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Abstract
Cell mechanical microenvironment (CMM) significantly affects cell behaviors such as
spreading, migration, proliferation and differentiation. However, most studies on cell response
to mechanical stimulation are based on two-dimensional (2D) planar substrates, which cannot
mimic native three-dimensional (3D) CMM. Accumulating evidence has shown that there is a
significant difference in cell behavior in 2D and 3D microenvironments. Among the materials
used for engineering 3D CMM, hydrogels have gained increasing attention due to their tunable
properties (e.g. chemical and mechanical properties). In this paper, we provide an overview of
recent advances in engineering hydrogel-based 3D CMM. Effects of mechanical cues (e.g.
hydrogel stiffness and externally induced stress/strain in hydrogels) on cell behaviors are
described. A variety of approaches to load mechanical stimuli in 3D hydrogel-based constructs
are also discussed.

(Some figures may appear in colour only in the online journal)

1. Introduction

Mechanical cues of cell microenvironment play a significant
role in regulating cell behaviors such as cell spreading,
migration, proliferation and differentiation [1–4]. Cells
sense the mechanical microenvironment via transmembrane
molecules (e.g. integrins) and regulate the physiological
processes through mechanotransduction [5, 6]. Cells such
as fibroblasts, chondrocytes, endothelial cells (ECs), smooth
muscle cells (SMCs) and mesenchymal stem cells (MSCs)
exhibit different mechano-responsive behaviors, depending

5 Authors to whom any correspondence should be addressed.
6 These authors contributed equally.

upon the mechanical properties of the extracellular matrix
(ECM), the mechanical loading modes, and the cell
development stages. For instance, fibroblasts adhere to stiffer
substrates more strongly, spread farther and migrate faster than
those cells on softer substrates [7]. Human MSCs (hMSCs)
exhibit neurogenic, myogenic and osteogenic phenotypes
when cultured on collagen-coated polyacrylamide (PAAm)
hydrogels with stiffness similar to brain (0.1–1 kPa), muscle
(8–17 kPa) and nascent bone (>34 kPa), respectively [8].
However, most of these studies have been performed on
two-dimensional (2D) substrates, which may not represent
the situation in vivo. Cells naturally reside in a three-
dimensional (3D) niche, and accumulating evidence indicates
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that cells may respond differently when situated in 3D and
2D mechanical microenvironments [9–11]. For example, the
vinculin expression of SMCs encapsulated in poly(ethylene
glycol) (PEG)-conjugated fibrinogen is lower compared to
that in 2D [12]. The focal adhesion (FA) composition and
function of fibroblasts encapsulated in a 3D matrix were
significantly different from those on 2D substrates [13].
Therefore, it is of great interest and importance to study the
cell response to mechanical cues in a biologically relevant 3D
microenvironment.

To mimic cell behavior in natural microenvironment,
various 3D culture models have been established based
on hydrogels, which offer several advantages such as
high water content, biocompatibility, as well as tunable
chemical and physical properties [10, 14–16]. These hydrogel-
based 3D culture models are also utilized to engineer
a 3D cell mechanical microenvironment (CMM). For
example, cardiomyocytes encapsulated in PEG-fibrinogen
hydrogels [17], cancer cells encapsulated in Matrigels
[18] or fibrin hydrogels [19], and stem cells encapsulated
in methacrylated hyaluronic acid (MeHA) hydrogels [20]
have been developed to study the responses of tissue
contraction, tumor growth and metastasis, and stem cell
differentiation to mechanical stiffness, respectively. These
hydrogel-based CMM models with tunable mechanical
properties offer valuable opportunities to study fundamental
biological mechanisms, which can in turn facilitate
biomedical applications in stem cell engineering, cancer
therapy, and tissue engineering.

In this review, we start with discussion of mechanical cues
of hydrogels and their effects on cell behaviors in engineered
3D CMM. We then review different approaches to engineer
hydrogel-based 3D CMM in vitro. Lastly, we highlight the
challenges and future directions for engineering hydrogel
based 3D CMM.

2. Mechanical cues from hydrogels for engineering
3D CMM

Hydrogels are 3D polymer networks swollen with high
percentage of water, which are similar to native ECM. This
beneficial property, in addition to their tunable mechanical
nature, makes hydrogels ideal candidates for engineering 3D
CMM. Both naturally derived (e.g. collagen, hyaluronic acid
(HA), fibrin) and synthetic hydrogels (e.g. PEG, PAAm) have
been employed to engineer 3D CMM. Collagen is a group of
proteins found in native ECM, where collagen type I is often
used in hydrogels for cell encapsulation and for the study of
cell traction [21]. Another widely used hydrogel is HA, a non-
sulfated glycosaminoglycan, which can be found throughout
connective, epithelial, and neural tissues [22]. Hydrogels
derived from natural polymers are usually mechanically weak
and have limited controllability of mechanical properties. To
overcome this challenge, incorporation of functional groups
(e.g. acrylate [23], thiolate [24], tryamine [25]) and addition
of other composites (e.g. collagen-alginate [26], agarose-
PEG [27], alginate-PAAm [28]) have been attempted. In
contrast, synthetic hydrogels have well-defined compositions
and possess better controllability of mechanical properties.

For example, the mechanical properties of PEG diacrylate
(PEGDA) can be adjusted by changing its monomer molecular
weight, polymer concentration, light intensity and exposure
time during ultraviolet (UV) light-induced crosslinking.
Moreover, synthetic hydrogels can be easily modified with
bioactive molecules such as peptides, growth factors and
biodegradable units [29].

Generally speaking, there are two main types of
mechanical cues that cells may experience from hydrogels:
the stiffness or elasticity of hydrogels, and the stress/strain
from hydrogel-based constructs. We here describe them in
details, especially their effects on cell behaviors.

2.1. Stiffness of hydrogels

The most common mechanical cue that cells experience is
stiffness, which ranges from 0.1 kPa (e.g. brain) to 40 kPa
(e.g. osteoid) for native soft tissues [30] (figure 1(A)). It has
been found that most cells exhibit in vivo-like behaviors when
cultured in a mechanically compatible microenvironment
[30, 31] (figures 1(B) and (C)). For instance, cardiomyocytes
showed optimized contractibility, striated myofibrils and
rhythmic beating on 10 kPa PAAm hydrogels that mimic
the stiffness of adult cardiac muscle; while they exhibited
overstrained morphology, with lost striated myofibrils and
rhythmic contraction on stiffer hydrogels (e.g. similar to the
stiffness of post-infarct fibrotic scar) [31]. The osteogenic
differentiation of murine MSCs (mMSCs) was found to
occur prevalently in 3D Arg-Gly-Asp (RGD)-modified
alginate (figures 1(C-a) and (C-d)), RGD-modified agarose
(figures 1(C-b)) and RGD-modified PEGDA (figures 1(C-c))
hydrogels with intermediate stiffness (11–30 kPa) [32].

Many native tissues are mechanically heterogeneous,
such as tendons, heart valves and calcific vascular
tissues [33–35]. To investigate the effects of mechanical
heterogeneity on cells, several hydrogel systems with
patterned or gradient mechanical properties have been
developed. For example, PEGDA hydrogels with selectively
photopolymerized mechanical patterns were fabricated to
guide cell growth [36]. Acrylated HA hydrogels with patterned
mechanical regions were created via sequential crosslinking
to control 3D cell spreading [23]. Hydrogels with gradient
PEGDA and constant Arg-Gly-Asp-Ser concentration were
also fabricated to study cell morphology on a gradient
mechanical surface [37]. It was found that cells tended
to migrate toward increasing stiffness, termed as durotaxis
or mechanotaxis [7].

Native CMM may dynamically change with time
during development, aging, pathological processes and tissue-
biomaterial interface remolding [38–41]. A well-known
example is that fibrotic scars show stiffening behavior
during the wound-healing process [42]. The dynamic change
of stiffness can favor cell migration, proliferation, and
differentiation [8, 43–45]. In these cases, hydrogels with
constant stiffness may not mimic the native dynamic CMM. To
address this, a thiolated-HA hydrogel system was developed to
model the mechanical stiffening of developing myocardium,
with the stiffness changing from ∼1 to ∼8 kPa over a period
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Figure 1. Soft-tissue stiffness and cell response to mechanical stiffness. (A) The stiffness of soft tissues ranges from 0.1 to 100 kPa. From
[30]. Reprinted with permission from AAAS. (B) Stiff substrates enhance cell anchor and spreading. From [30]. Reprinted with permission
from AAAS. (C) MSC differentiation determined by stiffness of 3D hydrogels: (a)–(c) alkaline phosphatase (ALP) activity (fast blue;
osteogenic biomarker, blue) and neutral lipid accumulation (oil red O; adipogenic biomarker, red) of mMSC after one week of culture in
RGD-modified alginate (a), RGD-modified agarose (b) and an RGD-modified PEGDA (c) hydrogels with different stiffness; (d) osteocalcin
(OCN, green) and nuclear counterstain 40′,6-diamidino-2-phenylindole (DAPI, blue) staining in cell-laden alginate cryosections. Scale bars
for (C) are (a) 100 μm, (b)–(c) 50 μm and (d) 20 μm, respectively. Reprinted by permission from Macmillan Publishers Ltd: Nature Mater.
[32], copyright 2008.

of 300 h [24]. In another study, a DNA crosslinked PAAm
hydrogel with temporal dynamic stiffness was synthesized
by controlled DNA delivery [43]. It was demonstrated that
fibroblasts responded differently, depending on the magnitude
and range of dynamic stiffness of hydrogels. In addition,
stiffness softening of hydrogels was also found to affect
fibroblast morphology [42]. The softening of hydrogels can
be induced by swelling, degradation or de-crosslinking of
hydrogel networks. It has been widely proved in tissue
engineering that the degradation speed of hydrogels should
match the ECM secretion speed by cells encapsulated in
hydrogels [46–49]. Thus, to obtain appropriate dynamic CMM
for cells, the time-dependent stiffening and softening behaviors
of hydrogels should be optimized according to specific cell
types.

2.2. Stress/strain from hydrogel-based constructs

Besides stiffness of ECM, some cells can sense and respond
to stress/strain of the microenvironment in vivo. Fibroblasts

in ligament, chondrocytes in cartilage, and ECs in vascular
tissues experience tension, compression and shear stress,
respectively, and accordingly regulate their morphology,
migration, proliferation, and differentiation [50–53].

Among the different loading modes, mechanical stretch
plays an active role in many physiological processes such
as muscle contraction and heart beating. It has been
utilized to stimulate cells in many engineered tissues (e.g.
muscle, ligament, tendon and vasculature) to enhance their
organization, strength and functionality [50, 54]. For instance,
SMCs showed directed cell alignment and migration in
collagen along the direction of mechanical stretch [55], down-
regulated expression of bone-associated genes, and decreased
deposition of calcium [56]. For myocardial cells in collagen,
cyclic stretch promoted the formation of interconnected
and longitudinally oriented cardiac muscle bundles [57].
Additionally, cardiac cells in fibrin and fibroblasts in collagen
tend to increase collagen secretion under cyclic stretch
[58, 59].
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While mechanical stretch favors cell growth (e.g. SMCs,
myocardial cells) in engineered tissues, compression and
shear stress selectively affect cells such as chondrocytes,
MSCs and ECs. Dynamic compression greatly increased
equilibrium modulus, glycosaminoglycan and hydroxyproline
content of chondrocytes encapsulated agarose hydrogels
[60]. Dynamic compression also enhanced production and
uniform distribution of the cartilage matrix in MSC-laden
HA hydrogels, reduced hypertrophic maker expression and
suppressed calcification [53]. Another interesting work from
Bryant et al [61] showed that chondrocytes encapsulated in
PEG hydrogels exhibited heterogeneous deformation under
static compression, even though the deformation of hydrogels
was uniform. This result indicated that the cell population and
development stage may affect cell behavior under mechanical
stimulation. Mechanical compression can have comprehensive
effects on cell behavior when combined with some chemical
factors. For instance, dynamic compression up-regulated the
expression of cartilage-specific genes and the secretion of
ECM for both marrow-derived MSCs and human embryoid
body-derived (hEBd) cells in PEGDA independently of the
presence of transforming growth factor-beta 1 (TGF-β1) [62].
Meanwhile, chondrogenic differentiation was inhibited by
mechanical compression without TGF-β1 [62]. It was also
demonstrated that RGD played either a negative or an active
role in the phenotype expression of chondrocytes encapsulated
in PEGDA, depending on the absence or presence of dynamic
compression [63].

ECs in the human vascular system experience shear stress
from blood flow, which plays an important role in vascular
stability and functionality [64, 65]. Recently, hydrogels
with endothelialized microfluidic channels were developed
to engineer vascularized tissue constructs [66–68]. These
endothelialized microfluidic hydrogels may also provide an
excellent in vitro vascular model with an in vivo-like 3D
microenvironment to study vascular functionality and diseases.
However, to accomplish this goal, many factors should be
further investigated, including hydrogel types, microchannel
structure and inducible chemical molecules (e.g. second
messenger cyclic adenosine monophosphate), as well as flow
velocity [14, 69].

The same type of cells may respond differently to various
mechanical stimulations [59, 70, 71]. For example, MSCs in
ligaments experience stretch, compression and shear stress as
induced by body movement. It was shown that MSCs exhibited
distinct morphology and proliferation behavior when subjected
to dynamic stretch, pressure, and shear stress in vitro with
varying magnitude, frequency and duration [71].

3. Methods for engineering 3D CMM with hydrogels

A variety of methods have been developed to engineer
3D CMM with hydrogels, by varying hydrogel stiffness
or inducing stress/strain in hydrogel-based constructs.
Specifically, these mechanical stimulations have been achieved
by using different hydrogels, or by changing polymer
concentration, crosslinking density [17] or environmental
conditions (e.g. pH, temperature, electric and/or magnetic

field) [72, 73]. Alternatively, incorporating other mechanically
enhanced or degradable units [46], applying a scaffold
constraint [74] or external stretch/compression [50, 53], and
controlling fluid flow [75, 76] have also been demonstrated.

3.1. Control of hydrogel mechanical properties

The most commonly used method to modulate hydrogel
mechanical properties (e.g. stiffness) is to change polymer
concentration. The resultant stiffness of hydrogels can range
from ∼Pa to ∼MPa, especially for some synthetic hydrogels
such as PEG. By increasing polymer concentration from 10%
to 20%, Bryant et al [77] created PEG-based hydrogels with
stiffnesses ranging from 60 to 500 kPa to facilitate cartilage
production. In addition, it has been shown that the introduction
of an interpenetrating polymer network (IPN) may greatly
enhance the stiffness of hydrogels [27, 78, 79].

Another method to modulate hydrogel stiffness is to
change the crosslinking density or molecular weight of
polymer networks without increasing polymer concentration.
HA-tyramine hydrogels were explored to encapsulate MSCs
for engineering cartilage [25]. The stiffness of hydrogels can be
increased from 5.4 to 11.8 kPa by increasing the concentration
of hydrogen peroxide (H2O2) from 500 to 1000 μM, which
was associated with the crosslinking degree. Such hydrogels
can enhance cellular condensation and chondrogenesis at low
crosslinking densities. Alternatively, porous MeHA hydrogels,
with tunable stiffness ranging from ∼1.5 to 12.4 kPa, were
fabricated by changing crosslinking density with a sequential
UV polymerization [20]. The morphology, proliferation and
differentiation of hMSCs on such hydrogels depended on the
stiffness of MeHA hydrogels.

To mimic the mechanical heterogeneity of native
tissues, microengineering methods (e.g. photopatterning) have
been incorporated to fabricate mechanically heterogeneous
hydrogels [80–82]. Photopatterning is widely used to create
microgels of various shapes, and it has been recently explored
to create hydrogels with patterned and gradient stiffness by
using specially designed masks [82, 83]. Marklein et al
[84] fabricated MeHA hydrogels with patterned stiffness to
investigate the response of hMSCs to local stiffness variations.
PEGDA hydrogels with different stiffness patterns were
formed by UV photopolymerization [82, 85], figure 2(A).
Mechanical gradient PEGDA hydrogels were also formed
using gradient masks (i.e. masks with gradient UV light
transmitted patterns) or microfluidics method [82, 86].

CMM is dynamically changing, either softening or
stiffening, during tissue development, wound healing,
regeneration and tumor invasion [87, 88]. It is of great interest
to investigate and control these biological processes in vitro.
Biodegradable hydrogels are typical softening systems and
they have been widely used for 3D cell culture and tissue
engineering [46]. The degradation of hydrogels can facilitate
molecular diffusion and formation of new tissues in hydrogels.
The degradation process in cell-laden hydrogel systems may
be mediated by the encapsulated cells. For example, hMSCs
can secrete matrix metalloproteinase to degrade PEG-peptide
hydrogels via thiol-ene photopolymerization, thus enhance
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Figure 2. Tuning stiffness of hydrogels. (A) Fabrication of mechanical patterned and gradient hydrogels: (a) schematic diagram of
mechanical patterned hydrogel formation and (b) stiffness of patterned hydrogels. Reprinted with permission from [82]. Copyright 2009
Wiley Periodicals, Inc. (B) Hydrogels with dynamic changed microenvironment: (a) a composite ECM system composed of a structural
component (ECM fibers) and a modulatory component (polymer chains), (b) schematic illustration of alternating the crosslinking state of
alginate in collagen-alginate hydrogels and (c) confocal microscopy observed cellular actin (green) of encapsulated fibroblasts and collagen
fibers (gray scale) in hydrogels (scale bars, 20 μm). Reprinted with permission from [26]. Copyright 2010 WILEY-VCH Verlag GmbH &
Co. KGaA, Weinheim. (C) Decoupling the inverse dependency between stiffness and permeability of hydrogels: (a) schematics of PEGDA
hydrogels crosslinked by MA with varying degrees of methacrylic groups (methacrylic DS) and (b) the change of swelling ratio is
independent from stiffness of MA-crosslinked PEGDA. Reprinted from [95], copyright 2010, with permission from Elsevier.

their directed differentiation [89]. However, this process
is slow and not controllable. The mechanical stiffness of
biodegradable hydrogels can gradually decrease over time by
tuning their degradability through incorporating hydrolytically
or enzymatically degradable blocks into the hydrogel networks
[46, 90]. Recently, a photodegradable PEG-based hydrogel
was developed by decreasing crosslinking density within
minutes under light exposure, which allowed 3D modulation
of hydrogel stiffness temporally and spatially in the presence
of cells [91]. Directed cell spreading was observed along the
degradation gradient, and the largest cell spreading area was
observed in the most degraded regions.

Many biological processes are more related to stiffening
of CMM rather than softening, and thus a variety of new
hydrogels have been developed in vitro to mimic the stiffening

process of CMM. Guvendiren et al [87] developed a light-
induced stiffening MeHA hydrogel system (∼3–30 kPa)
to investigate the short-term (minutes to hours) and long-
term (days to weeks) responses of hMSCs to a dynamic
stiffening microenvironment. Gillette et al [26] developed
a collagen–alginate composite hydrogel, in which collagen
was first gelled as a stable structural element, and alginate
was gelled subsequently with the introduction of divalent
cations to alter the mechanical performance of the composite
hydrogels (figure 2(B)). However, light-induced stiffening of
MeHA hydrogels is irreversible. In addition, the stiffening
process changes rapidly, which does not match the time scale
of microenvironmental stiffening during maturation of the
myocardium and fibrosis of the heart muscle (which may
take up to several weeks) [87, 88]. Furthermore, the use of
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divalent cations may affect cell behaviors by interfering with
signaling pathways.

The change in hydrogel stiffness often results in
alternation of hydrogel permeability, which can in turn affect
cell behavior in hydrogels due to aberrant local metabolite
concentrations (e.g. integrin ligand in collagen) [92, 93]. To
overcome this limitation, several PEG-based hydrogel systems
have been developed to decouple the effects of hydrogel
stiffness and permeability [94, 95], as well as hydrogel
stiffness and biochemical cues [96], on cell responses. Cha
et al [95] developed methacrylic alginate (MA) crosslinked
PEGDA hydrogels with a stiffness changing over one order
of magnitude by tuning the concentration of MA and
methacrylic groups, whereas the swelling ratio associated with
the permeability of hydrogels changed minimally because of
multiple hydroxyl groups of MA (figure 2(C)). The same
group later reported PEGDA–PEG monoacrylate (PEGMA)
composite hydrogels with tunable stiffness by changing the
PEGMA concentration and almost constant swelling ratio [94].
Compared to pure PEGDA hydrogels, the composite hydrogels
enhanced biphasic viability dependency and an expression of
vascular endothelial growth factor in encapsulated fibroblasts.
PEG-based IPN hydrogels [96] and PEG-fibrinogen [97]
were also designed to decouple the effects of stiffness and
biochemical cues on cells. These composite hydrogel systems
may help better understand the effects of stiffness on cells
in a 3D microenvironment by decoupling different cues (e.g.
mechanical, physical, biochemical cues).

3.2. Control of stress/strain in 3D hydrogel-based constructs

The simplest way to control stress/strain in cell-laden
hydrogels is to apply mechanical constraint, in which the
boundaries of the hydrogel constructs are partially or entirely
constrained to resist deformation induced by active contraction
of the encapsulated cells. The compliance between local
matrix deformation and cell contraction forces may lead to
directed cell migration, alignment and differentiation [98].
For example, corneal fibroblasts encapsulated in uniaxially
constrained collagen aligned in parallel to the long axis of
the construct [99]. In addition, constrained constructs showed
more collagen fibril density than unconstrained constructs.
ECs in constrained collagen formed larger and thinner-
walled lumens than those in free-floating collagen [100]. In
another example, fibroblast-laden collagen microtissues were
constrained by two micro-cantilevers (figure 3), which were
used to measure forces during the remodeling process [74]. It
was shown that both cellular contractility (figures 3(A)–(E) and
protein deposition (figures 3(F)–(I) increased with increasing
stiffness of collagen and micro-cantilevers. This method has
been recently extended to engineering cardiac microtissues for
high-throughput drug-screening applications [101].

Hydrogels are sensitive to changes in environment
and can undergo a dramatic volume change, resulting
in stress/strain to the encapsulated cells. For exam-
ple, fibronectin-immobilized temperature-responsive poly(N-
isopropyl acrylamide) (PNIPAAm) hydrogels swell when the
environmental temperature changes, leading to equibiaxial

(A) (B)

(C)

(D)

(F)

(H)

(G)

(I)

(E)

Figure 3. Boundary and matrix mechanics regulate contractility and
protein deposition of NIH 3T3 fibroblasts in collagen. Reprinted
with permission from [74]. Copyright 2009 National Academy of
Sciences, USA. (A) Microtissue tension increased with number of
cells per tissue, depending on the stiffness of microcantilevers.
(B) Cross-section view of microtissues tethered to rigid (0.397 μN
μm–1) or flexible (0.098 μN μm–1) cantilevers. (C) Microtissue
tension increased with collagen concentration both on rigid and
flexible cantilevers. (D) The average midpoint stress in microtissues
decreased with collagen concentration. (E) Top view of collagen
microtissues. (F) Immunofluorescence staining of fibrillar actin,
fibronectin and tenascin C within microtissues. (G)–(I) Fluorescence
intensity of fibrillar actin, fibronectin and tenascin C levels in
microtissues. Scale bars: 100 μm.
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Figure 4. Mechanical stretching for bone-marrow-derived progenitor cells (BMPCs) in fibrin hydrogels. Reprinted with permission from
[108]. Copyright 2006 Wiley Periodicals, Inc. (A) Schematic illustration (a)–(b) and top view (d) of FlexcellTM Tissue-TrainTM plates for
stretching of 3D constructs; (c) is the representation of experimental groups. (B) F-actin filaments (green) within ‘Unconstrained’ control
group are randomly organized (a), while those within ‘Constrained’ control group (b) and ‘Constrained/Stretched’ group (c) are aligned
parallel to the direction of stress or strain. (d) F-actin filament area per cell increases in ‘Constrained’ control group and even more in
‘Constrained/Stretched’ group. Insets = × 100; Scale bars = 10 μm.

stretching of encapsulated cells [73]. This mechanical stim-
ulation facilitated formation of filopodia-like structures at
peripheral regions and paxillin-containing fibrous structures
in cytoplasm. In addition, DNA hydrogels that can tempo-
rally swell/deswell through controlled delivery of DNA have
also been developed [42, 43]. However, the DNA mediated
crosslinking process is dynamically slow (from 4 h to 1 day),

and it may not be biocompatible due to the use of negatively
charged DNA [43, 45, 102].

The type, magnitude, frequency and duration of
mechanical loading in hydrogels all affect the response of
encapsulated cells. However, it is challenging for methods
based on scaffold constraint and environment condition change
to control these parameters. External stretch, compression
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Figure 5. Mechanical compression for MSC in PEGDA hydrogels. Reprinted with permission from [62]. Copyright 2007 AlphaMed Press.
Interior (A) and base (B) of a stimulation chamber. (C) Silicon tubing molds for fabricating cell-laden hydrogels. (D) Assembled
compression bioreactor composed of stimulation chamber, metal housing, piston and control box. (E) Schematic diagram of cell
encapsulation, mechanical stimulation, and result observation. (F) Sox-9 and aggrecan gene expression of MSCs increased under
mechanical stimulation. (G) Live-Dead staining of encapsulated cells (10 × ). Abbreviations: C, control; h, hour; MS, mechanically
stimulated; RT/qRT-PCR, real-time quantitative reverse transcription–polymerase chain reaction.

and shear stress have been explored to overcome these
limitations with controllable loading parameters. Traditional
stretch devices use elastic membranes on which cell sheets
or 3D tissue constructs are anchored. Stretching of cells
is obtained when the membranes are stretched through
pneumatic deformation, a clamping mechanism or bending
[50, 103]. Most of the membrane stretching devices can
only provide uniform strain over the membrane center, and
are limited to small (up to several square centimeters) and
thin tissue constructs. With the development of commercial
stretching apparatuses, such as Flexcell, Bose ElectroForce,

and bioreactors developed by Tissue Growth Technologies,
a variety of stretch parameters (e.g. stretching mode, strain
magnitude, loading frequency, insertion of rest periods)
have been investigated and found to significantly affect
cell behaviors [104–107]. Nieponice et al [108] utilized
FlexcellTM Tissue-TrainTM plates to investigate the effects
of cyclic stretch (10% strain, 1 Hz) on the morphology and
differentiation of marrow-derived progenitor cells (BMPCs)
in fibrin hydrogels (figure 4(A)). It was found that cyclic
stretch induced the morphological and phenotypical changes
of BMPCs toward SMCs (figure 4(B)). However, there are
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limited systematic studies on 3D hydrogel tissue constructs,
partially due to the technical challenges to apply stretch
force on cell-laden hydrogels under a designed mode. The
application of clamp, pin, suture and pressure to stretch
hydrogels may lead to slip, undesired compression and local
tearing of hydrogels [50, 109, 110].

Compared to mechanical stretch, compression and shear
stress are relatively easier to apply to 3D cell-laden hydrogels.
To study the effect of compression on cells, cell-laden
hydrogels are usually fabricated into cylindrical samples
and vertically placed in a chamber filled with a medium,
with a computer-controlled force loading and transducer
on the upper surface of the samples. This method has
been used to enhance matrix production and to control
stem-cell differentiation in vitro [53, 111]. Terraciano et al
[62] designed a customized bioreactor system to apply
unconfined and dynamic compressive loading to MSC-
laden PEGDA hydrogels (figure 5). MSCs showed enhanced
chondrogenic gene expression under mechanical compression.
Bian et al [112] developed a bioreactor with unconfined axial
compressive loading or sliding contact loading applied on
chondrocyte-laden agarose hydrogel disks. The stiffness of
the constructs increased significantly upon culturing under
mechanical loading (both compressive and sliding contact)
compared to that of the free-floating control. Tien’s group
[52, 68] developed a molding method to form endothelialized
microfluidic channels in collage hydrogels to mimic human
microvessels. Fluid was perfused through microvessels to
apply mechanical stimulation on ECs. It was found that the
barrier function and stability of microvessels increased with
increasing shear stress and transmural pressure, respectively.

4. Conclusions and future perspectives

One advantage of engineering CMM with hydrogels is their
optical clarity, which allows observation of cell behaviors
using microscopy-based methods such as phase contrast,
fluorescence and laser confocal microscopes. With these
methods, cell morphology and function, including cell
spreading, migration, proliferation, protein secretion and gene
expression, in a 3D microenvironment can be tracked in real-
time. In addition, cells actively probe changes in CMM and
feed back to remodel ECM. Thus, it is of great interest to
study cell-hydrogel interactions and quantify cell and hydrogel
mechanical properties. Micro-indentation and atomic force
microscopy can be employed to probe the local surface
properties of hydrogels. Rheometry has been routinely used
to test bulk hydrogel properties. The fluorescence resonance
energy transfer method has been utilized to investigate cell-
hydrogel interactions and quantify hydrogel degradation by
encapsulated cells. Particle tracking methods have been
developed to measure stress and strain fields within hydrogels.
However, most of these methods are limited to 2D applications
or lack microscale resolution. Recently, microrheology is
combined with spatiotemporal image correlation spectroscopy
to capture local deformation of fibrin hydrogels induced by
cells and to characterize local hydrogel mechanical properties
in 3D [113]. The 3D particle trafficking method is developed

to measure the contraction forces of cells, and 3D stress
and strain distribution in hydrogels [114–116]. The feasibility
and universality of these methods for application in a variety
of 3D cell–hydrogel systems need to be further investigated.
Moreover, associated software tools should also be developed
to acquire, manage and analyze enormous experimental data
[117].

It is essential to spatiotemporally control 3D CMM in
tissue development, tissue engineering and pathology studies
due to the heterogeneity, diversity and dynamic nature of CMM
and to study their important effects on cell behavior. Although
a variety of hydrogels and associated technologies have been
developed, several issues still need to be addressed:

(1) Hydrogels are inherently viscoelastic, similar to natural
cells and tissues. The mechanical stimulation of stiffness
and strain/stress on cells encapsulated in hydrogels may
also be affected by hydrogel viscoelasticity. However,
little has been done to investigate hydrogel viscoelasticity.

(2) Novel biocompatible hydrogels still need to be designed
so as to control their physical and biochemical properties.
The development of click chemistry and composite
hydrogel systems may provide solutions.

(3) Most of the current methods to engineer a cell
mechanical microenvironment are either 2D or lack of 3D
controllability, especially for stretch loading approaches.
The development of 3D loading protocols may facilitate
the study of development, regeneration and disease
propagation.
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