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Abstract—We propose a new structure for piezoelectric en-
ergy harvesters. It consists of an elastic beam with two pairs 
of piezoelectric films operating with the fundamental flexural 
modes in perpendicular directions. A one-dimensional model 
is developed and used to analyze the proposed structure. The 
output power density is calculated and examined. Results show 
that, with simultaneous flexural motions in two perpendicular 
directions, the output power has two peaks close to each other 
resulting from the two fundamental flexural resonances. The 
distance between the two peaks can be adjusted through de-
sign to make the two peaks merge into one wide peak. Hence, 
the frequency bandwidth through which energy can be har-
vested is roughly doubled when compared with conventional 
beam bimorph energy harvesters operating with flexural mo-
tion in one direction and one resonance only.

I. Introduction

Piezoelectric materials are natural candidates for 
power or energy harvesters that scavenge ambient vi-

bration energy by converting mechanical energy into elec-
trical energy, which is then used for powering wireless elec-
tronic devices with a low power requirement [1]–[7]. More 
references can be found in a review article [8]. Ambient 
mechanical vibration energy may have various frequency 
spectra. A piezoelectric power harvester is a resonant de-
vice [6] in the sense that its electrical output is highly 
frequency dependent and is relatively large only near a 
particular resonant frequency of the harvester structure. 
Therefore, a specific power harvester can effectively pick 
up ambient vibration energy only at or near a particular 
frequency. Although power harvesters of different frequen-
cies can be designed, their resonances are all narrowband, 
in the sense that they can only collect energy effectively 
near a particular resonant frequency. Recently, there have 
been increasing efforts to develop broadband energy har-
vesters which can harvest energy over a finite frequency 

interval [9]–[11]. Typically, this is achieved by electrically 
and/or mechanically connecting a few energy harvesters 
whose operating frequencies are slightly different and are 
very close to each other. In this paper, we propose a dif-
ferent structural design of an energy harvester with an in-
creased bandwidth operating with the two flexural modes 
in perpendicular directions of a single beam. It is shown 
through a theoretical analysis that the proposed structure 
can pick up vibration energy over a frequency range which 
is about twice the bandwidth of a typical single-beam har-
vester structure in flexural motion in one direction only.

II. Structure

Consider the beam shown in Fig. 1(a). The left end of 
the beam is cantilevered into a wall that is in a vertical, 
time-harmonic motion with a known amplitude A at a 
given frequency ω. The right end of the beam is connected 
to a concentrated mass. The concentrated mass is made 
from a heavy material. Its mass must be considered, but 
it is geometrically small so that its rotatory inertia can 
be neglected [7]. Fig. 1(b) shows the cross section of the 
beam. It is rectangular, with b and c slightly different. Its 
orientation is described by θ. There are four piezoelectric 
ceramic films (A, B, C, and D) poled in their thickness 
directions. The films are electroded, with the electrodes 
shown by the thick lines in the figure. The bottom or inner 
electrodes of the films at the interface between the films 
and the beam are shorted and grounded as a reference. 
The top or outer electrodes on the films are connected 
to an output circuit. Effectively, the structure is like two 
conventional beam bimorph piezoelectric energy harvest-
ers combined into one. The main purpose of this paper is 
to show that the beam can operate as an energy harvester 
with an increased bandwidth. Therefore, we considered 
the simplest situation of the output circuit which has an 
impedance ZL in harmonic motions. The x2- and x3-axes 
are the centroidal principal axes. When the left end of the 
beam is excited by a vertical vibration, from the structural 
mechanics point of view, the beam motion can be broken 
into flexural vibrations in both of the x2- and x3-direc-
tions. An output voltage denoted by 4V is then produced. 
It is expected that by adjusting b and c, the frequencies of 
the flexural modes in the x2 and x3 directions can be made 
as close as desired. Then, the bandwidth of the electrical 
output may be about twice the bandwidth obtained when 
the beam is vibrating in the x2- or x3-direction only, like 
a conventional bimorph energy harvester [7]. This type 
of increased bandwidth resulting from two modes with 
resonant frequencies close to each other has been seen in 
similar structures operating with similar modes for piezo-
electric gyroscope applications [12].
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III. Governing Equations

Consider simultaneous flexural motions of the beam 
in the x2- and x3-directions with flexural displacements 
u2(x1, t) and u3(x1, t). The axial normal strain for the beam 
in the classical theory of flexure is [12]–[14]

	 S x u x u1 2 211 3 311= − −, , ,	 (1)

where u2,11 and u3,11 are the bending curvatures in the x2- 
and x3-directions. The electric fields in the piezoelectric 
films along their individual poling directions, indicated by 
P in Fig. 1(b), are denoted by E3 and are given by [12]

	 E V h
V h3 =
−{ /

/
A and D,
B and C.

,
,

	 (2)

For beam bending, the state of stress is one-dimensional 
with one nonzero stress component T1. The constitutive 
relations for the piezoelectric films are
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s11, d31, and ε33 are the elastic, piezoelectric, and dielectric 
constants, respectively. We invert (3) for stress in terms of 
strain and substitute from (1) for the strain. This yields
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where ε33 = ε33(1 − k31
2 ) and k31

2  = d s31
2

33 11/( ).ε  The consti-
tutive relation for the isotropic elastic beam is simply

	 T ES E x u x u1 1 2 211 3 311= = − +( )., , 	 (5)

E is the Young’s modulus of the material. The bending 
moments for flexural motions in the x2- and x3-directions 
are defined by the following integrals over the cross-sec-
tional area S:
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In (6),
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In the special case in which b = c, from (7), we have D22 
= D33 and G2 = G3, and they become the same as the D 
and G in [12, Eq. (9)] when the parameters a = b in [12]. 
This serves as a partial verification of (6). The equations 
of motion for classical flexure are [12], [13]
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where m = 4bcρ + 8(b + c)hρ′ is the mass per unit length 
of the beam and the films together. ρ and ρ′ are the mass 
densities of the elastic beam and the piezoelectric films, 
respectively. The boundary conditions at the left end, 
where x1 = 0, are
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At the right end, where x1 = L, we have
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The electric charges on the outer electrodes of the films at 
A and D are given by

Fig. 1. A beam piezoelectric energy harvester: (a) side view and (b) cross 
section.
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The currents flowing out of these electrodes are
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The output voltage and current are related by the follow-
ing circuit condition:

	 I I I
V
Z= + =A D
4

L
.	 (13)

This one-dimensional model for beam bending is known to 
be valid for long or thin beams [15].

IV. Solution

For time-harmonic motions, we use the usual complex 
notation:

	 { , , , , } Re{{ , , , , }exp( )}.u u V Q I U U V Q I i t2 3 2 3= ω 	 (14)

The general solutions to (8) can be written as
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where B1 to B4 and C1 to C4 are undetermined constants, 
and
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Substituting (15) into the boundary conditions in (9) and 
(10) and the circuit condition in (13) yields the following 
nine linear algebraic equations for the nine unknowns of 
B1 to B4, C1 to C4, and V:
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In (19), we have introduced
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Eqs. (17)–(19) are solved on a computer. With the com-
plex notation, the output electrical power is given by [7]

	 P IV I V2
1
2= +∗ ∗[ ],	 (21)

where ∗ represents a complex conjugate. The power den-
sity, defined as the output power per unit volume, is

	 p
P

bc b c h L2
2

4 8
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V. Numerical Results and Discussion

For the piezoelectric films, we used PZT-5H polarized 
ceramics with ρ = 7500 kg/m3, s11 = 16.5 × 10−12 m3/N, 
d31 = −274 × 10−12 C/N, and ε11 = 3430ε0, where ε0 is 
the electric permittivity of free space. The elastic beam is 
taken to be aluminum alloy with ρ = 2700 kg/m3 and E 
= 70 GPa. In our numerical calculation, the real elastic 
constant s11 is replaced by s11(1 − iQ−1), where Q is the 
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quality factor of the material, a large and real number. 
For ceramics, Q is of the order of 102 to 103. We fix Q 
to be 102, which is chosen to be relatively small and is a 
representation of the damping of the whole structure. L 
= 30 mm, ZL = iZ0, and Aω2 = 1 ms−2 are fixed in the 
calculation.

Fig. 2 shows the output power density p2 versus the 
driving frequency ω when θ = 45°, m0 = 0.5 mL, and 
h = 0.8 mm. The frequency range shown includes the 
frequencies of the lowest flexural modes in both the x2 
and x3 directions. When the dimensions b and c of the 
beam cross section are sufficiently different, the resonant 
frequencies of the fundamental flexural modes in the x2- 
and x3-directions are also different. In this case, there are 
two separate, relatively narrow, peaks caused by separate 
resonances in the x2- and x3-directions (the line marked 
by small triangles). When b is larger than c, the flexural 
mode in the x2-direction has a higher resonant frequency 
than the flexural mode in the x3-direction. Hence, the 
peak on the right is from films C and D. Similarly, the 
peak on the left is from films A and B. When b and c are 
only slightly different, the two narrow peaks almost merge 
into one wide peak, showing an increased bandwidth (the 
dotted line). In the special case when b = c, the figure 
shows only a single wide peak (the solid line).

Fig. 3 shows the output power density versus the ori-
entation of the cross section described by θ when ω = 
11 800 Hz, m0 = 0.5 mL, and h = 0.8 mm. First, we note 
that the output is periodic, with a period of π as expected. 
In the case of b = c, the maximal output happens when 
θ = 45°, as expected in this case because the two output 
piezoelectric films at A and D are in tension or compres-
sion at the same time, producing charges of the same sign 
on the output electrode joining A and D. In the case of b 
= c and θ = 135°, the output is zero, as expected in this 
case because when one of A and D is in extension, the 
other is in compression, resulting in total charge cancella-
tion from A and D on the output electrode joining A and 

D. When b and c are not equal and vary, the location of 
the maximal output is sensitive to the values of b and c. 
There also exits a θ for which there is zero output because 
of charge cancellation.

Fig. 4 shows the output power density versus the driv-
ing frequency ω for different h when θ = 45°, m0 = 0.5 mL, 
b = 1.62 mm, and c = 1.58 mm. When h increases, both 
the inertia and the bending stiffness of the structure in-
crease. Because the bending stiffness is cubic in the di-
mension of the cross section, overall the increase of the 
bending stiffness dominates and the resonant frequen-
cies increase. This makes it harder to drive the beam, 
and therefore the output power does not change much 
although there is more piezoelectric material in the struc-
ture when h increases.

Fig. 5 shows the output power density versus driving 
frequency ω for different m0 when θ = 45°, h = 0.8 mm, 
b = 1.62 mm, and c = 1.58 mm. When m0 increases, the 
resonant frequencies become lower and the output power 
becomes larger, as expected.

Fig. 2. Output power density versus driving frequency with an increased 
bandwidth. Fig. 3. Output power density versus θ.

Fig. 4. Output power density versus driving frequency for different h.
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VI. Conclusion

A single elastic beam with two pairs of piezoelectric 
films can operate as an energy harvester when the cross 
section is properly oriented and the electrodes are prop-
erly connected. Compared with the conventional bimorph 
energy harvester in flexural vibration in one direction, the 
frequency bandwidth through which energy can be har-
vested is increased in the proposed energy harvester with 
simultaneous flexural motions in two perpendicular direc-
tions.
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