
Biotechnology
Journal DOI 10.1002/biot.201100098 Biotechnol. J. 2011, 6, 1466–1476

1466 © 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Introduction

Over the past few decades, tremendous progress has
been made in the development of biosensors for ap-
plications in medicine, environment monitoring and
food safety. Biosensors in general consist of three
components: a sensing unit for identifying targets, a

transducer for converting biological reactions to
chemical/ electrical/ optical signals, and an output
system for signal amplification and readout [1]. Ac-
cording to the nature of the sensing units, biosen-
sors can be categorized as molecule-based biosen-
sors (MBBs), cell-based biosensor (CBBs), and ani-
mal-based biosensors (ABBs). MBBs rely on specif-
ic interactions between antibodies, nucleic acids,
enzymes or ion channels and their corresponding
cognitive moieties [2], such as DNA biosensor [3].
ABBs are based on the use of live animals (e.g., cat-
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tle, fish sheep, etc.) as sensing units to probe envi-
ronmental hazards. For example, canaries have
been used to monitor carbon monoxide to improve
the safety of coal mines [4]. In contrast, living cells
such as bacterial or eukaryotic cells are included in
CBBs to sense agents of interest at a cellular level.

Among these three types of biosensor, CBBs of-
fer several advantages for monitoring and screen-
ing pathogens/toxic substances over MBBs and
ABBs [5–9]. The advantages include the capability
to closely mimic physiological situations and to de-
tect unknown compounds and toxins [10, 11]. Al-
though MBBs have high sensitivity and specificity,
they are usually designed using established mech-
anisms and thus have limited capability to identify
unknown stimuli.ABBs cannot be easily applied on
site for large-scale applications due to limited
portability [4]. On the other hand, CBBs can reduce
cost and complexity associated with animal testing
for monitoring the environment. It has been calcu-
lated that 3200 animals are needed to assess the
toxicity of a single chemical compound, which
highlights the need for cost-effective CBBs for tox-
icological assessment [12]. CBBs can be readily
coupled with high-throughput proteomics and ge-
nomics analytical methods to identify the respons-
es to unknown toxins and to screen for drug candi-
dates [13]. In addition, cellular responses induced
by test analytes can be singled-out using specific
cell types that do not interfere with other cell types
or the whole sensing system [14].

Despite the advantages of CBBs, several limita-
tions are associated with existing CBB systems,
such as weak cell–substrate attachment, 2D cell mi-
croenvironment, and limited shelf life. Also, some
mammalian cell lines, especially neurons, are sus-
ceptible to detachment, and thus easily get washed
away during cell culture [15]. Most cells used in ex-
isting CBBs are cultured on hard 2D glass or plas-
tic substrates that do not mimic their in vivo coun-
terparts. In addition, the sensing cells need to be
immobilized and patterned on the sensors with mi-

croscale spatial resolution to monitor cellular re-
sponse to external stimuli [16]. Recently, significant
advances in novel biomaterials and nano/micro
engineering methods have been made it possible 
to immobilize cells using scaffold-free 3D meth-
ods [17]. For instance, biocompatible hydrogels
have emerged that are water-swellable with struc-
ture similar to native extracellular matrix (ECM),
allowing oxygen, nutrients and metabolic products
to diffuse, thus offering cells a controllable 3D mi-
croenvironment [18, 19]. These advances have en-
abled the encapsulation of cells in 3D hydrogels
[20–22], which has been widely used in tissue engi-
neering. Cell encapsulation in hydrogels can also
be used as platforms for CBBs and hold great po-
tential to address the challenges for the existing
CBBs. In this review, we present an overview of
CBBs and then focus on the applications of hydro-
gel-based CBBs in medicine, food safety, environ-
mental monitoring and biosecurity.We also discuss
the challenges for hydrogel-based CBBs and po-
tential solutions.

2 CBBs based on cell-encapsulating
hydrogels

2.1 Three elements in CBBs

A typical CBB is consisted of an input system, an
output system, and host cells [23], as illustrated in
Fig. 1. The input system includes soluble factors
(standardized culture medium, metabolic sub-
strates, vitamins, antibiotics, etc.) and insoluble fac-
tors (ECM or neighbor cells), as well as experimen-
tal stimuli (cytokines, growth factors, hormones,
and putative therapeutic candidates). Soluble fac-
tors, which are often added to the culture medium,
are key factors for maintaining cell growth and
controlling cell behavior. ECM binds soluble factors
and transfers cues to cells to regulate cell prolifer-
ation, survival, migration and differentiation [24,

Figure 1. Schematic of three basic com-
ponents of a CBB, an input system, an
output system, and host cells [23]. The
input system consists of soluble factors
and insoluble factors, as well as experi-
mental stimuli. The output system in-
cludes molecular responses and cell
phenotypes. Reprinted from [23] with
permission from Annual Reviews, Inc.
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25]. Cell behaviors and activities are also regulated
by signals that arise from cell microenvironment
via cell-cell contact, cell-ECM interactions, and
cell–soluble factor interactions [26, 27].

Cell type and cell density play important roles in
CBBs for a variety of applications. For instance,
prokaryotic cell (e.g., E. coli) [28] and eukaryotic
cell [29] have been utilized in CBBs. E. coli have a
fast reproduction rate (double every 20 min) and do
not require a demanding culture environment. In
addition, E. coli can be genetically engineered for
bioluminescent property, enabling integration with
electronic circuits in a single chip for convenient
detection [30–32]. However, E. coli responds to ex-
ternal stimuli significantly differently from mam-
malian cells, which limits their application in prac-
tical applications to mimic human cell response for
clinical diagnosis. Mammalian cells, especially hu-
man cells, can report human health information,
such as cellular metabolism and physiologic re-
sponses [4]. However, mammalian cells require
more delicate manipulations compared to bacteria.
In addition to cell type, cell density also plays an
important role since signals can be detected from
both single cells and a population of cells. The av-
erage signal from a large cell population represents
cellular response at a system level via cumulative
change (e.g., fluorescence). In contrast, CBBs based
on single cells can offer spatial and temporal infor-
mation (e.g., cell morphology, motility change) [33].

The output system of CBBs is used to measure
cell responses, generally via optical or electrical
signals, depending on the nature of the biological
reactions.Traditionally, optical methods are mainly
used to measure absorbance, luminescence, or flu-
orescence signals that are related to cell metabo-
lites and cell morphology. Alternatively, electrical
methods can also report cellular responses. Based
on the optical or electrical detection, a number of
methods have been utilized to study cell responses
to external stimuli, such as live-cell imaging [34],
cell viability [35], cell metabolism [36], impedance
change [37, 38], cell motility and adhesion [39].

2.2 Cell-encapsulating hydrogels as the host cell
system of CBBs

Cell-encapsulating hydrogels offer a number of at-
tractive features for developing CBBs, including
enhanced 3D cell stabilization, ease of handling,
and the ability to mimic in vivo cellular environ-
ment. For instance, cells encapsulated in hydrogels
can avoid the issue of cell detachment (e.g., neu-
rons and stem cells) seen with 2D sensor surfaces
due to weak cell–substratum attachment (e.g., in-
duced by frequent media change in prolonged cul-

ture periods). In addition, cell-encapsulating hy-
drogels can provide efficient mass transfer essen-
tial for prolonged cell viability, which determines
the shelf life of CBBs. Moreover, the mechanical
properties of hydrogels can protect the cells from
environmental perturbations to some extent [15].

Hydrogel-based CBBs can potentially solve the
challenges for existing 2D CBB culture systems. For
instance, 2D cell culture systems can not accurate-
ly recapitulate the structure, function, or physiolo-
gy of a native 3D cell microenvironment [40], such
as the distribution of oxygen, nutrients, metabolites
and signaling molecules [40, 41]. In contrast, bio-
materials such as collagen, hyaluronic acid, and
other natural hydrogels can mimic native 3D phys-
iological conditions. Cells can be encapsulated in
3D hydrogels as platforms to develop CBBs [42, 43],
which enables better reflection of cell-stimuli re-
sponses (e.g., gene expression, cell differentiation
and biological activities) in vivo compared to 2D
culture systems [5]. For instance, a significant dif-
ference in intracellular calcium concentration
change in response to high K+ (50 mM) depolariza-
tion was observed between cells cultured in 2D flat
dishes (monolayer) and 3D hydrogels [33, 44, 45].

Owing to the advantages offered by 3D hydrogel
cell culture, there is accumulating evidence demon-
strating the advantage of hydrogel-based CBBs, as
summarized in Table 1. For example, collagen hy-
drogel was able to support cell growth and main-
tain cell viability for several weeks without media
exchange [46]. O’Connor and Andreadis [46] inves-
tigated the capability of 3D gels to culture neural
cells, where embryonic rat cortical neurons and as-
trocytes were entrapped in the sugar poly(acrylate)
hydrogel and collagen gels. Mao and Kisaalita [15]
investigated the proliferation, morphology, intra-
cellular calcium changes in a human neuroblas-
toma cell line encapsulated in collagen with differ-
ent mechanical properties. CBB- based cell-encap-
sulating hydrogels have been used to screen for
drug candidates and to identify unknown toxins
[47, 48]. A 3D cellular microarray comprising hu-
man cells entrapped in collagen and alginate was
used to analyze the toxicity of drug candidates and
their cytochrome P450- generated metabolites
[47]. The microarray obtained similar responses
compared to conventional 96-well plates, and the
dose of drug candidates was reduced by 2000-fold.
The detection time was shortened to 7 h, whereas
conventional drug toxicology studies requires
24–168 h to report the results. Bhunia et al. [48] de-
veloped a CBB platform with Ped-2E9 cells encap-
sulated in collagen to detect the pathogenic Liste-
ria and Bacillus species, and the toxins from these
organisms.Their results showed that Ped-2E9 cells
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could be immobilized in a collagen gel matrix with-
out compromising the sensing capability of Ped-
2E9 to detect pathogenic Listeria and Bacillus tox-
ins. Ped-2E9 cells encapsulated in collagen can re-
duce the centrifugation step in 2D assays, which is
important for integrating cells in a biosensor plat-
form. Table 1 lists the examples of CBBs based on
cell encapsulating hydrogels.All these studies indi-
cate that cell-encapsulating hydrogels can be used
as a cell-based sensing system to sense pathogens
and toxins, and to screen for drug candidates.

3 Potential applications of CBBs based on
cell-encapsulating hydrogels

CBBs based on cell-encapsulating hydrogels are
increasingly being used in pathogen testing, toxi-
cology assays, and high-throughput drug screen-
ing. In this section, we present their applications in
pathogen and toxin testing, drug screening and
cell-biomaterials interaction screening.

3.1 Pathogen and toxin testing

CBBs that can detect pathogens and toxins become
increasingly important in biosecurity, food safety
and disease control. For example, rapid detection of
food-borne pathogens such as E. coli, Salmonella or
Vibrio cholerae can facilitate the provision of ap-
propriate medical care and prevent further disease
spreading.The outbreak of cholera in Haiti in 2010
threatened the lives of 3 million people and caused
over 500 deaths. Every year, malaria kills nearly
1 million people and affects another 250 million
people’s health. In developing countries, the condi-
tion is especially serious. It is estimated that more
than 95% of deaths are caused by infectious dis-
eases [49, 50]. Food safety is related to global
health, and food-borne infectious diseases have a
significant impact on public health and economic
stability [51]. Several comprehensive literature re-
views on detection of pathogens and toxins have
been published [12, 14, 52]. Conventional methods
such as culture, immunoassays and polymerase
chain reaction (PCR) are sensitive and specific.

Table 1. List of the cell encapsulating hydrogels in CBBs

Hydrogels Cell types Input system Output system Potential applications Ref. 

Collagen IMR-32 neuroblastoma cell Standardized cell Ca2+ concentration High-throughput drug screening [15]
culture medium Cell morphology

Membrane potential

B-lymphocyte origin  Bacterium Alkaline phosphatase Rapid detection of pathogens [48]
Ped-2E9 hybridoma cell line Cell apoptosis and necrosis and toxins

Embryonic rat cortical Standardized cell Calcium imaging Assessment of cell biomaterials [46]
neurons culture medium Cell growth interactions

Astrocytes
Cell electrophysiology

Neural progenitor cells

MCF7 cells Drug candidates IC50
a) High-throughput toxicology assays [47]

Drug metabolites Drug screening

SH-SY5Y human Standardized cell Membrane potential [45]
neuroblastoma cells culture medium Calcium imaging

Alginate Myeloblasts Anti-cancer drugs Cell viability Drug screening [78]
Cell morphology

MCF7 cells Drug candidates IC50 High-throughput toxicology assays [47]
Drug metabolites Drug screening

Matrigel Tumor cell HCT-116 Anti-cancer drugs Cell viability Drug screening [78]

Hepatoma cells HepG2/C3A Cell morphology Drug toxicity

PEG E. coli Hydrogel shape DNA detection Assay Screening of biological materials [81]

Murine fibroblasts Standardized cell Cell viability Manipulate cell–cell interactions [16]
culture medium at the micrometer scale

a) Half maximal inhibitory concentration.
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However, these methods have several limitations,
including inability to provide the biological activity
of the analyte, lack of robustness and portability,
and long turnaround time from several hours to a
few days [53].

Banerjee and coworkers have developed three
types of collagen-based CBB devices [48, 54].These
CBB utilize B-cell hybridoma, Ped-2E9, B lympho-
cyte and Ped-2E9 cells as sensing units to screen
for tens of pathogens and toxins such as Listeria
monocytogenes, enterotoxigenic bacillus, vibrio and
micrococcus (Fig. 2) [54].Their results demonstrat-
ed the ability of the cell-encapsulating hydrogel-
based CBBs to rapidly detect multiple pathogens
and toxins.

3.2 Drug screening

High-throughput screening technologies have been
highly successful in identifying hit and lead com-
pounds for drug discovery. However, the increase in
new chemical entities and potential targets identi-
fied by proteomics and genomics has resulted in a
gap between the potential screening space and the
cost [55, 56].To address these limitations, miniatur-
ized CBB platforms have been developed to reduce
the cost of drug discovery. Bailey et al. [57] estab-
lished a high-throughput CBB platform to screen
for lethal small molecules to mammalian cells. In
this platform, chemical candidates were first mixed
with poly(lactic-co-glycolic acid) (PLGA) and ar-

Figure 2. Different types CBB devices in 3D cell culture
systems [54]. (A) In Device I (i.e., 96-well plate on the
left), Ped-2E9 cells encapsulated in collagen were
grown in a microwell (middle). The image of scanning
electron micrograph of cell embedded in collagen was
shown on the right panel. (B) In Device II (Filtration
tube), Ped-2E9 cells encapsulated in collagen were
seeded in a filtration tube. After the cells were exposed
to analyte, the device was centrifuged to collect liquid
to a holding tube. The collected liquid was transferred
to react with alkaline phosphatase (ALP) liquid sub-
strate for color reaction. (C) Device III was built on a
high optical quality slide. A filter was placed in a well
and Ped-2E9-collagen was dispensed into well port.
After exposure to the analyte, the diffused liquid was
collected and reacted with ALP. Reprinted from [54]
with permission from Elsevier.
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rayed on a glass slide. HeLa cells were then seeded
on the top of the arrayed PLGA matrix and cultured
in cell media. Due to the degradability of the poly-
mer, small molecules diffused out, affecting the
proximal cells.Via this CBB platform, one chemical
was identified (macbecin II) and showed lethal ef-
fect in cells with decreased expression of tuberous
sclerosis 2 [57]. Lee et al. [47, 58] reported a method
for high-throughput screening for metabolite toxi-
city of chemical compounds using hepatocytes.The
mixture of drugs, metabolic enzyme and sol-gel
were first arrayed on a microscope glass slide and
stamped on a cell array (Fig. 3). Drugs in the sol-gel
were metabolized by enzyme and then diffused out
to affect cell growth. These CBB platforms can sig-
nificantly increase the throughput, while reducing
the overall cost of screening by reducing the
amount of expensive reagents and materials used in
each assay [59].

The increased number of chemical entities does
not necessarily increase new drug approvals by the
FDA, partly because of drug-drug interactions [60].
Drug-drug interactions are known to cause many
adverse drug reactions and treatment failure.
Drug-drug interactions may occur during absorp-
tion, distribution, metabolism and excretion.
Therefore, there is an unmet need to develop high-

throughput cell-based assays to better understand
drug-drug interactions in target cells prior to clini-
cal evaluation.Wu et al. [61] developed a cell-based
microarray sandwich system to study drug-drug in-
teractions. This system included drug combination
arrays and cell arrays. Drug combinations were
printed on a PDMS post array and sandwiched to
the cell-seeded microwells by stamping. In this
way, drug-drug interactions were evaluated in a
sealed chamber via this assembled array, and three
chemicals were found to interact with verapamil.

3.3 Screening cell-biomaterials interactions

Natural and synthetic biomaterials have been ex-
tensively used in many biological applications,
such as tissue engineering and regenerative medi-
cine. Biomaterials provide microenvironment with
signals arising from the cell-to-cell, ECM and solu-
ble factor to support cell adhesion, growth and dif-
ferentiation. It has been accepted that cell mi-
croenvironment (e.g., temperature, pH, compo-
nents and humidity) is closely related to biomater-
ial properties. There are numerous parameters of
biomaterials that regulate cell behavior by influ-
encing cell proliferation, survival, shape, migration,
differentiation, and gene expression (Fig. 4) [62].

Figure 3. Schematic of the cell array plat-
form to screen for drug candidates [47].
The platform is a microarray consisting of
collagen or alginate spots with encapsu-
lated MCF7 cells. Reprinted from [47]
with permission from the National
Academy of Sciences, USA.
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Therefore, it would be helpful to screen cell-bio-
material interactions.

To date, most of the studies on cell-biomaterials
interactions have been based on 2D surfaces meth-
ods. For instance, Nakajima et al. [63] screened the
interactions (cell adhesion, proliferation, promo-
tion of neuronal and glial specification) of neural
stem cells with growth factors, polymers, and com-
binatorial proteins using 2D microassays. The in-
teractions of mesenchymal and embryonic stem
cells with polymers that supported cell attachment
and proliferation have been investigated [64, 65].
Despite these advances, a number of studies have
demonstrated that 2D examination of cell behavior
was definitely inadequate [20, 66, 67]. Many factors
need be controlled simultaneously when investi-
gating 3D cell behavior [68]. However, researchers
have not found an efficient way to control these
factors at the same time.Therefore, it is essential to
develop 3D high-throughput screening models to

study cell-biomaterial interactions. CBBs based on
cell encapsulating hydrogels in a microarray for-
mat may provide such an opportunity to rapidly
test material-cell interactions.

4 Current challenges and potential solutions

Currently, hydrogel-based CBBs have been used to
test pathogen and toxin, to screen for cell-drug and
cell-biomaterial interactions. However, CBBs are
still in their infancy and some challenges need to
be addressed. First, improvement needs to be made
in terms of long-term stability and probability. The
US army center for environmental health research
reported that no CBBs can be used to monitor the
safety of drinking water [38]. Preserving long-term
cell functions is essential to collect cellular re-
sponses over the time, especially for in vitro toxic-
ity studies. Secondly, the properties of hydrogels for

Figure 4. Parameters of biomaterials affect cellular behavior and microenvironment [62]. Reprinted from [62] with permission from Elsevier.
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cell encapsulation need to be optimized for their
success in developing CBBs, including biocompati-
bility, mechanical strength and chemical stability.
The composition and properties of some existing
natural hydrogels are not stable [69], and some
synthetic hydrogels (e.g., polyethylene glycol, PEG)
are not ideal biomaterials for culturing cells be-
cause of poor cell affinity. For example, Arg-Gly-
Asp peptides needed to be added as a cell adhesion
component when PEG hydrogels were used to cul-
ture cells [70].We have reported that synthetic neg-
atively charged hydrogels, such as poly(2-acry-
lamido-2-methyl-propane sulfonic acid sodium
salt) (PNaAMPS), and poly(sodium p-styrene sul-
fonate) (PNaSS), can support endothelial cells to
form confluence [71, 72]. These hydrogels are po-
tential materials for hydrogel-based CBBs. Thirdly,
diffusion in hydrogels is restricted, limiting oxygen
and nutrients availibility to within 200 µm from the
diffusion surface [73].To overcome the limited dif-
fusion capability, hydrogels with larger pore sizes
and microchannel dimensions need to be devel-
oped for CBBs [18].

To address these shortcomings of hydrogel-
based CBBs, intense collaborative efforts are being
made, including the use of modified growth condi-
tions [74], protease inhibitors [75], and cell-cycle
inhibitors in growth media [76]. A promising
method to preserve long-term cell functions has
been shown to be combining 3D cell culture within
microfluidic devices [23]. Introducing microfluidic
channels into CBBs may help overcome the diffu-
sion limitation by expanding the fluidic networks
[77]. Using a microfluidic device with 3D hydrogel
cell culture has enabled the assessment of the cy-
totoxic effect of a drug over the time, which could
not be achieved by conventional methods using a
96-microwell plate [78]. Similarly, a portable CBB
was also developed to test drinking water using mi-
crofluidics-based CBBs [79]. More importantly, mi-
cro/nanofluidics can offer a huge potential for
biosensors as well as diagnostics of infectious dis-
eases in both developing and developed countries
[80]. Furthermore, microfluidic biochip technolo-
gies can preserve cellular function in vitro over a
long period of time up to 4 months. Thus, integra-
tion CBB with microfluidic techniques holds great
potential for addressing the challenges of CBBs
based on cell-encapsulating hydrogels.

5 Conclusions and perspectives

In summary, here we have presented the state-of-
the-art advances in CBB development using cell-
encapsulating hydrogels. Because of their 3D fea-

tures, these CBBs hold the promise of long-term
cell viability and close simulation of cell responses
in vivo. CBBs have been utilized to investigate in
vitro cell-cell interactions, high-throughput drug
screening, and detection of pathogens and/or tox-
ins.Although the development of CBBs in these ap-
plications is still at the proof-of-principle stage,
CBBs hold great potential to become a broadly ap-
plicable biotechnical tool. It should be also noted
that current CBBs are designed to evaluate/meas-
ure single parameters, which can only reveal one
single aspect of the overall cell responses to exter-
nal stimuli. If multiple parameters could be meas-
ured simultaneously in a single CBB device, it
would reveal a comprehensive landscape of cell re-
sponses to pathogens, cell-cell interactions in co-
culture, and pathways used or affected by drug can-
didates. However, solutions to the fundamental is-
sues and further CBB development rely on basic
advances and integration of biology, material sci-
ence and engineering. Creating collaboration op-
portunities and training programs across multiple
disciplines would facilitate individuals engaged in
these fast-growing areas, and thus create new ap-
plications of CBBs in medicine.
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