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Abstract—We study the effects of interface bonding on 
acoustic wave generation in an elastic body using surface-
mounted piezoelectric transducers driven electrically. A theo-
retical analysis is performed based on a physical model of a 
piezoelectric layer on an elastic substrate. The transducer–sub-
strate interface is described by the shear-slip model, represent-
ing a viscoelastic interface. Different from the results in the 
literature on free vibrations of structures with weak interfaces, 
this paper presents an electrically forced vibration analysis. An 
analytical solution for the generated acoustic wave is obtained 
and used to calculate its energy flux and the efficiency of the 
transduction. The effects of the interface parameters are exam-
ined. It is found that the interface bonding affects the perfor-
mance of the transducer in multiple ways, some of which may 
be exploitable in designs for better transducer performance. In 
particular, optimal transduction is not necessarily associated 
with a perfectly bonded interface.

I. Introduction

Multilayered plates with interfaces among layers of 
different materials are common structures in many 

engineering fields. Very often a gluing substance, e.g., ep-
oxy, is applied to the interfaces. Alternatively, the mole-
cules of the neighboring materials may interpenetrate into 
each other to form a bonding layer. Ideally, in the simplest 
mechanics description, an interface is treated as a geomet-
ric surface where perfect or rigid bonding with continuous 
displacement and traction is assumed. In reality, an inter-
face may be viewed physically as a thin layer with its own 
material properties. People have developed interface mod-
els with different levels of sophistication. Interface proper-
ties and their effects have been studied experimentally [1]–
[4] and theoretically for both static and dynamic problems 
[5]–[8]. Specifically, for time-harmonic motions relevant to 
the present paper, wave propagation in unbounded do-

mains [9]–[21] and vibrations of finite bodies [22]–[26] have 
been analyzed for various applications including material 
characterization, structural strength consideration, acous-
tic wave sensors, and nondestructive evaluation. These are 
mostly free vibration analyses regarding wave speed or 
frequency. More references can be found in a review ar-
ticle [27]. Examination of the literature shows the lack of 
electrically forced vibration analyses of transducers with 
weak interfaces. A forced vibration analysis is necessary 
to obtain transducer admittance and efficiency, which are 
fundamental transducer characteristics.

The present paper is concerned with the effects of in-
terface bonding on acoustic wave generation in an elastic 
body with surface-bonded piezoelectric transducers driven 
electrically. In conventional analyses of this type of prob-
lem, perfect bonding between the piezoelectric transducer 
and the elastic body is routinely assumed. The effects of 
the viscoelasticity of epoxy or other glues at an interface 
on the electrical admittance of the transduction structure, 
the energy flux of the acoustic wave generated, and the 
efficiency of the transduction have not been well studied 
and understood. Our theoretical analysis is based on a 
mechanics model of a piezoelectric layer as a transducer 
bonded to an elastic substrate with their interface de-
scribed by the shear-slip model [6], [7] for an imperfect, 
weak, or nonrigid interface. This interface model allows 
for a discontinuity of the tangential displacements across 
the interface while the traction is still continuous. The 
interface has its own viscoelasticity but not inertia. Such a 
model can describe the most basic behavior of an interface 
and has often been used in free vibration analyses. The 
shear-slip model will be introduced in Section II, along 
with a piezoelectric–elastic structure and its governing 
equations. An analytical solution is obtained in Section 
III. Numerical results and discussions are presented in 
Section IV. Some conclusions are drawn in Section V.

II. Governing Equations

Consider the structure of a piezoelectric layer on an 
elastic half-space, shown in Fig. 1. The piezoelectric layer 
is ceramic poled along the x3-direction, which is deter-
mined from x1 and x2 by the right-hand rule. It is elec-
troded at its two surfaces and is driven by an alternat-
ing voltage across the electrodes. Because of the specific 
orientation of the poling direction of the ceramics and the 
direction of the applied electric field, shear-horizontal or 
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antiplane waves are generated in the elastic half-space, 
propagating away from the ceramic plate.

For the purpose of this paper, it is sufficient to consider 
motions independent of x1 and x3. The only mechanical 
displacement component u3 = u and the electrical poten-
tial ϕ can be written as

	 u u x t x t= =( , ), ( , ).2 2φ φ 	 (1)

They are governed by [28]–[30]
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where ψ is a function introduced for convenience [28]–[30]. 
c   = c44 + e15

2
11/ε  and ρ are the piezoelectrically stiffened 

shear elastic constant and the mass density of the ceramic 
layer. ε = ε11 and e = e15 are the dielectric and piezoelec-
tric constants of the layer. ĉ and ρ̂ are the shear elastic 
constant and mass density of the elastic substrate. ∇2 = 
∂ ∂2

1
2/ x  + ∂ ∂2

2
2/ x  is the two-dimensional Laplacian op-

erator. The boundary and continuity conditions at the top 
of the piezoelectric layer and the interface between the 
layer and the substrate are

	 T x h23 2 0( ) ,= − = 	 (3a)

	 φ φ ω( ) ( ) exp( ),x h x V i t2 2 0= − − = = − 	 (3b)

	 T x K u x u x23 2 2 20 0 0( ) [ ( ) ( )],= = = − =− + − 	 (3c)

	 T x K u x u x23 2 2 20 0 0( ) [ ( ) ( )],= = = − =+ + − 	 (3d)

where (3c) and (3d) are based on the shear-slip model for 
an elastic interface. K is the effective interface elastic con-
stant. K = ∞ represents a perfectly or rigidly bonded in-
terface. When K = 0, the layer and the substrate lose their 
mechanical interaction. In harmonic motions, a complex K 
describes a viscoelastic interface. In addition to (3), when 
x2 → +∞, the waves generated by the piezoelectric layer 
must be outgoing toward +∞ (radiation condition).

The free charge density on the upper electrode at x2 = 
−h and the density of the current flowing into this elec-
trode are given by

	 q D I q i q= = = −2, .� ω 	 (4)

Then, the frequency-dependent admittance A of the struc-
ture per unit electrode area can be determined from

	 I AV= .	 (5)

With the complex notation for harmonic motions, the in-
put electrical power is given by

	 P IV I V1
1
4= +∗ ∗( ),	 (6)

where an asterisk represents a complex conjugate. The 
instantaneous energy flux of the waves generated in the 
elastic medium can be calculated from

	 s T u2 23= − �,	 (7)

in which real fields must be used, which are taken from the 
real or imaginary parts of complex fields. We denote its 
average over a period by P2 = − ∗(T u23 �  + T u23 4∗ �) ./  Then, the 
efficiency for the acoustic wave generation by the applied 
electric field is calculated from

	 η = P P2 1/ .	 (8)

III. Forced Vibration Solution

For −h < x2 < 0, the solution can be written as
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where A1, A2, B1, and B2 are undetermined constants, and
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The relevant stress component and the electric potential 
needed for the boundary conditions can be obtained from 
(9) as
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For x2 > 0, the solution can be written as

	 u i x tA= −ˆ exp (ˆ ),ξ ω2 	 (12)

where Â is an undetermined constant, and

	 ˆ ˆ
ˆ
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Fig. 1. A ceramic plate on an elastic half space.
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We note that (12) represents waves propagating in the 
positive direction of the x2-axis, which already satisfies the 
radiation condition. For interface continuity conditions, 
we need

	 T cu ci A i x t23 2 2= = −ˆ ˆ ˆˆ exp (ˆ )., ξ ξ ω 	 (14)

Substituting (9), (11), (12), and (14) into (3) results in 
the following four linear algebraic equations for A1, A2, B1, 
and Â, driven by V:
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Solving (15), we obtain the amplitude of the generated 
wave in the substrate as
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in which k2 = e c2/( )ε  is the shear electromechanical cou-
pling coefficient of the piezoelectric material. Δ = 0 yields 
the frequency equation for free vibration.

IV. Numerical Results and Discussion

As a numerical example, consider a ceramic plate of 
PZT-5H with c = 2.3 × 1010 N/m2, e = 17 C/m2, ε = 

Fig. 2. The first few resonances of (a) admittance | A|; (b) amplitude Â  of the generated wave; and (c) energy flux P2 of the generated wave (K0 = 
1 × 1014 N/m3 and K1 = 0.1K0).
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1.506 × 10−8 F/m, and ρ = 7500 kg/m3. For the sub-
strate, we consider polythene [31] with ̂c = 0.128 × 1010 N/
m2  and ρ̂ = 1180 kg/m3. h = 1 mm and V = 1 V are 
used. In this case, the substrate is more compliant and 
lighter than the transducer material. Because the interface 
glue is usually viscoelastic, we use a complex interface 
stiffness whose imaginary part describes interface damp-
ing. Let K = K0 − iK1, where both K0 and K1 are real and 
positive. A negative imaginary part is used to be consis-
tent with the exp (−iωt) factor in our complex notation. 
We begin with K0 = 1 × 1014 N/m3 and K1 = 0.1K0, 
which will be varied later. K1 = 0.1K0 represents rela-
tively large damping, which is chosen to more clearly show 
the resonances graphically.

Figs. 2(a), 2(b), and 2(c) show the admittance | A| per 
unit area, the amplitude Â  of the generated wave, and the 
energy flux P2 of the generated wave versus the driving 
frequency, respectively. The frequencies at which the ad-
mittance assumes maxima are the resonant frequencies. 
At resonances, the amplitude and the output energy flux 
also assume maxima. At these frequencies, significant 
acoustic wave generation can be realized.

When K0 = 1 × 1014 N/m3 and K1 = 0.1K0, corre-
sponding to the first three resonances in Fig. 2, the distri-
bution of the displacement u along x2 is shown in Fig. 3. 

At the interface between the plate and the substrate, the 
displacement is discontinuous, as described by the shear-
slip model. This discontinuity is larger for higher-order 
modes. For higher-order modes, there are more nodal 
points (zeros) along the plate thickness. The wavelength 
becomes shorter in both the plate and the substrate for 
higher-order modes. In the example shown, the amplitude 
in the substrate is significantly larger than that in the 
plate, whereas the energy flux in Fig. 2(c) does not change 
much for different modes.

The effects of the interface stiffness K0 on the admit-
tance | A|, the amplitude Â  of the generated wave, and 
the energy flux P2 of the generated wave near the first 
resonance locally are shown in Fig. 4, where K1 = 2 × 
1013 N/m3. The resonant frequency is sensitive to the in-
terface stiffness, as expected. When K0 decreases, the res-
onant frequency decreases because there is less stiffness in 
the structure. It is interesting and potentially useful to see 
that when the interface bonding becomes weaker, the peak 
values of | A|, ˆ ,A  and P2 increase slightly, showing vibra-
tions with larger amplitude in the substrate and stronger 
acoustic wave generation.

Fig. 5 presents a global view of the effects of K0 on the 
admittance | A|, the amplitude ˆ ,A  the energy flux P2, and 
the efficiency η when K1 = 0.1K0. Cases 1 and 2 in the 

Fig. 3. Displacement distribution along x2 at the first three resonances.
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figure are for two different driving frequencies. In Case 1, 
the driving frequency follows the first resonant frequency 
as K0 changes. In Case 2, the driving frequency is fixed to 
be the first resonant frequency when K0 = 1 × 1014 N/m3, 
which is ω = 5.725156 × 106 1/s. The figure shows that 
for large K0, the corresponding | A|, ˆ ,A  P2, and η ap-
proach their limit values when the interface is perfectly 
bonded. When K0 is smaller or when the interface be-
comes weaker, | A|, ˆ ,A  and P2 all increase, but the effi-
ciency η drops monotonically. For | A|, ˆ ,A  and P2, there 
exist maxima at the same value of K0. At this K0, the ef-

ficiency is slightly less than its maximum for large K0 or a 
perfectly bonded interface. Therefore, this particular val-
ue of K0 at which | A|, ˆ ,A  and P2 assume maxima with a 
reasonably high efficiency may be viewed as the optimal 
interface, which is not a perfectly bonded interface. Hence, 
a weak interface is not necessarily unfavorable and should 
be considered in the overall design of the transduction 
structure for optimal performance.

The interface is viscoelastic, as described by a complex 
K. Table I shows the effect of the interface damping rep-
resented by K1, i.e., the imaginary part of K. From the 

Fig. 4. (a) Admittance | A|, (b) amplitude Â  of the generated wave, and (c) energy flux P2 of the generated wave near the first resonance for differ-
ent K0 (K1 = 2 × 1013 N/m3).

TABLE I. Effect of Interface Damping Described by K1. 

K0 (N/m3) K1/K0 ω (106 1/s) Â  (10−9 m) | A| (1/Ω) P2 (W/m2) η

1 × 1014 0 5.724721 4.846585 953.46 473.04 1.0
0.01 5.724754 4.846534 954.12 473.03 0.9993
0.1 5.725165 4.845740 959.82 472.95 0.9931

2 × 1014 0 5.731473 4.829666 949.15 470.85 1.0
0.01 5.731485 4.829653 949.47 470.85 0.9996
0.1 5.731653 4.829415 952.37 470.83 0.9965

5 × 1014 0 5.735595 4.822336 947.66 470.10 1.0
0.01 5.735598 4.822333 947.80 470.10 0.9999
0.1 5.735656 4.822270 948.96 470.09 0.9986
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table, it is seen that overall, the effect of K1 is small. This 
is because the acoustic wave generated carries the ma-
jor part of the energy flow which serves as the radiation 
damping of the transducer and dominates the interface 
damping.

V. Conclusion

The shear-slip interface model used leads to a jump dis-
continuity of the tangential displacement at the interface. 
The interface bonding as part of the stiffness of the whole 
structure affects the overall transducer performance in-
cluding the resonant frequency, the amplitude, and energy 
flux of the acoustic wave generated, the admittance of the 
structure, and the efficiency of electric–acoustic energy 
conversion. When the interface bonding is imperfect, al-
though the efficiency drops monotonically, the amplitude 
and energy flux of the acoustic wave generated, as well as 
the admittance of the structure, may increase and assume 
maxima for a particular value of the interface stiffness. 
The interface damping is a relatively small effect com-
pared with the radiation damping of the acoustic wave 

generated. Interface analysis should be part of the trans-
duction design for optimal performance. Although the 
analysis is for shear waves, with a different interpretation 
of the notation, the analysis is also valid for longitudinal 
waves generated by a ceramic layer with thickness poling 
and an interface that is elastic in the normal direction. 
Therefore, similar behaviors are expected for longitudinal 
wave generation by piezoelectric transducers.
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