 1970, 1996; Mead and Mallik, 1976; Mead
and Pujara, 1971; Mead and Yaman, 1991; Rao and Mallik, 1977; Ruzzene, 2004; Spadoni and Ruzzene, 2006; Yin et al.,
2007) exists on the theoretical modeling and analysis of wave propagation and dynamic performance of periodically
rib-stiffened beams and plates. Focusing on free wave propagation in periodically supported, infinite beams, Mead (1970)
found that a freely propagating flexural wave in such a beam must be regarded as a wave group, having components of
different wavelengths, phase velocities and directions. A mechanism of whereby slow, subsonic convected pressure fields
can generate supersonic, radiating flexural waves was also elucidated. A detailed literature review was reported by Mead
(1996) on wave propagation in continuous periodic structures contributed by the Southampton University from 1964 to
1995. More recently, using the transfer matrix approach, Liu and Bhattacharya (2009) obtained dispersion relations for
elastic waves propagating in sandwich structures. Ichchou et al. (2008a, b) addressed the issue of energy propagation in a
ribbed plate by analyzing its response in the wavenumber space, and derived dispersion relationships between the
wavenumber and frequency. Li and Wang (2005), Li et al. (2005) and Wang et al. (2008) performed comprehensive studies
on localization of elastic waves in disordered periodic structures, with the underlying mechanism of wave decay
phenomenon in such structures revealed. It should be pointed out that the aforementioned contributions on wave
propagation and dynamic response of structures are not meant to be exhaustive, whilst a few other specialized topics such
as the localized waves in disorder structures, turbulent boundary layer excited vibrations, and fluttering of aircraft wings
are beyond the scope of the present research.

Existing studies on the vibroacoustic response of periodic structures may be grouped into two main categories: sound
radiation under point loading (Leppington et al., 1984, 1986) and sound transmission due to convective fluid-loaded
pressure excitation (Cooper and Crighton, 1998a, b; Crighton, 1984; Leppington, 1989; Leppington et al., 2002, 1987).
Particularly, for periodically rib-stiffened structures, two approaches have been used to deal with the relevant issues.
Firstly, the technique of Fourier transform was often employed (Lin and Garrelick, 1977; Mace, 1980a–c, 1981, 1996;
Maxit, 2009; Rumerman, 1975; Takahashi, 1983; Yin et al., 2007). For example, Rumerman (1975) presented a general
solution for the forced vibration of an infinite thin plate, periodically stiffened by identical, uniform ribs, with the forces
and bending moments of the ribs considered via the impedances of the ribs and plate. However, the torsional moments and
inertial effects of the ribs were not included in the analysis, and no numerical results were given. Mace (1980c) analyzed
sound radiation from a point-excited infinite fluid-loaded plate reinforced by two sets of parallel stiffeners; however, the
moments of the rib-stiffeners were again ignored. Considering only the forces of rib-stiffeners, Mace (1981) also studied
the radiation of sound from a two-dimensional (2D) plate reinforced with two sets of orthogonal line stiffeners under fluid-
loaded harmonic incident pressure. Recently, from the viewpoint of vibroacoustic response in wavenumber space, Maxit
(2009) proposed an efficient method based on the Fourier transform technique to estimate the vibration and sound
radiation from a stiffened fluid-loaded plate excited by a mechanical point force.

Secondly, it has been established that the space-harmonic approach evolving from the consideration of progressive
wave propagation is also well suited for studying the vibroacoustic response of periodically rib-stiffened structures
(Lee and Kim, 2002; Legault and Atalla, 2009; Mead, 1970, 1996; Mead and Pujara, 1971; Wang et al., 2005; Xin and Lu, in
press; Xin et al., 2008a). For instance, the response of periodically supported beams to convected random loading was
evaluated by Mead and Pujara (1971) in terms of space harmonic series: only as few as three terms were required to obtain
a solution of acceptable accuracy in comparison with the exact solution. The same approach was adopted by Lee and Kim
(2002) to study the sound transmission characteristics of a thin plate reinforced by equally spaced line stiffeners, with
parametric studies conducted to provide guidelines for the practical design of the system. Extending this approach to
parallelly rib-stiffened sandwich structure, Wang et al. (2005) developed an deterministic analytical model by coupling the
acoustic and structural vibrations and then employing the virtual work principle. However, the model does not provide a
complete description of the motions of the rib-stiffeners and their interaction with the face panels, as only tensional forces
and bending moments are considered. A refined theoretical model of Wang et al. (2005) was proposed by Legault and
Atalla (2009) to investigate the transmission of sound through a typical aircraft sidewall panel, i.e., sandwich structure
reinforced by parallel rib-stiffeners, with fiberglass filled in the cavity: again, only the tensional forces and bending
moments of the rib-stiffeners are included.

While previous researches focused mainly on relatively simple sandwich constructions and approximated the
rib-stiffeners as an Euler-beam or a combination of translational spring and rotational spring, an exact theoretical model
concerning the vibroacoustic response of more complex structures (e.g., two-dimensional sandwich structures
orthogonally reinforced by periodic rib-stiffeners) is desirable. In addition to helping exploring the underlying physical
subtleties, the model should also serve as benchmark checking for approximate analytical approaches, with a small
computational expense afforded compared to numerical methods such as the finite element method (FEM) and the
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boundary element method (BEM). With focus placed on 2D sandwich structures reinforced orthogonally with periodic rib-
stiffeners under point force excitations, Xin and Lu (submitted for publication) developed such an exact model for their
sound radiation characteristics using the Fourier transform technique.

Built upon the work of Xin and Lu (submitted for publication), the physical process of sound transmission through an
infinite orthogonally rib-stiffened sandwich structure subjected to convective harmonic fluid-loaded pressure is
analytically formulated and solved by employing the space harmonic approach. All possible motions of the rib-stiffeners
are included by introducing the tensional forces, bending moments and torsional moments as well as the corresponding
inertial terms into the governing equations of the two face panels. Furthermore, the surrounding acoustic fluids are
restricted by the acoustic wave equation, and fluid–structure coupling is incorporated by enforcing velocity continuity
conditions at fluid–panel interfaces. For one periodic element, applying the principle of virtual work yields two infinite sets
of simultaneous algebraic coupled equations, which are numerically solved by truncating them in a finite range insofar as
the solution converges. For validation, the predictions of the present analytic model are compared with previous published
results, with good overall agreement achieved. Moreover, the necessity and advantage of modeling exactly the motions of
the orthogonal rib-stiffeners are also affirmed by comparing the complete model with its simplified version as well as the
model of Wang et al. (2005). In the perspective of both physical understanding and practical structural design, the
dependence of sound transmission of the structure upon the inertial effects arising from rib-stiffener mass, the airborne
and structure-borne paths, and the periodicity spacings of rib-stiffeners is systematically studied and conclusions of
referential significance deduced.

2. Vibroacoustic response to convective harmonic fluid-loaded pressure

2.1. Description of the problem

Consider two infinite parallel face panels reinforced by two periodic sets of orthogonal rib-stiffeners having periodic
uniform spacings lx and ly in the x- and y-directions, respectively (see Fig. 1). A right-handed Cartesian co-ordinate system
(x,y,z) is established, with its x- and y-axis positioned separately along one pair of the orthogonal rib-stiffeners and the
positive direction of the z-axis pointing downward (Fig. 1). The upper panel located at z=0 and the bottom panel located at
z=h1+d separate the acoustic fluid in the spatial field into three parts: the upper field occupying the half-space zo0, the
middle field filling the space h1ozoh1+d (i.e., in between the two panels and divided periodically by the rib-stiffeners),
and the lower field occupying the other half-space z4h1+h2+d. Both the upper panel (thickness h1) and the bottom panel
(thickness h2) are modeled as Kirchhoff thin plates. Let tx and ty denote separately the thickness of the x- and y-wise rib-
stiffeners.

An oblique plane sound wave p(r,t) varying harmonically in time is incident upon the upper panel of the sandwich
structure with elevation angle j and azimuth angle y. Consequently, a distributed load induced by the incident sound
pressure wave is exerting on the panel, which in turn induces a bending wave that propagates along the panel. The bending
wave in the upper panel is transmitted to the bottom panel via two paths, namely, the structure-borne path (i.e., the
orthogonal rib-stiffeners) and the airborne path (i.e., the air constrained in between the two panels). The transmitted
bending wave in the bottom panel radiates sound pressure wave into the semi-infinite acoustic fluid in contact with the
bottom panel (see Fig. 1(b)). The analytic model to be developed below not only tackles exactly with the physical process of
sound transmission through the sandwich structure, but also accounts for the air–structure coupling. Both the acoustic
fluid constrained in between the two panels (h1ozoh1+d) and the semi-infinite fluids in contact with the upper panel
(zo0) and the bottom panel (z4h1+h2+d) satisfy the wave equation. Furthermore, the tensional, bending and torsional
motions of the rib-stiffeners and their corresponding inertial effects are all taken into account in the proposed model.

2.2. Analytic formulation of panel vibration and sound transmission

Given the periodic nature of the orthogonal rib-stiffened sandwich structure, the Bloch or Floquet theorem (Brillouin,
1953) is utilized here to express the panel vibration, which is well suitable to address wave propagation and vibration
issues of periodic structures (Wang et al., 2009a, b, 2010). The displacements w(x, y) of such a system at corresponding
points in different periodic elements are related by a spatial periodic function (i.e., a bay-to-bay multiplicative factor,
linking the motion of corresponding points in adjacent bays), as

wðxþmlx,yþnlyÞ ¼wðx,yÞe�ikxmlx e�ikynly ð1Þ

Therefore, it is convenient to express the motion of each panel as a summation of one set of space harmonic series. For a
2D sandwich structure stiffened by identical ribs which repeat in the x- and y-directions and excited by a harmonic plane
sound wave (i.e., the convective fluid-loaded pressure) pðx,y,z; tÞ ¼ I e�iðkxxþkyyþkzz�otÞ, the panel responses wj(x,y;t) (j=1, 2
for the upper and bottom panel, respectively) can be expressed using space harmonic expansion (Mace, 1981; Mead and
Pujara, 1971; Xin et al., 2010), as

w1ðx,y; tÞ ¼
Xþ1

m ¼ �1

Xþ1
n ¼ �1

a1,mn e�i½ðkx þ2mp=lxÞxþðky þ2np=lyÞy�ot� ð2Þ



Fig. 1. Schematic illustration of an orthogonally rib-stiffened sandwich subjected to incident sound pressure wave: (a) global view and (b) side

view of (a).
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w2ðx,y; tÞ ¼
Xþ1

m ¼ �1

Xþ1
n ¼ �1

a2,mn e�i½ðkxþ2mp=lxÞxþðkyþ2np=lyÞy�ot� ð3Þ

where the (m, n)th harmonic wave components in the two panels have the same wavenumbers (kxþ2mp=lx, kyþ2np=ly)
but different amplitudes, i.e.,

a1,mn ¼
1

lxly

Z lx

0

Z ly

0
w1ðx,y; tÞei½ðkxþ2mp=lxÞxþðkyþ2np=lyÞy�ot�dxdy ð4Þ

a2,mn ¼
1

lxly

Z lx

0

Z ly

0
w2ðx,y; tÞei½ðkxþ2mp=lxÞxþðkyþ2np=lyÞy�ot�dxdy ð5Þ

In Eqs. (2) and (3), the terms with kxþ2mp=lx40 (or kyþ2np=ly40) stand for positive-going harmonic waves in the
x-direction (or the y-direction) and those with kxþ2mp=lxo0 (or kyþ2np=lyo0) denote negative-going harmonic waves
in the x-direction (or the y-direction).

When sound pressure pðr,tÞ ¼ I e�iðkUr�otÞ is incident on the upper panel, the incident sound partly reflected at the
air–panel interface and the radiated sound by the vibrating panel constitute the negative-going waves in the upper
semi-infinite acoustic fluid domain. The positive-going wave (i.e., the incident sound wave) and the negative-going wave
(i.e., the reflected plus radiated sound waves) compose the resultant sound pressure imposed on the upper panel, which
are transmitted through the sandwich structure into the semi-infinite space adjacent to the bottom panel, creating
thence the transmitted sound pressure. Therefore, sound pressure in the upper semi-infinite field can be expressed as
(Xin et al., 2010)

P1ðx,y,z; tÞ ¼ I e�iðkxxþkyyþkzz�otÞ þ
Xþ1

m ¼ �1

Xþ1
n ¼ �1

bmn e�i½ðkxþ2mp=lxÞxþðkyþ2np=lyÞy�kz,mnz�ot� ð6Þ
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Similarly, sound pressure in the middle field in between the two panels are expressed by space harmonic series as

P2ðx,y,z; tÞ ¼
Xþ1

m ¼ �1

Xþ1
n ¼ �1

emn e�i ðkxþ2mp=lxÞxþðkyþ2np=lyÞyþkz,mnz�ot½ �

þ
Xþ1

m ¼ �1

Xþ1
n ¼ �1

zmn e�i ðkx þ2mp=lxÞxþðky þ2np=lyÞy�kz,mnz�ot½ �

ð7Þ

The transmitted sound pressure in the bottom semi-infinite field only consists of positive-going wave:

P3ðx,y,z; tÞ ¼
Xþ1

m ¼ �1

Xþ1
n ¼ �1

xmn e�i ðkxþ2mp=lxÞxþðkyþ2np=lyÞyþkz,mnz�ot½ � ð8Þ

In the above expressions, I is the amplitude of incident sound pressure, bmn and zmn are the (m, n)th space harmonic
amplitude of negative-going wave in the incident field and in the middle field, respectively, emn and xmn are the (m, n)th
space harmonic amplitude of positive-going wave in the middle field and in the transmitted field, respectively. The
wavenumber components in the x-, y- and z-directions are determined by the elevation angle and azimuth angle of the
incident sound wave, as

kx ¼ k0 sinjcosy, ky ¼ k0 sinjsiny, kz ¼ k0 cosj ð9Þ

where kz,mn is the (m, n)th space harmonic wavenumber in the z-direction which, upon applying the Helmholtz equation, is
given by

kz,mn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o
c0

� �2

� kxþ
2mp

lx

� �2

� kyþ
2np

ly

� �2
s

ð10Þ

Note that, when ðo=c0Þ
2o ðkxþ2mp=lxÞ

2
þðkyþ2np=lyÞ

2, the pressure waves become evanescent waves (Wang et al.,
2005; Xin and Lu, in press; Xin et al., 2008a) so that kz,mn should be taken as

kz,mn ¼ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kxþ

2mp
lx

� �2

þ kyþ
2np

ly

� �2

�
o
c0

� �2
s

ð11Þ

The two orthogonal sets of rib-stiffeners uniformly distributed in between the two face panels impose a strong
constraint on the motions of the panels, which constitute the structure-borne path for sound transmission and wave
propagation. To model accurately the vibroacoustic behavior of the sandwich, the dynamic motions of the rib-stiffeners
should be carefully taken into account, which include tensional, bending and torsional vibrations pertinent to tensional
forces, bending moments and torsional moments imposed on the connected panels. To account for the inertial effects of
these motions arising from the mass of the rib-stiffeners, the resultant tensional forces, bending and torsional moments
acting on the upper and bottom panels are not identical, which are marked here by (Q+ , M+ , MþT ) and (Q� , M� , M�T ). Fig. 2
illustrates the conventions used for the tensional forces, bending moments and torsional moments at the interface
between the upper panel and the x/y-wise rib-stiffeners. The same apply at the interface between the bottom panel and the
x/y-wise rib-stiffeners, with (Q+, M+, MþT ) replaced by (Q� , M� , M�T ).

Given that the incident sound pressure wave varies harmonically in time, the dynamic responses of the two face panels
are also harmonically dependent upon time. For simplicity, the harmonic time dependence e� iot will be suppressed
throughout the paper henceforth.
Fig. 2. Conventions for tensional forces, bending moments and torsional moments between the upper panel and (a) x-wise rib-stiffeners and (b) y-wise

rib-stiffeners. Similar conventions hold at the interface between the bottom panel and the x/y-wise rib-stiffeners by replacing (Q+ , M+ , MþT ) with

(Q� , M� , M�T )], which is not shown here for brevity.
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The resultant pressure exerted on the upper panel is contributed by the incident sound wave, the negative-going wave
on the incident side P1(x,y,0) and the middle field pressure P2(x,y,h1) on the other side. For the bottom panel, the net
pressure is a combination of the transmitted sound pressure P3(x,y,h1+h2+d) on the transmitted side and the middle field
pressure P2(x,y,h1+d) on the other side. Under the prescribed Cartesian co-ordinate system, with the tensional forces,
bending moments and torsional moments of the rib-stiffeners accounted for, the governing equations for panel vibrations
are given by

D1r
4w1þm1

@2w1

@t2
¼

Xþ1
m ¼ �1

Q þy dðx�mlxÞþ
@

@y

(
Mþy dðx�mlxÞ

" )
þ
@

@x

(
MþTydðx�mlxÞ

��

þ
Xþ1

n ¼ �1

Q þx dðy�nlyÞþ
@

@x

(
Mþx dðy�nlyÞ

" )
þ
@

@y

(
MþTxdðy�nlyÞ

)�
þP1ðx,y,0Þ�P2ðx,y,h1Þ ð12Þ

D2r
4w2þm2

@2w2

@t2
¼�

Xþ1
m ¼ �1

Q�y dðx�mlxÞþ
@

@y

(
M�y dðx�mlxÞ

" )
þ
@

@x

(
M�Tydðx�mlxÞ

��

�
Xþ1

n ¼ �1

Q�x dðy�nlyÞþ
@

@x

(
M�x dðy�nlyÞ

" )
þ
@

@y

(
M�Txdðy�nlyÞ

)�
þP2ðx,y,h1þdÞ�P3ðx,y,h1þh2þdÞ

ð13Þ

wherer4
¼ ð@2=@x2þ@2=@y2Þ

2, (w1, w2), (m1, m2) and (D1, D2) are the displacements, mass density per unit area and flexural
rigidity of the upper and bottom panel, respectively, and d(U) is the Dirac delta function.

Since the inertial effects (i.e., inertial tensional forces, inertial bending moments and inertial torsional moments) of the
rib-stiffeners have been taken into account, the factual tensional forces Q, bending moments M and torsional moments MT

imposed on the two face panels are unequal. Therefore, as shown in Fig. 2, superscripts + and � associated separately with
the upper and bottom panels are introduced to differentiate this discrepancy, with subscripts x and y introduced to signify
the terms arising from the x- and y-wise rib-stiffeners, respectively.

Taking the inertial effects of the rib-stiffeners into consideration, and applying the Hooke’s law and the Newton’s
second law, one can express the tensional forces of the rib-stiffeners as (Xin and Lu, submitted for publication)

Q þx ¼�
KxðKx�mxo2Þ

2Kx�mxo2
w1þ

K2
x

2Kx�mxo2
w2 ð14Þ

Q�x ¼�
K2

x

2Kx�mxo2
w1þ

KxðKx�mxo2Þ

2Kx�mxo2
w2 ð15Þ

Q þy ¼�
KyðKy�myo2Þ

2Ky�myo2
w1þ

K2
y

2Ky�myo2
w2 ð16Þ

Q�y ¼�
K2

y

2Ky�myo2
w1þ

KyðKy�myo2Þ

2Ky�myo2
w2 ð17Þ

where o is the circular frequency, (Kx, Ky) are the tensional stiffness of half rib-stiffeners per unit length and (mx, my) are
the line mass density of the x- and y-wise rib-stiffeners, respectively.

Similarly, the bending moments of the rib-stiffeners can be expressed as (Xin and Lu, submitted for publication)

Mþx ¼
ExI�x ðExI�x�rxIxo2Þ

2ExI�x�rxIxo2

@2w1

@x2
�

E2
x I�2x

2ExI�x�rxIxo2

@2w2

@x2
ð18Þ

M�x ¼
E2

x I�2x

2ExI�x�rxIxo2

@2w1

@x2
�

ExI�x ðExI�x�rxIxo2Þ

2ExI�x�rxIxo2

@2w2

@x2
ð19Þ

Mþy ¼
EyI�yðEyI�y�ryIyo2Þ

2EyI�y�ryIyo2

@2w1

@y2
�

E2
y I�2y

2EyI�y�ryIyo2

@2w2

@y2
ð20Þ

M�y ¼
E2

y I�2y

2EyI�y�ryIyo2

@2w1

@y2
�

EyI�yðEyI�y�ryIyo2Þ

2EyI�y�ryIyo2

@2w2

@y2
ð21Þ

where (ExI�x , EyI�y) are the bending stiffness of half rib-stiffeners per unit length, and (rx, ry), (Ix, Iy) are the mass density and
polar moment of inertia for the rib-stiffeners, with subscripts x and y indicating the corresponding orientations of the
rib-stiffeners.
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Following the same procedures, the torsional moments of the rib-stiffeners are given by (Xin and Lu, submitted for
publication)

MþTx ¼
GxJ�x ðGxJ�x�rxJxo2Þ

2GxJ�x�rxJxo2

@2w1

@x@y
�

G2
x J�2x

2GxJ�x�rxJxo2

@2w2

@x@y
ð22Þ

M�Tx ¼
G2

x J�2x

2GxJ�x�rxJxo2

@2w1

@x@y
�

GxJ�x ðGxJ�x�rxJxo2Þ

2GxJ�x�rxJxo2

@2w2

@x@y
ð23Þ

MþTy ¼
GyJ�yðGyJ�y�ryJyo2Þ

2GyJ�y�ryJyo2

@2w1

@y@x
�

G2
y J�2y

2GyJ�y�ryJyo2

@2w2

@y@x
ð24Þ

M�Ty ¼
G2

y J�2y

2GyJ�y�ryJyo2

@2w1

@y@x
�

GyJ�yðGyJ�y�ryJyo2Þ

2GyJ�y�ryJyo2

@2w2

@y@x
ð25Þ

where (GxJ�x , GyJ�y) are the torsional stiffness of half rib-stiffeners per unit length, and ( Jx, Jy) are the torsional moments of
inertia of the rib-stiffeners.

In the above expressions for the tensional forces, bending moments and torsional moments, the geometrical properties
of rib-stiffener cross-sections are given by

Kx ¼
Extx

d=2
, Ky ¼

Eyty

d=2
ð26Þ

I�x ¼
txðd=2Þ3

12
, I�y ¼

tyðd=2Þ3

12
, Ix ¼

txd3

12
, Iy ¼

tyd3

12
ð27Þ

J�x ¼
t3
x d

2

1

3
�

64

p5

2tx

d

X1
n ¼ 1,3,5,...

tanhðnpd=4txÞ

n5

" #
ð28Þ

J�y ¼
t3
y d

2

1

3
�

64

p5

2ty

d

X1
n ¼ 1,3,5,...

tanhðnpd=4tyÞ

n5

" #
ð29Þ

Jx ¼ t3
x d

1

3
�

64

p5

tx

d

X1
n ¼ 1,3,5,...

tanhðnpd=2txÞ

n5

" #
ð30Þ

Jy ¼ t3
y d

1

3
�

64

p5

ty

d

X1
n ¼ 1,3,5,...

tanhðnpd=2tyÞ

n5

" #
ð31Þ

To simplify Eqs. (14)–(25), the following sets of specified characteristics are utilized to replace the coefficients of the
general displacements:
(1)
 Replacement of tensional force coefficients

RQ1 ¼
KxðKx�mxo2Þ

2Kx�mxo2
, RQ2 ¼

K2
x

2Kx�mxo2
ð32Þ

RQ3 ¼
KyðKy�myo2Þ

2Ky�myo2
, RQ4 ¼

K2
y

2Ky�myo2
ð33Þ

Replacement of bending moment coefficients
(2)
RM1 ¼
ExI�x ðExI�x�rxIxo2Þ

2ExI�x�rxIxo2
, RM2 ¼

E2
x I�2x

2ExI�x�rxIxo2
ð34Þ

RM3 ¼
EyI�yðEyI�y�ryIyo2Þ

2EyI�y�ryIyo2
, RM4 ¼

E2
y I�2y

2EyI�y�ryIyo2
ð35Þ

Replacement of torsional moment coefficients
(3)
RT1 ¼
GxJ�x ðGxJ�x�rxJxo2Þ

2GxJ�x�rxJxo2
, RT2 ¼

G2
x J�2x

2GxJ�x�rxJxo2
ð36Þ

RT3 ¼
GyJ�yðGyJ�y�ryJyo2Þ

2GyJ�y�ryJyo2
, RT4 ¼

G2
y J�2y

2GyJ�y�ryJyo2
ð37Þ
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ing Eqs. (32)–(37) and substituting Eqs. (2) and (3) into Eqs. (14)–(25), we can simplify the expressions of the
Adopt
tensional forces, bending moments and torsional moments, as follows:
(1)
 Tensional forces

Q þx ¼
Xþ1

m ¼ �1

Xþ1
n ¼ �1

ð�RQ1a1,mnþRQ2a2,mnÞe
�i ðkxþ2mp=lxÞxþðky þ2np=lyÞy½ � ð38Þ

Q�x ¼
Xþ1

m ¼ �1

Xþ1
n ¼ �1

ð�RQ2a1,mnþRQ1a2,mnÞe
�i ðkxþ2mp=lxÞxþðkyþ2np=lyÞy½ � ð39Þ

Q þy ¼
Xþ1

m ¼ �1

Xþ1
n ¼ �1

ð�RQ3a1,mnþRQ4a2,mnÞe
�i ðkxþ2mp=lxÞxþðky þ2np=lyÞy½ � ð40Þ

Q�y ¼
Xþ1

m ¼ �1

Xþ1
n ¼ �1

ð�RQ4a1,mnþRQ3a2,mnÞe
�i ðkxþ2mp=lxÞxþðkyþ2np=lyÞy½ � ð41Þ

Bending moments
(2)
Mþx ¼
Xþ1

m ¼ �1

Xþ1
n ¼ �1

ð�RM1a1,mnþRM2a2,mnÞa2
m e�i ðkxþ2mp=lxÞxþðkyþ2np=lyÞy½ � ð42Þ

M�x ¼
Xþ1

m ¼ �1

Xþ1
n ¼ �1

ð�RM2a1,mnþRM1a2,mnÞa2
m e�i ðkxþ2mp=lxÞxþðkyþ2np=lyÞy½ � ð43Þ

Mþy ¼
Xþ1

m ¼ �1

Xþ1
n ¼ �1

ð�RM3a1,mnþRM4a2,mnÞb
2
n e�i ðkxþ2mp=lxÞxþðkyþ2np=lyÞy½ � ð44Þ

M�y ¼
Xþ1

m ¼ �1

Xþ1
n ¼ �1

ð�RM4a1,mnþRM3a2,mnÞb
2
n e�i ðkxþ2mp=lxÞxþðky þ2np=lyÞy½ � ð45Þ

Torsional moments
(3)
MþTx ¼
Xþ1

m ¼ �1

Xþ1
n ¼ �1

ð�RT1a1,mnþRT2a2,mnÞambn e�i ðkxþ2mp=lxÞxþðkyþ2np=lyÞy½ � ð46Þ

M�Tx ¼
Xþ1

m ¼ �1

Xþ1
n ¼ �1

ð�RT2a1,mnþRT1a2,mnÞambn e�i ðkxþ2mp=lxÞxþðkyþ2np=lyÞy½ � ð47Þ

MþTy ¼
Xþ1

m ¼ �1

Xþ1
n ¼ �1

ð�RT3a1,mnþRT4a2,mnÞambn e�i ðkxþ2mp=lxÞxþðkyþ2np=lyÞy½ � ð48Þ

M�Ty ¼
Xþ1

m ¼ �1

Xþ1
n ¼ �1

ð�RT4a1,mnþRT3a2,mnÞambn e�i ðkxþ2mp=lxÞxþðkyþ2np=lyÞy½ � ð49Þ
2.3. The acoustic pressure and continuity condition

The acoustic pressure P1(x,y,z) in the incident field, P2(x,y,z) in the field between the two face panels and P3(x,y,z) in the
transmitted field all satisfy the wave equation (Spadoni and Ruzzene, 2006; Xin and Lu, 2009; Xin et al., 2008b):

@2

@x2
þ
@2

@y2
þ
@2

@z2
þk2

0

" #
Pi ¼ 0 ði¼ 1,2,3Þ ð50Þ

where k0 is the wavenumber of the incident sound. The momentum equation is applied to ensure the equality of panel
velocity and fluid velocity on the panel surface, i.e., the continuity condition of fluid–structure coupling (Lin and Garrelick,
1977; Xin et al., 2009b):

@P1

@z z ¼ 0 ¼o2r0w1,
@P2

@z z ¼ h1
¼o2r0w1

������ ð51Þ
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@P2

@z z ¼ h1þd ¼o2r0w2,
@P3

@z z ¼ h1þh2þd ¼o2r0w2

������ ð52Þ

where r0 is the ambient acoustic fluid density. Substitution of Eqs. (2) and (3) as well as Eqs. (6)–(8) into Eqs. (51) and (52)
gives rise to

�ikzIe�iðkxxþkyyÞ þ
Xþ1

m ¼ �1

Xþ1
n ¼ �1

ðikz,mnbmn�o2r0a1,mnÞe
�i ðkxþ2mp=lxÞxþðkyþ2np=lyÞy½ � ¼ 0 ð53Þ

Xþ1
m ¼ �1

Xþ1
n ¼ �1

ikz,mnð�emne�ikz,mnh1þzmn eikz,mnh1 Þ�o2r0a1,mn

h i
e�i ðkxþ2mp=lxÞxþðky þ2np=lyÞy½ � ¼ 0 ð54Þ

Xþ1
m ¼ �1

Xþ1
n ¼ �1

ikz,mnð�emn e�ikz,mnðh1þdÞ þzmn eikz,mnðh1þdÞÞ

�o2r0a2,mn

" #
e�i ðkxþ2mp=lxÞxþðkyþ2np=lyÞy½ � ¼ 0 ð55Þ

Xþ1
m ¼ �1

Xþ1
n ¼ �1

�ikz,mnxmn e�ikz,mnðh1þh2þdÞ�o2r0a2,mn

h i
e�i ðkx þ2mp=lxÞxþðky þ2np=lyÞy½ � ¼ 0 ð56Þ

Because Eqs. (53)–(56) hold for all possible values of x and y, the relevant coefficients have the following relationships:

b00 ¼ Iþ
o2r0a1,00

ikz
ð57Þ

bmn ¼
o2r0a1,mn

ikz,mn
, at ma099na0 ð58Þ

emn ¼
o2r0 a1,mn eikz,mnðh1þdÞ�a2,mn eikz,mnh1

� 	
2kz,mn sinðkz,mndÞ

ð59Þ

zmn ¼
o2r0 a1,mn e�ikz,mnðh1þdÞ�a2,mn e�ikz,mnh1

� 	
2kz,mn sinðkz,mndÞ

ð60Þ

xmn ¼�
o2r0a2,mn

ikz,mn
eikz,mnðh1þh2þdÞ ð61Þ

2.4. Solution of the formulations with the virtual work principle

As can be seen from Eqs. (57)–(61), once coefficients a1,mn and a2,mn (i.e., modal amplitudes of the (m, n)th space
harmonic flexural waves in the upper and bottom panel, respectively) are determined, coefficients bmn, emn, zmn and xmn are
also determined. Coefficients a1,mn and a2,mn can be obtained by solving the system equations derived by applying the
principle of virtual work (Lee and Kim, 2002; Mead and Pujara, 1971; Wang et al., 2005). In view of the spatial periodicity
of the structure, it is necessary to consider only the virtual work contribution from one period of element (including the
attached rib-stiffeners). As the statement of the virtual work principle, the sum of the work done by all the elements in one
period of the system must be zero when the system has any one of the virtual displacements:

dwj ¼ daj,mn e�i ðkxþ2mp=lxÞxþðkyþ2np=lyÞy½ � ðj¼ 1,2Þ ð62Þ

2.4.1. Virtual work of panel elements

The equations governing the vibration responses of the two panel elements in one period of the structure are:

D1r
4w1þm1

@2w1

@t2
�P1ðx,y,0ÞþP2ðx,y,h1Þ ¼ 0 ð63Þ

D2r
4w2þm2

@2w2

@t2
�P2ðx,y,h1þdÞþP3ðx,y,h1þh2þdÞ ¼ 0 ð64Þ

The virtual work contributed solely by the panel elements can then be represented as

dPp1 ¼

Z lx

0

Z ly

0
D1r

4w1þm1
@2w1

@t2
�P1ðx,y,0ÞþP2ðx,y,h1Þ

" #
dw�1 dxdy ð65Þ

dPp2 ¼

Z lx

0

Z ly

0
D2r

4w2þm2
@2w2

@t2
�P2ðx,y,h1þdÞþP3ðx,y,h1þh2þdÞ

" #
dw�2 dxdy ð66Þ



F.X. Xin, T.J. Lu / J. Mech. Phys. Solids 58 (2010) 1374–1396 1383
where dw�1 and dw�2 denote the complex conjugate of the virtual displacement in Eq. (62). Together with Eqs. (2) and (3),
(6)–(8) and (57)–(61), Eqs. (65) and (66) can be rewritten in terms of modal amplitudes a1,kl and a2,kl, as

dPp1 ¼ ¼ D1 kxþ
2kp

lx

� �2

þ kyþ
2lp
ly

� �2
" #2

�m1o2

0
@

1
Aa1,kl�

o2r0a1,kl

ikz,kl
þ
o2r0 a1,kl cosðkz,kldÞ�a2,kl

� 	
kz,kl sinðkz,kldÞ

8<
:

9=
;lxlyda1,kl

�

Z lx

0

Z ly

0
2I e�iðkxxþkyyÞ e�i ðkxþ2kp=lxÞxþðkyþ2lp=lyÞy½ �dxdyda1,kl ð67Þ

dPp2 ¼ ¼ D2 kxþ
2kp

lx

� �2

þ kyþ
2lp
ly

� �2
" #2

�m2o2

0
@

1
Aa2,kl�

o2r0a2,kl

ikz,kl
�
o2r0 a1,kl�a2,kl cosðkz,kldÞ

� 	
kz,kl sinðkz,kldÞ

8<
:

9=
;lxlyda2,kl

ð68Þ

2.4.2. Virtual work of x-wise rib-stiffeners

The virtual work contributions from the tensional forces, bending moments and torsional moments at the interfaces
between the x-wise rib-stiffeners (aligned with y=0) with the upper and bottom panels are given by

dPx1 ¼�
R lx

0 Q þx ðx,0Þþ
@

@x
Mþx ðx,0Þþ

@

@y
MþTx ðx,0Þ


 �
da1,kl e

iðkx þ2kp=lxÞx dx

¼
Xþ1

n ¼ �1

RQ1a1,kn�RQ2a2,knþ i kxþ
2kp

lx

� �3

ð�RM1a1,knþRM2a2,knÞ

"

þ i kxþ
2kp

lx

� �
kyþ

2lp
ly

� �
kyþ

2np
ly

� �
ð�RT1a1,knþRT2a2,knÞ

�
lxda1,kl ð69Þ

dPx2 ¼
R lx

0 Q�x ðx,0Þþ
@

@x
M�x ðx,0Þþ

@

@y
M�Txðx,0Þ


 �
da2,kl e

iðkxþ2kp=lxÞx dx

¼
Xþ1

n ¼ �1

�RQ2a1,knþRQ1a2,kn�i kxþ
2kp

lx

� �3

ð�RM2a1,knþRM1a2,knÞ

"

�i kxþ
2kp

lx

� �
kyþ

2lp
ly

� �
kyþ

2np
ly

� �
ð�RT2a1,knþRT1a2,knÞ

�
lxda2,kl ð70Þ

where ð@=@yÞMþTx ðx,y¼ 0Þ ¼ ð@=@yÞMþTx ðx,yÞ y ¼ 0

�� and ð@=@yÞM�Txðx,y¼ 0Þ ¼ ð@=@yÞM�Txðx,yÞ y ¼ 0

�� .

2.4.3. Virtual work of y-wise rib-stiffeners

Likewise, the virtual work contributions from the tensional forces, bending moments and torsional moments at the
interfaces between the y-wise rib-stiffeners (aligned with x=0) with the upper and bottom panels are:

dPy1 ¼�
R ly

0 Q þy ð0,yÞþ
@

@y
Mþy ð0,yÞþ

@

@x
MþTy ð0,yÞ


 �
da1,kl e

iðkyþ2lp=lyÞy dy

¼
Xþ1

m ¼ �1

RQ3a1,ml�RQ4a2,mlþ i kyþ
2lp
ly

� �3

ð�RM3a1,mlþRM4a2,mlÞ

"

þ i kxþ
2kp

lx

� �
kxþ

2mp
lx

� �
kyþ

2lp
ly

� �
ð�RT3a1,mlþRT4a2,mlÞ

�
lyda1,kl ð71Þ

dPy2 ¼
R ly

0 Q�y ð0,yÞþ
@

@y
M�y ð0,yÞþ

@

@x
M�Tyð0,yÞ


 �
da2,kl e

�iðkyþ2lp=lyÞy dy

¼
Xþ1

m ¼ �1

�RQ4a1,mlþRQ3a2,ml�i kyþ
2lp
ly

� �3

ð�RM4a1,mlþRM3a2,mlÞ

"

�i kxþ
2kp

lx

� �
kxþ

2mp
lx

� �
kyþ

2lp
ly

� �
ð�RT4a1,mlþRT3a2,mlÞ

�
lyda2,kl ð72Þ

where ð@=@xÞMþTy ðx¼ 0,yÞ ¼ ð@=@xÞMþTy ðx,yÞ x ¼ 0j and ð@=@xÞM�Tyðx¼ 0,yÞ ¼ ð@=@xÞM�Tyðx,yÞ x ¼ 0j .

2.4.4. Combination of equations

Finally, the virtual work principle requires that

dPp1þdPx1þdPy1 ¼ 0 ð73Þ

dPp2þdPx2þdPy2 ¼ 0 ð74Þ
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Substituting Eqs. (67), (69) and (71) into (73), Eqs. (68), (70) and (72) into (74), and noting that the virtual displacement
is arbitrary, we obtain:

D1ða2
kþb

2
l Þ

2
�m1o2

h i
a1,kl�

o2r0a1,kl

ikz,kl
þ
o2r0½a1,klcosðkz,kldÞ�a2,kl�

kz,klsinðkz,kldÞ

� �
lxly

þ
Xþ1

n ¼ �1

RQ1a1,kn�RQ2a2,knþ iakð�RM1a1,knþRM2a2,knÞa2
kþ iblð�RT1a1,knþRT2a2,knÞakbn

� 	
lx

þ
Xþ1

m ¼ �1

RQ3a1,ml�RQ4a2,mlþ iblð�RM3a1,mlþRM4a2,mlÞb
2
l þ iakð�RT3a1,mlþRT4a2,mlÞambl

h i
ly

¼
2Ilxly when k¼ 0&l¼ 0

0 when ka099la0

(
ð75Þ

D2ða2
kþb

2
l Þ

2
�m2o2

h i
a2,kl�

o2r0a2,kl

ikz,kl
�
o2r0½a1,kl�a2,klcosðkz,kldÞ�

kz,kl sinðkz,kldÞ

� �
lxly

þ
Xþ1

n ¼ �1

½�RQ2a1,knþRQ1a2,kn�iakð�RM2a1,knþRM1a2,knÞa2
k ��iblð�RT2a1,knþRT1a2,knÞakbn

#
lx

þ
Xþ1

m ¼ �1

�RQ4a1,mlþRQ3a2,ml�iblð�RM4a1,mlþRM3a2,mlÞb
2
l �iakð�RT4a1,mlþRT3a2,mlÞambl

h i
ly ¼ 0 ð76Þ

where

am ¼ kxþ
2mp

lx
, bn ¼ kyþ

2np
ly

ð77Þ

Note that consideration of the virtual work in any other period of the structural element would have yielded an
identical set of equations.

In order to separate the variants a1,kl and a2,kl, Eqs. (75) and (76) are rewritten as

D1ða2
kþb

2
l Þ

2
�m1o2�

o2r0

ikz,kl
þ
o2r0 cosðkz,kldÞ

kz,kl sinðkz,kldÞ


 �
lxlya1,kl�

o2r0

kz,klsinðkz,kldÞ
lxlya2,kl

þ
Xþ1

n ¼ �1

RQ1�ia3
kRM1�iblakbnRT1

� 	
lxa1,knþ

Xþ1
n ¼ �1

�RQ2þ ia3
kRM2þ iblakbnRT2

� 	
lxa2,kn

þ
Xþ1

m ¼ �1

RQ3�ib3
l RM3�iakamblRT3

h i
lya1,mlþ

Xþ1
m ¼ �1

�RQ4þ ib3
l RM4þ iakamblRT4

h i
lya2,ml

¼
2Ilxly when k¼ 0&l¼ 0

0 when ka099la0

(
ð78Þ

D2ða2
kþb

2
l Þ

2
�m2o2�

o2r0

ikz,kl
þ
o2r0 cosðkz,kldÞ

kz,kl sinðkz,kldÞ


 �
lxlya2,kl�

o2r0

kz,kl sinðkz,kldÞ
lxlya1,kl

þ
Xþ1

n ¼ �1

�RQ2þ ia3
k RM2þ iblakbnRT2

� 	
lxa1,kn þ

Xþ1
n ¼ �1

RQ1�ia3
k RM1�iblakbnRT1

� 	
lxa2,kn

þ
Xþ1

m ¼ �1

�RQ4þ ib3
l RM4þ iakamblRT4

h i
lya1,mlþ

Xþ1
m ¼ �1

RQ3�ib3
l RM3�iakamblRT3

h i
lya2,ml ¼ 0 ð79Þ

where the coupling relations between the modal amplitudes of sound waves in air and those of flexural waves in panels
defined in Eqs. (57)–(61) have been included. Eqs. (78) and (79) form an infinite set of coupled algebraic simultaneous
equations. The solution of a suitably restricted set of these equations allows the modal amplitudes a1,kl and a2,kl to be
determined. Insofar as the solution converges, these equations are solved simultaneously by truncation, namely, restricting
the sum-index (m, n) in the finite ranges of m¼�k̂ to k̂ and n¼�l̂ to l̂. With laborious but straightforward algebraic
manipulations, the resulting simultaneous equations containing a finite number [i.e., 2KL, where K ¼ 2k̂þ1, L¼ 2l̂þ1] of
unknowns can be grouped into matrix form, as

T11 T12

T21 T22

" #
2KL�2KL

a1,kl

a2,kl

( )
2KL�1

¼
Fkl

0

� �
2KL�1

ð80Þ

Detailed derivations of Eq. (80) can be found in Appendix A. Once the unknowns a1,kl and a2,kl are determined by solving
Eq. (80), the displacements (w1, w2) of the panels and the sound pressure (P1, P2, P3) in the ambient acoustic fluids adjacent
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to the two panels are also determined, enabling the sound transmission analysis of the fluid-loaded orthogonally rib-
stiffened sandwich structure.

3. Definition of sound transmission loss

As can be seen from Eqs. (2) to (8), a component of the convective fluid-loaded pressure in the form of harmonic plane
sound wave with wavenumbers (kx, ky) would induce sets of space harmonic wave components in the response (including
sound pressure) with wavenumbers (kxþ2mp=lx, kyþ2np=ly), where (m, n) take values (�Nomo +N, �Nono +N).
This implies that the groups of harmonic waves may travel in opposite directions. The appearance of the series of space
harmonic waves in the response stems from the periodical rib-stiffeners attached to the panels. For a given convective
fluid-loaded pressure with wavenumbers (kx, ky), a bending wave having the same wavenumbers is induced which then
travels in the structure. The outspreading bending wave would be polarized as a group of harmonic wave components
identified by wavenumbers (a0þ2mp=lx, b0þ2np=ly), owing to the complex interaction between the bending waves in
panels and the motion of the mth x-wise and nth y-wise rib-stiffeners.

Given that (kx, ky) are real, the wavenumber kz,mn of the (m, n)th harmonic wave in the z-direction may be either real or
pure imaginary (see Eqs. (10) and (11)). In the case of kz,mn being imaginary, the (m, n)th component of the wave decays
exponentially with increasing distance in the z-direction and radiates no energy. This corresponds to a subsonic wave,
i.e., non-radiating wave (Graham, 1995), satisfying that:

kxþ
2mp

lx

� �2

þ kyþ
2np

ly

� �2

4
o
c0

� �2

ð81Þ

Therefore, this (m, n)th component contributes only to the near field. Only when kz,mn is real, the (m, n)th component
could contribute to the far field sound pressure (Mace, 1981; Xin et al., 2009b), which pertains to a supersonic wave,
i.e., radiating wave (Graham, 1995), satisfying that:

kxþ
2mp

lx

� �2

þ kyþ
2np

ly

� �2

o
o
c0

� �2

ð82Þ

To facilitate the physical understanding of sound transmission, the transmission coefficient is defined here as the ratio
of the transmitted sound power to the incident sound power, as

tðj,yÞ ¼
Pþ1

m ¼ �1

Pþ1
n ¼ �1 9xmn9

2
Reðkz,mnÞ

9I92
kz

ð83Þ

which is dependent upon the incident angles f and y. Sound transmission loss (STL) is then customarily defined as the
inverse of the power transmission coefficient in decibels scale (Xin and Lu, 2009; Xin et al., 2008b), as

STL¼ 10log10
1

tðj,yÞ

� �
ð84Þ

Physically, STL is a measure of the effectiveness of the considered sandwich structure in isolating the transmission of
convective fluid-loaded pressure.

4. Parametric investigation and discussions

Using the analytical model developed in the previous sections, we explore below the structural and acoustic behaviors
of the infinite orthogonally rib-stiffened sandwich structure shown in Fig. 1 subjected to convective fluid-loaded pressure
in terms of sound transmission loss characteristics.

For numerical analysis, it is assumed that the sandwich structure have two identical panels with thickness
h1=h2=0.002 m, and orthogonal rib-stiffeners with depth d=0.08 m, identical thickness tx=ty=0.001 m, and identical
periodicity spacing lx= ly=0.2 m (Fig. 1). The face panels and the rib-stiffeners are made of the same material, with Young’s
modulus E=70 GPa, density r=2700 kg/m3, Poisson ratio n=0.33, and loss factor (introduced with the complex Young’s
modulus ~E ¼ E 1þ iZ

� 
) Z=0.01. Air density is taken as r0=1.21 kg/m3 and sound speed in air as c0=343 m/s. Since the

viscosity of air is too small to exert a significant damping effect on the vibroacoustic response of the structure, it is not
taken into account in the present analysis. Instead, the focus is placed on practically more important matters, such as the
influence of inertial effects arising from rib-stiffener mass, the periodicity spacing of rib-stiffeners, and the airborne as well
as structure-borne paths on sound transmission across the structure.

4.1. Convergence check for space-harmonic series solution

Since the analytical model is hinged on the assumed double-series solution given in Eqs. (2)–(8), a sufficiently large
number of terms have to be used to ensure the convergence and accuracy of the solution. There exists an admissible
criterion (Lee and Kim, 2002; Xin et al., 2010) that once the solution converges at a given frequency, it is also convergent
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for all frequencies lower than that. Therefore, the needed number of series terms is determined by the highest frequency of
interest (i.e., 10 kHz, the frequency range below which is of concern here). Convergence check is thus performed by
calculating STL value at 10 kHz, with progressively more terms used in the double-series expansion (as shown in Fig. 3).
Once the difference between two successive STL calculations falls within a pre-set error band (0.01 dB selected in this
work), the solution is deemed to have converged and then the corresponding number of terms is adopted to calculate STL
values at all other frequencies below 10 kHz.

In view of the symmetry of the present periodic structures in x- and y-direction, the equations are truncated as a finite
set of equations with m¼�k̂ to k̂ and n¼�l̂ to l̂ (k̂¼ l̂ assumed) and then solved simultaneously. Fig. 3 shows the
convergence tendency of STL solution as the single mode number k̂ (¼ l̂) is increased, when the sandwich structure is
excited by a normally incident sound at 10 kHz. The results of Fig. 3 demonstrate that the solution converges when k̂Z19.
In other words, it needs at least 1521 terms (m and n both ranging from �19 to 19) to ensure solution convergence at
10 kHz. The same number (1521 terms) is employed in subsequent STL calculations below 10 kHz, sufficient for obtaining
accurate results within the error bound of 0.01 dB.

4.2. Validation of the analytical model

The validity and feasibility of the proposed analytic model for sound transmission across an infinite orthogonally rib-
stiffened sandwich structure subjected to convective fluid-loaded pressure is checked by comparing the model predictions
and those obtained by Wang et al. (2005) for sound transmission through an infinite sandwich structure with parallel
rib-stiffeners as the core. Whilst Wang et al. (2005) model a single rib-stiffener as a combination of translational spring and
rotational spring, the tensional, bending and torsional vibrations of the rib-stiffener is modeled as an ensemble in the
present analytic model. To make the comparison possible, the sets of orthogonal rib-stiffeners are simplified as one set of
parallel rib-stiffeners. To this end, without loss of generality, the key parameters (i.e., Yong’s modulus Ex, density rx and
thickness tx) of the x-wise rib-stiffeners are set to zero, so that the orthogonally rib-stiffened sandwich construction is
equivalent to an parallelly rib-stiffened sandwich structure. Of course, the material and geometrical properties of the
structure adopted by Wang et al. (2005) are fully followed in the comparison.

To highlight the necessity and advantage of the exact consideration of rib-stiffener motions in sound transmission
prediction for the whole structure, results obtained using both the complete model and the simplified model are compared
with the predictions of Wang et al. (2005), as shown in Fig. 4. Here, the complete model proposed in Sections 2 and 3 not
only treats the motions of the rib-stiffeners as an ensemble of tensional, bending and torsional vibrations, but also
considers their inertial effects. The simplified model only retains the tensional forces, inertial tensional forces and bending
moments of the y-wise rib-stiffeners in Eqs. (12) and (13), corresponding to the translational forces, inertial forces of
lumped masses and rotational forces in Wang et al.’s model, respectively.

Overall, as illustrated in Fig. 4, the predictions of the simplified model agree well with those obtained by Wang et al.
(2005). The visible discrepancies (at relatively high frequencies in particular) between the two models is attributable to the
fact that, for simplicity, Wang et al. approximated the lumped mass per rib-stiffener as distributed mass which was then
added to the panel mass. Whilst the STL versus frequency curves predicted by Wang et al. and the simplified model have an
overall tendency of that predicted by the complete model, noticeable discrepancies are also observed in Fig. 4. This
Fig. 3. Convergence check of double space-harmonic series solution for an infinite orthogonally rib-stiffened sandwich structure excited by a normally

incident sound at 10 kHz.
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confirms the necessity and advantage of the present analytical formulations for modeling the structural and acoustical
behaviors of rib-stiffened sandwich structures subjected to convective fluid-loaded pressure.
4.3. Influence of sound incident angles

Since the incident azimuth angle y plays a negligible role here, the influence of sound incident angle is mainly examined
by comparing STL values calculated for three different incident elevation angles (i.e., j=01, 301, 601) with the azimuth
angle fixed at y=451, as shown in Fig. 5.

The results of Fig. 5 demonstrate that the incident elevation angle has a significant effect on the STL of the present
sandwich structure. It is observed that the first resonance dip is shifted to a lower frequency as the elevation angle is
increased, and denser resonance dips appear on the STL versus frequency curves in the oblique incident case than those in
the normal incident case. Accordingly, apart from several individual peaks, the averaged STL values are smaller than that in
the normal incident case, particularly so in the low frequency range (below 400 Hz). In other words, the oblique incident
Fig. 4. Sound transmission loss plotted as a function of frequency for infinite sandwich structure with parallel rib-stiffeners as core subjected to oblique

(j=451) incident sound: comparison between predictions by the present analytic model (both complete model and simplified model) and those by Wang

et al. (2005).

Fig. 5. Sound transmission loss plotted as a function of frequency for orthogonally rib-stiffened sandwich structure under sound excitation having

selected incident angles.
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sound power transmits through the structure more easily than that of the normal incident sound, due to the possibility of
constructive interference between incident sound wave and structural bending waves in the former (Xin et al., 2009b).

Indeed, when the trace wavelength of incident sound matches the bending wave in the face panel of the sandwich,
coincidence resonance occurs in the oblique incident case but not in the normal incident case (Fahy, 1985). Following Xin
et al. (2009b), the coincidence resonance frequency may be analytically calculated as

fc ¼
c2

0

2phsinj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12rð1�n2Þ

E

r
ð85Þ

The coincident resonance appearing in the oblique case is often located at high frequencies that are beyond the
frequency range considered in the present study. In view of the dense resonances of the sandwich structure itself and the
complex interaction of bending waves in the face-panel and rib-stiffeners at high frequencies, the coincidence resonance
dip would shift its original location and thus it is actually impossible to identify it especially in the present complex
sandwich structures.

4.4. Influence of inertial effects arising from rib-stiffener mass

The inertial effects of rib-stiffener mass should not be ignored when the rib-stiffeners are heavy. To quantify the
influence of inertial effects on sound transmission characteristics, Fig. 6 compares the predictions obtained for an
orthogonally rib-stiffened sandwich structure with and without considering the inertial effects. The inertial effects of the
rib-stiffeners on sound radiation from an orthogonally rib-stiffened sandwich subjected to harmonic point force excitation
have been evaluated in a companion paper (Xin and Lu, submitted for publication). As such, the influence of inertial effects
on sound transmission characteristics provides additional insight into the vibroacoustic dynamics of 2D periodic sandwich
structures.

It is seen from Fig. 6 that the STL versus frequency curve predicted with the inertial effects considered has a tendency
similar to that without considering the inertial effects, the main discrepancy being the existence of several additional peaks
and dips in the former. On one hand, the superposition peaks (or dips) between the inertial case and the non-inertial one
are dominated by face panel vibration, which are closely related to the maximum (or minimal) vibration patterns. On the
other hand, the appearance of the additional peaks and dips controlled predominantly by the rib-stiffeners is attributed to
the inertial effects arising from the mass of the rib-stiffeners.

4.5. Influence of rib-stiffener spacings

It is anticipated that the rib-stiffener spacings lx and ly (Fig. 1) characterizing the periodic nature of the 2D orthogonal
sandwich play an important role in dictating the wave propagation and sound transmission performance of the structure.
Their influence on the sound radiation behavior of the structure has been explored (Xin and Lu, submitted for publication),
which are further examined below in terms of sound transmission.

Fig. 7 plots the STL as a function of frequency for two different orthogonally rib-stiffened sandwich structures, with
(lx, ly) selected as (0.20, 0.20) and (0.25, 0.25) m, respectively. Within the low frequency range, it is seen from Fig. 7 that the
Fig. 6. Sound transmission loss plotted as a function of frequency for orthogonally rib-stiffened sandwich structure under normal incident sound:

influence of inertial effects arising from rib-stiffener mass.
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characteristic curves of sound transmission corresponding to two different periodicity spacings follow a similar trend,
which is attributed to the fact that altering the periodicity spacings does not change the periodic nature of the sandwich
markedly. However, at relatively high frequencies, visible discrepancies exist between the two cases. In addition, the STL
peaks and dips are shifted to lower frequencies as the periodicity spacings increase, implying that the increment of
periodicity spacings leads to noticeably reduced natural frequencies of the sandwich structure.
4.6. Influence of airborne and structure-borne paths

The incident sound can be transmitted via two routes from the upper panel to the bottom panel, namely, the structure-
borne path (i.e., orthogonal rib-stiffeners) and the airborne path (i.e., air constrained in between the two panels). To
illustrate the different roles played by the two different transmission paths, Fig. 8 compares the results obtained for three
different cases: airborne path only (i.e., no rib-stiffeners), structure-borne path only (i.e., vacuum in cavity), and full
sandwich structure.
Fig. 7. Sound transmission loss plotted as a function of frequency for orthogonally rib-stiffened sandwich structure under normal incident sound:

influence of periodicity spacings between rib-stiffeners.

Fig. 8. Sound transmission loss plotted as a function of frequency for orthogonally rib-stiffened sandwich structure under normal incident sound:

comparison between airborne and structure-borne transmission paths.
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The results of Fig. 8 demonstrate that, insofar as sound transmission is of concern, the case of vacuum in cavity
(structure-borne path only) is nearly identical to a full sandwich structure, both significantly different from the case of no
rib-stiffeners. This is understandable, as the physical process of sound transmission across the sandwich is dominated
by the structure-borne path, owing to the strong constraint of structural connections (rib-stiffeners) and weak fluid–
structure coupling. However, it should be pointed out that, since the transmission of sound is of concern here, the
fluid–structure coupling at the incident interface (i.e., between the incident side fluid and the upper panel) and the
transmitting interface (i.e., between the transmitting side fluid and the bottom panel) needs to be considered. Although
the fluid–structure coupling between the air cavity and the internal interfaces of the two panels is negligibly weak
compared to the constraint imposed by the rib-stiffeners, for preciseness in physics and mathematics, this coupling is
included in the present analysis (which does not need much additional efforts).

In the absence of the rib-stiffeners, the first dip of the STL curve in Fig. 8 corresponds to the ‘mass–air–mass’ resonance

fa ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r0c2

0ðm1þm2Þ=ðm1m2dÞ
q

=2p, whilst the following four dips (and those not shown in Fig. 8) are related to the standing

wave resonance fs,n ¼ nc0=2d, where n=1, 2, 3, 4y (Lin and Garrelick, 1977; Xin and Lu, 2009; Xin et al., 2008b, 2009a, b).
In the case of full sandwich structure, the complex interaction of flexural wave in the panel and the rib-stiffeners creates
multiple possibilities for wavenumber matching and ‘coincidence’ (Wang et al., 2005), causing a series of resonance dips
appearing in the STL curve that differ significantly from the no rib-stiffener case.
5. Conclusions

Rigorous analytical formulations are obtained with the space harmonic approach for the structural and acoustical
characteristics of an infinite orthogonally rib-stiffened sandwich structure subjected to convective fluid-loaded pressure.
Unlike previous studies that focus on relatively simple structures such as rib-stiffened plates and model approximately the
rib-stiffeners as Euler-beams, two-dimensionally periodic sandwiches stiffened by two sets of orthogonally rib-stiffeners
are considered. All possible motions of the rib-stiffeners are accurately accounted for by introducing their tensional forces,
bending moments and torsional moments as well as the corresponding inertial terms into the governing equations of the
two face panels. The surrounding acoustic fluids are restricted by the acoustic wave equation and fluid–structure coupling
is included by imposing velocity continuity conditions at fluid–panel interfaces. Built upon the Bloch/Floquet theorem for
periodic structures, the resulting panel motions and acoustic pressures are expressed in a superposition form of space
harmonics for a given wavenumber. The application of the virtual work principle for one periodic element yields two
infinite sets of simultaneous algebraic coupled equations, which are numerically solved by truncation.

To explore the physical mechanisms underlying the dynamic and acoustic performance of two-dimensionally periodic
sandwich structures, the analysis is carried out from the viewpoint of sound transmission. Firstly, the validity and
feasibility of the proposed analytic model is qualified by comparing the model predictions with previous published results
for one-dimensionally periodic sandwich structures. The necessity and advantage of the exact modeling of rib-stiffener
vibrations are also demonstrated by comparing the complete model, with its simplified version and the model of Wang
et al. (2005). The complete model is then used to quantify the influences of inertial effects arising from the rib-stiffener
mass, the airborne and structure-borne paths, and the periodicity spacings of the rib-stiffeners on sound transmission
across the sandwich structure.

Although the analytical model without considering the inertial effects of the rib-stiffeners is able to provide an overall
trend of the STL versus frequency curve, the inclusion of the inertial effects in the model enables the capturing of more
detailed physical features associated with the process of sound transmission, as reflected by the additional peaks and dips
appearing on the STL curve.

The periodicity spacings of the rib-stiffeners play an important role in transmitting the sound across the sandwich. Two
noticeable conclusions can be drawn. First, as slight alterations of the periodicity spacings do not change the periodical
nature of the structure, the STL curves of different spacings exhibit similar trends. Second, increasing the periodicity
spacings reduces the natural frequencies of the structure, reflected by the shifting of STL peaks and dips to lower
frequencies.

For sandwich structure reinforced with rib-stiffeners, the transmission of sound via the airborne route is negligible in
comparison with that transmitted via the structure-borne path, as the weak fluid–structure coupling is overwhelmed by
the strong structural connections (rib-stiffeners). However, for preciseness in the viewpoints of physics and mathematics,
the fluid–structure coupling present between the incident side fluid and the upper panel as well as that between the
transmitting side fluid and the bottom panel needs to be considered in the analysis of sound transmission.
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Appendix A. Derivation of Eq. (80)

The deflection coefficients of the two face panels are:

fa1,klg ¼ a1,11 a1,21 . . . a1,K1 a1,12 a1,22 . . . a1,K2 . . . a1,KL

h iT

KL�1
ðA:1Þ

fa2,klg ¼ a2,11 a2,21 . . . a2,K1 a2,12 a2,22 . . . a2,K2 . . . a2,KL

h iT

KL�1
ðA:2Þ

The right-hand side of Eq. (80) represents the generalized force, that is:
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K1

l21,4
K2

&

l21,4
KL

2
666664

3
777775

KL�KL

ðA:32Þ

l21,5
Kl ¼ ly

ia1bla1RT4 ia1bla2RT4 . . . ia1blaK RT4

ia2bla1RT4 ia2bla2RT4 . . . ia2blaK RT4

^ ^ & ^

iaKbla1RT4 iaKbla2RT4 . . . iaKblaK RT4

2
66664

3
77775

K�L

ðA:33Þ

T21,5 ¼

l21,5
K1

l21,5
K2

&

l21,5
KL

2
666664

3
777775

KL�KL

ðA:34Þ

l22,1
kl ¼ D2ða2

kþb
2
l Þ

2
�m2o2�

o2r0

ikz,kl
þ
o2r0 cosðkz,kldÞ

kz,kl sinðkz,kldÞ


 �
lxly ðA:35Þ

T22,1 ¼

l22,1
11

l22,1
21

&

l22,1
K1

l22,1
12

l22,1
22

&

l22,1
K2

&

l22,1
KL

2
6666666666666666666664

3
7777777777777777777775

KL�KL

ðA:36Þ

l22,2
KL ¼ lx

RQ1�ia3
1RM1

RQ1�ia3
2RM1

&

RQ1�ia3
K RM1

2
66664

3
77775

K�L

ðA:37Þ
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T22,2 ¼

l22,2
KL l22,2

KL . . . l22,2
KL

l22,2
KL l22,2

KL . . . l22,2
KL

^ ^ & ^

l22,2
KL l22,2

KL . . . l22,2
KL

2
666664

3
777775

KL�KL

ðA:38Þ

l22,3
Kl,n ¼ lx

�ia1blbnRT1

�ia2blbnRT1

&

�iaKblbnRT1

2
66664

3
77775

K�L

ðA:39Þ

T22,3 ¼

l22,3
K1,1 l22,3

K1,2 . . . l22,3
K1,L

l22,3
K2,1 l22,3

K2,2 . . . l22,3
K2,L

^ ^ & ^

l22,3
KL,1 l22,3

KL,2 . . . l22,3
KL,L

2
666664

3
777775

KL�KL

ðA:40Þ

l22,4
Kl ¼ ly

RQ3�ib3
l RM3 RQ3�ib3

l RM3 . . . RQ3�ib3
l RM3

RQ3�ib3
l RM3 RQ3�ib3

l RM3 . . . RQ3�ib3
l RM3

^ ^ & ^

RQ3�ib3
l RM3 RQ3�ib3

l RM3 . . . RQ3�ib3
l RM3

2
666664

3
777775

K�L

ðA:41Þ

T22,4 ¼

l22,4
K1

l22,4
K2

&

l22,4
KL

2
666664

3
777775

KL�KL

ðA:42Þ

l22,5
Kl ¼ ly

�ia1bla1RT3 �ia1bla2RT3 . . . �ia1blaK RT3

�ia2bla1RT3 �ia2bla2RT3 . . . �ia2blaK RT3

^ ^ & ^

�iaKbla1RT3 �iaKbla2RT3 . . . �iaKblaK RT3

2
66664

3
77775

K�L

ðA:43Þ

T22,5 ¼

l22,5
K1

l22,5
K2

&

l22,5
KL

2
666664

3
777775

KL�KL

ðA:44Þ

Using the definition of the sub-matrices presented above, one obtains

T11 ¼ T11,1þT11,2þT11,3þT11,4þT11,5, T22 ¼ T22,1þT22,2þT22,3þT22,4þT22,5 ðA:45Þ

T12 ¼ T12,1þT12,2þT12,3þT12,4þT12,5, T21 ¼ T21,1þT21,2þT21,3þT21,4þT21,5 ðA:46Þ
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