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A nonlinear acoustomechanical field theory is presented for polymeric gels undergoing large deforma- 

tion coupled with diffusion mass transport of solvent molecules in and out of the gel. The theory is 

developed by combining the acoustic radiation stress theory with the nonlinear elasticity theory of poly- 

meric gels. Explicit velocity and acoustic fields are determined by solving the elastodynamical equations 

of wave propagation in Eulerian coordinates, which are then employed to determine the distribution of 

acoustic radiation stresses inside the gel. The nonlinear elasticity of gels is modeled by adopting the 

Flory–Rehner free energy functions for network stretching and molecules-polymer mixing. For illustra- 

tion, the developed theory is applied to a layer of polymeric gel immersed in external solvent subjected 

to two counterpropagating acoustic waves. The acoustically actuated large deformation of the gel is ana- 

lyzed under three different constraint conditions. Unique acoustomechanical behaviors of polymeric gels 

are revealed, such as periodical response and nonlinear chaos. This work is expected to enable novel de- 

sign of ultrasound-triggered sensors and actuators made of polymeric gels, and can also enlighten the 

application of ultrasonic waves in biomedical engineering. 

© 2017 Elsevier Ltd. All rights reserved. 
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. Introduction 

Polymeric gel is often immersed in a liquid environment and

an be regarded as an assembly of three-dimensional cross-linked

etworks and small molecule solvent. With the migration of small

olecules in and out of the gel when subjected to external stimuli,

t is capable of undergoing large and recoverable elastic deforma-

ion. This functionality of polymeric gel enables applications such

s carriers for drug delivery ( Duncan, 2003; Fischel-Ghodsian et al.,

988; Jeong et al., 1997 ), actuators and sensors in microfluidic de-

ices ( Beebe et al., 20 0 0; Calvert, 20 09 ), and tissue engineering

atrices ( Lee and Mooney, 2001; Luo and Shoichet, 2004 ). Re-

ently, there is considerable interest in harnessing acoustic waves

o actuate large and nonlinear deformation in polymeric gels, with

romising applications in medical devices, microfluidic manipula-

ion devices, adaptive robots, etc. ( Huebsch et al., 2014; Xin and Lu,

016b ). With regard to large deformation of gels coupled with dif-

usion mass transport under either mechanical or electric loading,

here already exist a great deal of theoretical works ( Biot, 1941;

hester and Anand, 2010; Hong et al., 2008; Tanaka and Fillmore,

979 ). However, there is yet a comprehensive acoustomechanical

eld theory of acoustic-triggered deformation and mass transport

f polymeric gels. Such a theory is formulated in the present study.
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his work should be of paramount importance for gain a funda-

ental insight into a series of ultrasound techniques and thus can

nlighten the widespread application of ultrasound technique in

iomedical engineering ( De Cock et al., 2016; Zhang et al., 2016 ). 

The Poynting theory says that an acoustic wave propagating in

 medium also carries momentum flux in the direction of wave

assing on, which gives rise to a back acoustic radiation pres-

ure on the source ( Post, 1953, 1960 ). Generally, the radiation

tress is a field concept since it is induced by acoustic momentum

ransfer between adjacent medium particles and directly deduced

rom the nonlinearity of acoustic field. Lord Rayleigh firstly gave

he expression of acoustic radiation stress in compressional flu-

ds ( Rayleigh, 1905 ), while Brillouin firstly pointed out the second-

ank tensor nature of acoustic radiation stress ( Beyer, 1978 ). They

ll concluded that the radiation stress is proportional to the mean

echanical energy density 〈 E 〉 of medium particle motion. Sub-

equently, enormous effort s are devoted to investigating radiation

orces acting on rigid or compressible spheres ( Doinikov, 1994;

asegawa and Yosioka, 1969 ), acoustical trapping and tweezers

 Caleap and Drinkwater, 2014; Shi et al., 2009 ), acoustic levita-

ion and contactless handling of matter ( Brandt, 2001; Foresti and

oulikakos, 2014 ), deforming fluid interface and biological tissue

 Issenmann et al., 2008; Mishra et al., 2014; Walker, 1999 ), etc. All

hese researches demonstrate the fact that acoustic radiation stress

enerated by focused acoustic input is sufficiently large to levitate

 metallic sphere and induce material deformation. 

http://dx.doi.org/10.1016/j.ijsolstr.2017.02.013
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Since the elastic moduli of polymeric gels typically range from

dozens of times Pa to several times kPa, acoustic radiation stress

with magnitude of mega pascal can induce large deformation in

the gel ( Mishra et al., 2014; Xin and Lu, 2016b ). As previously

mentioned, acoustically triggered gel deformation is attractive for

a variety of applications. Therefore, it is necessary to formulate

a nonlinear acoustomechanical theory for polymeric gels. In the

present study, a nonlinear acoustomechanical field theory is devel-

oped in Eulerian coordinates for polymeric gels coupled with dif-

fusion mass transport, by combining the nonlinear elasticity the-

ory of gels and the acoustic radiation stress theory. For illustra-

tion, the large deformation and mass transport behavior of gels

is separately analyzed under biaxial constraint, uniaxial constraint

and freestanding conditions. For convenience, acoustic radiation

stress/force will be called as acoustic stress/force. This work pro-

vides a theoretical guideline for designing novel acoustically trig-

gered sensors and actuators made of polymeric gels. 

2. Inhomogeneous field theory of gels 

An inhomogeneous field theory of polymeric gels is formu-

lated below in three-dimensional space. The Eulerian coordinates

are adopted, since it is more intuitive and convenient for the-

oretical analyses when all the field quantities are expressed in

true values. The polymeric gel is actually an assembly of a three-

dimensional cross-linked network of long polymers and one type

of small molecules, which is formed when dry networks immerse

in and imbibe external solvent. The external solvent is in self-

equilibrium and can be regarded as a virtual polymeric gel with

networks of vanishing elastic moduli, so that the whole system

can be modeled using a uniform field theory. In the field theory,

the volume integrals cover both the gel and the solvent, and the

surface integrals cover all the interfaces between the gel and the

solvent. Let the dry network at undeformed state be the reference

configuration. Let each material particle be labeled using its coor-

dinate X in the reference configuration, and let each spatial point

be labeled using its coordinate x in the current configuration. The

deformation gradient F = ∂x / ∂X maps the reference configuration

X to the current configuration x . The Cauchy stress is related to the

first Piola–Kirchhoff stress as σ = s · F T / det (F ) . Let dV ( x ) be a vol-

ume element with mass density ρ( x ) and body force f b ( x , t ). Let

n ( x ) dA ( x ) be a surface element with surface force f s ( x , t ), where

dA ( x ) is the area of the element and n ( x ) is the unit vector nor-

mal to the interface between two materials, labeled as − for point-

ing toward outside and + for pointing toward inside. Force balance

of the volume element is represented by ∂σ/ ∂x + f b = ρ∂ 2 u / ∂ t 2 ,
with force boundary condition σ · n = f s and displacement field

u ( x , t ). 

Now consider an acoustomechanical problem coupled with dif-

fusion mass transport. Essentially, the acoustomechanical problem

is a static field problem on the basis of a dynamic field prob-

lem. Because the acoustic (radiation) stress is intrinsically a time-

averaged stress over one oscillation cycle of an acoustic wave, it is

a static stress regardless of time. This static acoustic stress even-

tually causes static material deformation. Consequently, the acous-

tomechanical problem is a dynamic field problem for wave prop-

agation but a static field problem for large material deformation.

In the present article, all the terms associated with large mate-

rial deformation are pure static terms without including any in-

ertial terms for wave propagation. In the current configuration, the

volume force on an element is f b 
i 

dV and the surface force on an

element is f s 
i 
dA . Force balance dictates that the combination of

Cauchy stress and acoustic stress should satisfy: ∫ (
σi j − τi j 

) ∂ ξi 

∂ x j 
d V = 

∫ 
f b i ξi d V + 

∫ 
f s i ξi d A (1)
or arbitrary test function ξ i ( x ) where τ ij is the acoustic stress

pressure), representing compression when it is positive and ten-

ion when it is negative. Here the acoustic (radiation) stress is gen-

rated due to the momentum transfer between adjacent particles

n the process of ultrasonic wave propagation, which can be cal-

ulated from the acoustic fields inside and outside of the material.

hile the Cauchy stress is generally equal to outside mechanical

tress. Following the Gauss divergence theorem, one has: 
 (

σi j − τi j 

) ∂ ξi 

∂ x j 
dV = 

∫ (
σ−

i j 
− σ+ 

i j 

)
n i ξi dA −

∫ (
τ−

i j 
− τ+ 

i j 

)
n i ξi dA 

−
∫ ∂ 

(
σi j − τi j 

)
∂ x j 

ξi dV (2)

The test function ξ i ( x ) is considered to be continuous across the

aterial interface, while the stress can be discontinuous at the in-

erface. The weak form of the force balance condition in Eq. (1) can

e rewritten as: 

∂ 
(
σi j ( x , t ) − τi j ( x , t ) 

)
∂ x j 

+ f b i ( x , t ) = 0 (3)

n the volume, and (
σ−

i j ( x , t ) − σ+ 
i j ( x , t ) 

)
−

(
τ−

i j ( x , t ) − τ+ 
i j ( x , t ) 

)]
n i ( x , t ) = f s i ( x , t ) 

(4)

t the interface. These equations describe the general force balance

ondition of the acoustomechanical system. 

Next consider the diffusion phenomenon of mass transport be-

ween polymeric gel and external solvent. The small molecules

enetrating in and out of the gel with chemical potential μ( x, t )

ive rise to the change of the chemical potential and the swelling

tress. In the current configuration, let r ( x , t ) be the number of

mall molecules generated by sources (e.g., chemical reaction) in-

ide the gel per unit time and volume, and let i ( x , t ) be the number

f small molecules generated by sources in the interface element

er unit time and area. Mass conservation of the small molecules

equires: 

∂c ( x , t ) 

∂t 
+ 

∂ j i ( x , t ) 

∂ x i 
= r ( x , t ) (5)

n the volume, where c ( x , t ) is the concentration of small molecules

n a volume element, j i ( x , t ) is the number flux of small molecules

hat migrate through unit area of the interface element. Also, at

he interface: 

j + 
i ( x , t ) − j −

i ( x , t ) 
)
n i ( x , t ) = i ( x , t ) (6)

These diffusion balance conditions can be rewritten in a weak

orm by applying an arbitrary test function ζ ( x ). Specifically, multi-

lying this test function on Eq. (5) , integrating over the gel volume

nd adopting Eq. (6) , one obtains: 
 

∂c 

∂t 
ζd V = 

∫ 
j i 
∂ζ

∂ x i 
d V + 

∫ 
rζd V + 

∫ 
iζd A (7)

This weak form of mass conservation is completely equivalent

o Eqs. (5) and (6) . 

To complement the above field equations expressed in the form

f force balance law and mass conversation law, the material law is

roposed below by applying the principle of minimization poten-

ial energy. Generally, the constitutive relation of hyperelastic mat-

ers can be expressed using the Helmholtz free energy function,

hich is dependent upon the strain or concentration of molecules.

ith an arbitrary small virtual perturbation, the virtual changes of

he free energy can be described as: 

W e = 

∂ W e ( ε ) 

∂ ε i j 

δε i j , δW a = 

∂ W a ( ε ) 

∂ ε i j 

δε i j , δW m 

= 

∂ W m 

( c ) 

∂c 
δc (8)
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here W e ( ε ) and W a ( ε ) are the elastic strain energy density re-

ated to the Cauchy stress and the acoustic stress, respectively,

nd W m 

( c ) is the mixture energy density of polymers and small

olecules. The virtual perturbation also leads the external force,

he inside source, and the molecules diffusion to do work on the

ystem. With time passing δt , the system has a perturbed displace-

ent field δu , the number of small molecules per unit volume

enerated by the inside source is δR = r ( x , t ) δt , and the number of

mall molecules diffused into the gel per unit area is δI = i ( x , t ) δt .

hat is, the external force does work 
∫ 

f b 
i 

· δu i dV + 

∫ 
f s 
i 

· δu i dA , and

he molecules do work ∫ μ·δRdV + ∫ μ·δIdA . 

The Lagrangian potential energy is: 

I = U e + U a + U m 

− W 

= 

∫ 
( W e + W a + W m 

) d V −
∫ 

f b i u i d V 

−
∫ 

f s i u i dA −
∫ 

μRdV −
∫ 

μIdA (9) 

here U e and U a are the strain energy related to the Cauchy stress

nd the acoustic stress, respectively, U m 

is the mixture energy of

olymers and molecules, and W is the work done by stimuli. The

tain energies due to Cauchy stress and acoustic stress are additive,

ecause for an infinitesimal process from any instant of the quasi-

tatic material deformation process, the constant acoustic stress’s

oing work is additive to the constant Cauchy stress’s doing work

uring this infinitesimal process. Incorporating Eqs. (2) , (7) and (8) ,

ne can express the virtual change of the Lagrangian potential en-

rgy as: 

II = δU e + δU a + δU m 

− δW 

= 

∫ (
∂ W e 

∂ ε i j 

− σi j 

)
δε i j dV 

+ 

∫ (
∂ W a ( ε ) 

∂ ε i j 

+ τi j 

)
δε i j dV 

+ 

∫ (
∂ W m 

( c ) 

∂c 
− μ

)
δRdV + 

∫ (
∂ W m 

( c ) 

∂c 
− μ

)
δIdA 

+ 

∫ 
∂ 

∂ x i 

∂ W m 

( c ) 

∂c 
δJ i dV (10) 

here δJ i = j i δt is the number of small molecules that migrate

hrough unit area of the interface element. The principle of min-

mization potential energy requires: 

II ≤ 0 (11) 

hich should hold for any arbitrary δεij , δR , δI and δJ i . Generally,

he principle of minimization potential energy only requires δII = 0

or a static equilibrium state. However, there exists a dynamic flux

or small molecules moving out of the gel, resulting in δII < 0.

o satisfy the condition of (11) , the first, second, third and fourth

ntegrands should all vanish, namely: 

i j = 

∂ W e ( ε ) 

∂ ε i j 

= 

F iα
J 

∂ W e ( F ) 

∂ F jα

τi j = −∂ W a ( ε ) 

∂ ε i j 

= −F iα
J 

∂ W a ( F ) 

∂ F jα

μ = 

∂ W m 

( c ) 

∂c 
(12) 

The first and second integrand terms lead to the Cauchy stress

nd the acoustic stress, respectively, which all contribute to the

nside migration of small molecules in gel and correspond to the

on-volumetric shape reconfiguration. The third and fourth inte-

rand terms lead to the chemical potential owing to the field

f inside sources pouring out or generating small molecules. The
fth term introduces the definition of dynamic diffusion flux, as

 Biot, 1941 ): 

j i = − cD 

kT 

∂μ

∂ x i 
(13) 

here c is the concentration of small molecules in the current con-

guration, D is the coefficient of diffusion for solvent molecules, k

s the Boltzmann constant, and T is the absolute temperature. The

egative value of the diffusion flux ensures the inequality of (11) is

enable. This diffusion process contributes to the volumetric shape

econfiguration, i.e., the swelling or contraction of gel. 

. Acoustomechanical constitutive relation of gels 

To further construct the acoustomechanical constitutive rela-

ion of polymeric gels, the constraint of molecule incompress-

bility ( Hong et al., 2008 ) should be taken into account. Because

olymeric gels often undergo giant deformation without signifi-

ant volumetric change, one can assume that the networks and

olecules are both individually incompressible. Also, as the con-

ensed matter form of the gel occupies all the space, the molecule

ncompressibility constraint condition is given by: 

 + v c det ( F ) = det ( F ) , or 1 + v C = det ( F ) (14)

here the true concentration relates to the nominal concentration

s c = C/ det (F ) , v is the volume of each molecule, and v c det (F )

 = vC ) is the volume of all small molecules in the gel. The molec-

lar incompressibility can be accounted for by adding a constraint

erm 

∫ 
p s ( 1 + v c det (F ) − det (F ) ) dV to the Lagrangian energy func-

ion, where p s ( x , t ) is the field of Lagrange multiplier. Accordingly,

he Cauchy stress and the true concentration can be obtained as:

i j = 

F iα
det ( F ) 

(
∂ W e ( F ) 

∂ F jα
+ 

∂ W a ( F ) 

∂ F jα

)
− p s δi j (15) 

= 

∂ W m 

( c ) 

∂c 
+ p s v det ( F ) = 

∂ W m 

( C ) 

∂C 
det ( F ) + p s v det ( F ) (16)

here the Lagrange multiplier p s is actually the osmotic pressure

r swelling pressure. Here the polymeric gel is considered as a

ondensed matter composed of networks and solvent, the acous-

ic stress exerts on this condensed matter quite like mechanical

tress, which together balances with the elastic deformation stress

f the network and the osmotic pressure of the solvent. The diffu-

ion occurs only when the chemical potential difference between

he outside and inside of the gel is large enough to overcome the

smotic pressure. In view of the relationship between the first

iola–Kirchhoff stress and the Cauchy stress s = det (F ) F −T σ , the

rst Piola–Kirchhoff stress and the nominal concentration are ob-

ained as: 

 iα = 

∂ W e ( F ) 

∂ F iα
+ 

∂ W a ( F ) 

∂ F iα
− p s F 

−T 
iα det ( F ) (17) 

 = 

∂ W m 

( C ) 

∂C 
+ p s v , (18)

Eqs. (15) –(18) present the constitutive relation of acoustome-

hanical polymeric gels coupled with diffusion mass transport in

erms of the Helmholtz free energy. 

To capture the main physical nature of the acoustomechanical

ehavior of polymeric gels, explicit Helmholtz free energy func-

ions for relatively simple cases are adopted, which should contain

ontributions from the elastic stress induced energy, the acoustic

tress induced energy, and the mixture of networks and molecules

nduced energy, as: 

 ( F , c ) = W e ( F ) + W a ( F ) + W m 

( c ) (19) 
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Fig. 1. Schematic of a biaxially constrained polymeric gel layer (attached with 

a rigid substrate), immersed in solvent and subjected to a plane acoustic input 

p = p 0 e 
j ωt . First, the dry polymer having initial undeformed dimensions ( L 1 , L 2 , L 3 ) 

freely swells to become a gel with dimensions ( l s 1 , l 
s 
2 , l 

s 
3 ) when immersed in solvent. 

Then the gel is fixed to a rigid substrate and struck by an acoustic input, so that it 

deforms to the current state of dimensions ( l 1 , l 2 , l 3 ), with l s 1 = l 1 and l s 2 = l 2 . 
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The free energy density contributed by the elastic stress may be

written as ( Boyce and Arruda, 20 0 0; Flory and Rehner, 1943 ): 

 e ( F ) = 

1 

2 

NkT ( I 1 − 3 − 2 ln J ) (20)

where I 1 = tr ( F T F ) , J = det (F ) and N is the number of polymer

chains. 

The free energy density due to the mixture between the net-

works and molecules may be given by: 

 m 

( c ) = 

kT 

v 

[ 
v J c ln 

( v J c 
1 + v Jc 

)
+ 

χv J c 
1 + v Jc 

] 
(21)

where the two terms correspond separately to the entropy and en-

thalpy of the mixture, and χ is the Flory parameter for the inter-

action between solvent and polymers. The molecules are driven to

enter the gel when χ < 0, and leave the gel when χ > 0. 

For the acoustic stress induced energy, consider a thin layer of

polymeric gel with initial undeformed dimensions ( L 1 , L 2 , L 3 ) and

let L 3 represents its thickness. Assume a plane acoustic wave prop-

agates along the thickness direction of the layer and penetrates

into it. The layer deforms accordingly to current dimensions ( l 1 ,

l 2 , l 3 ) with principal stretches ( λ1 , λ2 , λ3 ). Let λ3 denote the out-of-

plane stretch. The free energy density of the gel induced by acous-

tic stress is actually the negative work density done by the acoustic

stress, which can be expressed as ( Xin and Lu, 2016a,b,c,d; Xin et

al., 2017 ): 

 a ( F ) = −J ln 

(
λt 1 

1 
λt 2 

2 
λt 3 

3 

)
(22)

where 

 1 = 

1 

l 3 

∫ l 3 

0 
〈 T 11 ( z ) 〉 dz, t 2 = 

1 

l 3 

∫ l 3 

0 
〈 T 22 ( z ) 〉 dz, 

 3 = 

〈
T inside 

33 ( l 3 ) 
〉
−

〈
T outside 

33 ( l 3 ) 
〉

(23)

〈
T i j 

〉
= 

[ 

ρa 

2 c 2 a 

〈 (
∂φ

∂t 

)2 
〉 

−
ρa 

〈
( ∇φ) 

2 
〉

2 

] 

δi j + ρa 

〈
∂φ

∂ x i 

∂φ

∂ x j 

〉
(24)

Here, 〈 T ij 〉 is the second-rank acoustic stress tensor (expressed

now in Eulerian coordinates), ϕ is the velocity potential (i.e.,

u = −∇ϕ), ρa is the medium density, c a is the acoustic speed in

the medium, δij is the Kronecker delta, and 〈·〉 denotes the time-

average over an oscillation cycle. t 1 , t 2 and t 3 are the equivalent

acoustic stresses exerted on the material interface to cause de-

formation, with l 3 representing the current thickness of the gel

layer. Because the gel is a combination of a three-dimensional

cross-linked network and small molecules, it may be taken as a

macroscopically homogeneous and isotropic condensed soft matter

for wave propagation. Under arbitrary prescribed acoustic inputs

and boundary conditions, one can obtain the acoustic and veloc-

ity fields and then favorably determine the distribution of acoustic

stress inside and outside the gel. 

The focus of the present study is placed upon the balance

state in which the elastic stress and acoustic stress are balanced

with the osmotic pressure. Correspondingly, chemical equilibrium

is maintained in and out of the gel, namely, μ= 0 (or m = 0).

Adopting the above explicit free energy functions together with

Eqs. (15) and (16) , one obtains the Cauchy stresses in the gel layer

as: 

σ1 = N kT 
(
λ1 − λ−1 

1 

)
λ−1 

2 λ−1 
3 + 

1 

J v 
d W m 

dc 
− t 1 (25)

σ2 = N kT 
(
λ2 − λ−1 

2 

)
λ−1 

1 λ−1 
3 + 

1 

J v 
d W m 

dc 
− t 2 (26)

σ3 = N kT 
(
λ3 − λ−1 

3 

)
λ−1 

1 λ−1 
2 + 

1 

J v 
d W m 

dc 
− t 3 (27)
Further, adopting these free energy functions together with

qs. (17) and (18) , one obtains the first Piola–Kirchhoff stresses as:

 1 = N kT 
(
λ1 − λ−1 

1 

)
+ 

λ2 λ3 

J v 
d W m 

dc 
− λ2 λ3 t 1 (28)

 2 = N kT 
(
λ2 − λ−1 

2 

)
+ 

λ1 λ3 

J v 
d W m 

dc 
− λ1 λ3 t 2 (29)

 3 = N kT 
(
λ3 − λ−1 

3 

)
+ 

λ1 λ2 

J v 
d W m 

dc 
− λ1 λ2 t 3 (30)

The above constitutive equations define the mechanical behav-

or of acoustomechanical polymeric gels coupled with mass trans-

ort: (25) –(27) are constitutive relations in true space while (28) –

30) are constitutive relations in nominal space. 

Once the boundary conditions are given for a specific prob-

em, one can solve all the state variables in current configuration

y employing the constitutive relations of acoustomechanical poly-

eric gel. Assume the external solvent is in liquid state, so that the

ork done by atmospheric pressure during the migration process

f small molecules into the gel can be neglected. Assume further

he liquid solvent is in its equilibrium state to the reference state.

ith this reference state, the chemical potential of small molecules

an be defined as the free energy alteration μ= ( p −p 0 ) v , as a

esult of one molecule migration from reference state to current

tate. p 0 is the solvent pressure in reference state and p is the sol-

ent pressure in current state. The mechanical boundary conditions

an be given in the form of displacement boundary value u ( x , t )

r force boundary value f s ( x , t ). The chemical boundary conditions

an be the prescribed boundary value of chemical potential μ( x , t )

r molecular number flux j ( x , t ). 

In the following numerical calculations, representative values

f relevant parameters for a typical gel are adopted as: volume

er molecule v = 10 −28 m 

3 , at room temperature kT = 4 ×10 −21 J

nd kT / v = 4 × 10 7 Pa. The Flory–Rehner free energy functions of

qs. (20) and (21) contain two dimensionless parameters Nv and

. If a dry network has small-strain shear modulus NkT = 4 ×10 4 Pa,

hen Nv = 10 −3 . The dimensionless parameter χ is a measure of

he enthalpy of mixing, and its typical value falls within the range

etween 0 and 1.2. Without otherwise statement, χ =0.5 is used. 

. Acoustical actuation under biaxial constraint 

With reference to Fig. 1 , consider a layer of polymeric gel im-

ersed in external solvent. The dry network with initial dimen-

ions ( L 1 , L 2 , L 3 ) first freely swells to become a gel with dimen-

ions ( l s , l s , l s ) when it equilibrates with the outside solvent. Then
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u

t is attached with a rigid substrate. Assume a plane acoustic wave

ropagates along the thickness direction of the gel and penetrates

nto the gel, which will be totally reflected by the rigid substrate

nd then interacts with the incoming wave to generate a standing-

ave field. With wave propagation in the medium governed by

 · σ = ρ∂ 2 u / ∂ t 2 in Eulerian coordinates and the total reflection

oundary condition at the rigid substrate interface, the velocity

eld and acoustic field of the standing-wave can be expressed as: 

 1 z = j k 1 z e 
jωt 

[ 

I e − j k 1 z z − I e j k 1 z z 

×
e j k 2 z l 3 

(
k 1 z k 2 z ρ2 − k 2 2 z ρ1 

)
+ e − j k 2 z l 3 

(
k 1 z k 2 z ρ2 + k 2 2 z ρ1 

)
e j k 2 z l 3 

(
k 1 z k 2 z ρ2 + k 2 

2 z 
ρ1 

)
+ e − j k 2 z l 3 

(
k 1 z k 2 z ρ2 − k 2 

2 z 
ρ1 

)
] 

(31) 

p 1 = jω ρ1 e 
jωt 

[ 

I e − j k 1 z z + I e j k 1 z z 

×
e j k 2 z l 3 

(
k 1 z k 2 z ρ2 − k 2 2 z ρ1 

)
+ e − j k 2 z l 3 

(
k 1 z k 2 z ρ2 + k 2 2 z ρ1 

)
e j k 2 z l 3 

(
k 1 z k 2 z ρ2 + k 2 

2 z 
ρ1 

)
+ e − j k 2 z l 3 

(
k 1 z k 2 z ρ2 − k 2 

2 z 
ρ1 

)
] 

(32) 

 2 z = 

2 jI ρ1 k 1 z k 
2 
2 z e 

jωt 
(
e j k 2 z ( z+ l 3 ) − e j k 2 z ( z−l 3 ) 

)
e j k 2 z l 3 

(
ρ2 k 1 z k 2 z + ρ1 k 

2 
2 z 

)
+ e − j k 2 z l 3 

(
ρ2 k 1 z k 2 z − ρ1 k 

2 
2 z 

) (33) 

p 2 = 

2 jωI ρ1 ρ2 k 1 z k 2 z e 
jωt 

(
e − j k 2 z ( z−l 3 ) + e j k 2 z ( z−l 3 ) 

)
e j k 2 z l 3 

(
ρ2 k 1 z k 2 z + ρ1 k 

2 
2 z 

)
+ e − j k 2 z l 3 

(
ρ2 k 1 z k 2 z − ρ1 k 

2 
2 z 

) (34) 

here the subscripts 1 and 2 denote variables related to outside

olvent and gel, u z and p are the velocity and pressure, ρ is the

ensity of medium, k z is the wavenumber of acoustic wave, I is

he amplitude of velocity potential, and l 3 is the current thickness

f gel. Making use of the above velocity and acoustic fields, one

an obtain the acoustic stress distributions in and out of the gel

s: 

T inside 
11 

〉
= 

〈
T inside 

22 

〉
= 

A t2 B 

∗
t2 e 

−2 j k 2 z z + A 

∗
t2 B t2 e 

2 j k 2 z z 

2 ρ2 c 
2 
2 

, 

T inside 
33 

〉
= 

A t2 A 

∗
t2 + B t2 B 

∗
t2 

2 ρ2 c 
2 
2 

(35) 

T outside 
11 

〉
= 

〈
T outside 

22 

〉
= 

A t1 B 

∗
t1 e 

−2 j k 2 z z + A 

∗
t1 B t1 e 

2 j k 2 z z 

2 ρ1 c 
2 
1 

, 

T outside 
33 

〉
= 

A t1 A 

∗
t1 + B t1 B 

∗
t1 

2 ρ1 c 
2 
1 

(36) 

The corresponding equivalent stresses are: 

 1 = t 2 = 

1 

2 ρ2 c 
2 
2 

×
{ 

1 

2 j k 2 z l 3 

[
A 

∗
t2 B t2 

(
e 2 j k 2 z l 3 − 1 

)
− A t2 B 

∗
t2 

(
e −2 j k 2 z l 3 − 1 

)]} 

(37) 

 3 = 

A t2 A 

∗
t2 + B t2 B 

∗
t2 

2 ρ2 c 
2 
2 

− A t1 A 

∗
t1 + B t1 B 

∗
t1 

2 ρ1 c 
2 
1 

(38) 

here the superscript asterisk ∗ means complex conjugates of the

orresponding variables, and: 

 t1 = jω ρ1 I (39) 
 t1 = jω ρ1 I 
e j k 2 z l 3 

(
k 1 z k 2 z ρ2 − k 2 2 z ρ1 

)
+ e − j k 2 z l 3 

(
k 1 z k 2 z ρ2 + k 2 2 z ρ1 

)
e j k 2 z l 3 

(
k 1 z k 2 z ρ2 + k 2 

2 z 
ρ1 

)
+ e − j k 2 z l 3 

(
k 1 z k 2 z ρ2 − k 2 

2 z 
ρ1 

)
(40) 

 t2 = 

2 jωI ρ1 ρ2 k 1 z k 2 z e 
j k 2 z l 3 

e j k 2 z l 3 
(
ρ2 k 1 z k 2 z + ρ1 k 

2 
2 z 

)
+ e − j k 2 z l 3 

(
ρ2 k 1 z k 2 z − ρ1 k 

2 
2 z 

) (41) 

 t2 = 

2 jωI ρ1 ρ2 k 1 z k 2 z e 
− j k 2 z l 3 

e j k 2 z l 3 
(
ρ2 k 1 z k 2 z + ρ1 k 

2 
2 z 

)
+ e − j k 2 z l 3 

(
ρ2 k 1 z k 2 z − ρ1 k 

2 
2 z 

) (42) 

Under the acoustic input, the gel can be stretched along its

hickness direction. However, it has fixed in-plane dimensions ( l s 
1 
,

 

s 
2 
) and fixed in-plane stretch λ1 =λ2 . The normalized Cauchy stress

n the out-of-plane direction can be given by: 

σ3 v 
kT 

= Nv 
(
λ3 − λ−1 

3 

)
λ−2 

1 

+ 

[
ln 

(
1 − λ−2 

1 λ−1 
3 

)
+ λ−2 

1 λ−1 
3 + χλ−4 

1 λ−2 
3 

]
− v t 3 

kT 
(43) 

In the absence of external mechanical force, the Cauchy stress

hould equal to zero. With Eq. (43) , the normalized acoustic in-

ut p 0 / 
√ 

ρ0 c 
2 
0 

kT / v can be extracted as a function of out-of-plane

tretch λ3 , where p 0 is the amplitude of the acoustic input and

0 c 0 is the acoustic impedance of the solvent. 

Fig. 2 presents the acoustomechanical responses of polymeric

el coupled with diffusion mass transport under prescribed biaxial

onstraints of λ1 =λ2 =1, 1.33, 1.67 and 2. As the extent of biaxial

onstraint is varied, the deformation of gel is acoustically actuated

rom different initial out-of-plane stretches when p 0 / 
√ 

ρ0 c 
2 
0 

kT / v =
 , as shown in Fig. 2 (a) and (c). This is because the gel can further

well to equilibrium with the outside solvent even after the gel

s biaxially constrained to the rigid substrate. The acoustic input-

tretch curves show remarkable periodic properties when the gel

s further acoustically deformed after the initial swelling stretch,

hich is attributed to the fact that the acoustic stress t 3 varies

eriodically as a function of the out-of-plane stretch. The larger

he biaxial constraint is, the smaller the acoustic input required

o maintain the same deformation is. In other words, the in-plane

restretch is able to amplify the acoustomechanical response of

olymeric gels. Due to the molecule incompressibility condition of

 + vC = λ1 λ2 λ3 , the ratio of molecules volume over dry polymers

C is a linear function of the out-of-plane stretch, as shown in

ig. 2 (b). The larger the biaxial constraint is, the larger the ratio

C at the same stretch is. As the biaxial constraint is varied, the

coustic input versus volume ratio curves also display periodical

eature but have different periods ( Fig. 2 (c)). 

. Acoustical actuation under uniaxial constraint 

Consider a layer of polymeric gel fixed between two rigid sub-

trates with a prescribed swelling stretch of λ1 =λp , which is fur-

her subjected to two counterpropagating acoustic waves along its

hickness direction, as sketched in Fig. 3 . As acoustic wave prop-

gation obeys the elastodynamical equations, superposition of the

wo opposing velocity fields and acoustic fields leads to: 

 1 z = j k 1 z I e 
jωt 

[ 

e − j k 1 z z − e j k 1 z z 

×
j sin ( k 2 z l 3 ) 

(
ρ2 

2 k 
2 
1 z − ρ2 

1 k 
2 
2 z 

)
+ 2 ρ1 ρ2 k 1 z k 2 z 

2 ρ1 ρ2 k 1 z k 2 z cos ( k 2 z h ) + j 
(
ρ2 

1 
k 2 

2 z 
+ ρ2 

2 
k 2 

1 z 

)
sin ( k 2 z h ) 

] 

(44) 
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Fig. 2. Nonlinear acoustomechanical deformation of a polymeric gel layer under prescribed biaxial constraints of λ1 =λ2 =1, 1.33, 1.67 and 2: (a) acoustic input p 0 / 
√ 

ρ0 c 
2 
0 
kT / v 

plotted as a function of out-of-plane stretch λ3 ; (b) ratio of molecules volume over dry polymers vC plotted as a function of λ3 ; (c) p 0 / 
√ 

ρ0 c 
2 
0 
kT / v plotted as a function of 

vC . 
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p 1 = jω ρ1 I e 
jωt 

[ 

e − j k 1 z z + e j k 1 z z 

×
j sin ( k 2 z l 3 ) 

(
ρ2 

2 k 
2 
1 z − ρ2 

1 k 
2 
2 z 

)
+ 2 ρ1 ρ2 k 1 z k 2 z 

2 ρ1 ρ2 k 1 z k 2 z cos ( k 2 z h ) + j 
(
ρ2 

1 
k 2 

2 z 
+ ρ2 

2 
k 2 

1 z 

)
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] 

(45)

u 2 z = 

2 I ρ1 k 1 z k 2 z e 
jωt [ ρ1 k 2 z sin ( k 2 z ( z − l 3 ) ) + ρ1 k 2 z sin ( k 2 z z ) + j ρ2

2 ρ1 ρ2 k 1 z k 2 z cos ( k 2 z h ) + j 
(
ρ2 

1 
k 2 

2 z 
+ ρ

p 2 = 

2 ωI ρ1 ρ2 k 1 z e 
jωt [ ρ2 k 1 z sin ( k 2 z ( z − l 3 ) ) − ρ2 k 1 z sin ( k 2 z z ) + j ρ

2 ρ1 ρ2 k 1 z k 2 z cos ( k 2 z h ) + j 
(
ρ2 

1 
k 2 

2 z 
+ ρ

Applying the above solutions for velocity and acoustic fields,

one obtains the acoustic stresses as: 

〈
T inside 

11 

〉
= 

〈
T inside 

22 

〉
= 

A c2 B 

∗
c2 e 

−2 j k 2 z z + A 

∗
c2 B c2 e 

2 j k 2 z z 

2 ρ2 c 
2 
2 

, 
〈
T inside 

33 

〉
= 

A c2 A 

∗
c2 + B c2 B 

∗
c2 

2 ρ2 c 
2 
2 

(48)
os ( k 2 z ( z − l 3 ) ) − j ρ2 k 1 z cos ( k 2 z z ) ] 

 

)
sin ( k 2 z h ) 

(46)

cos ( k 2 z ( z − l 3 ) ) + j ρ1 k 2 z cos ( k 2 z z ) ] 

 

)
sin ( k 2 z h ) 

(47)

T outside 
11 

〉
= 

〈
T outside 

22 

〉
= 

A c1 B 

∗
c1 e 

−2 j k 2 z z + A 

∗
c1 B c1 e 

2 j k 2 z z 

2 ρ1 c 
2 
1 

, 
〈
T outside 

33 

〉
= 

A c1 A 

∗
c1 + B c1 B 

∗
c1 

2 ρ1 c 
2 
1 

(49)

The corresponding equivalent stresses are: 

 1 = t 2 = 

1 

2 ρ2 c 
2 
2 

{ 

1 

2 j k 2 z l 3 

[
A 

∗
c2 B c2 

(
e 2 j k 2 z l 3 −1 

)
−A c2 B 

∗
c2 

(
e −2 j k 2 z l 3 −1 

)]} 

(50)

 3 = 

A c2 A 

∗
c2 + B c2 B 

∗
c2 

2 ρ2 c 
2 
2 

− A c1 A 

∗
c1 + B c1 B 

∗
c1 

2 ρ1 c 
2 
1 

(51)
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Fig. 3. Schematic of a uniaxially constrained polymeric gel layer (attached with 

two rigid substrates) immersed in solvent and subjected to two counterpropagat- 

ing acoustic waves p = p 0 e 
j ωt . The dry polymer with initial undeformed dimensions 

( L 1 , L 2 , L 3 ) freely swells to become a gel with dimensions ( l s 1 , l 
s 
2 , l 

s 
3 ) when immersed 

in solvent. Then the gel is fixed to the rigid substrates and struck by an acoustic 

input, deforming thereby to current state of dimensions ( l 1 , l 2 , l 3 ), with l s 1 = l 1 . 
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here 

 c1 = jω ρ1 I e 
j k 1 z l 3 

×
( 

j 
(
ρ2 

2 k 
2 
1 z − ρ2 

1 k 
2 
2 z 

)
sin ( k 2 z l 3 ) + 2 ρ1 ρ2 k 1 z k 2 z 

2 ρ1 ρ2 k 1 z k 2 z cos ( k 2 z l 3 ) + j 
(
ρ2 

1 
k 2 

2 z 
+ ρ2 

2 
k 2 

1 z 

)
sin ( k 2 z l 3 ) 

) 

(52) 

 c1 = jω ρ1 I e 
− j k 1 z l 3 (53) 

 c2 = jω ρ1 ρ2 k 1 z I 

×
( 

e j k 2 z l 3 ( ρ2 k 1 z + ρ1 k 2 z ) + ( ρ1 k 2 z − ρ2 k 1 z ) 

2 ρ1 ρ2 k 1 z k 2 z cos ( k 2 z l 3 ) + j 
(
ρ2 

1 
k 2 

2 z 
+ ρ2 

2 
k 2 

1 z 

)
sin ( k 2 z l 3 ) 

) 

(54) 

 c2 = jω ρ1 ρ2 k 1 z I 

×
( 

e − j k 2 z l 3 ( ρ1 k 2 z − ρ2 k 1 z ) + ( ρ2 k 1 z + ρ1 k 2 z ) 

2 ρ1 ρ2 k 1 z k 2 z cos ( k 2 z l 3 ) + j 
(
ρ2 

1 
k 2 

2 z 
+ ρ2 

2 
k 2 

1 z 

)
sin ( k 2 z l 3 ) 

) 

(55) 

Given the acoustic input and the prescribed uniaxial constraint

f λ1 =λp , the polymeric gel not only swells further but also acous-

ically deforms in the y - and z -directions ( Fig. 3 ). Correspondingly,

he normalized Cauchy stresses are given by: 

σ2 v 
kT 

= Nv 
(
λ2 − λ−1 

2 

)
λ−1 

1 λ−1 
3 + 

[
ln 

(
1 − λ−1 

1 λ−1 
2 λ−1 

3 

)
+ λ−1 

1 λ−1 
2 λ−1 

3 + χλ−2 
1 λ−2 

2 λ−2 
3 

]
− t 2 v 

kT 
(56) 

σ3 v 
kT 

= Nv 
(
λ3 − λ−1 

3 

)
λ−1 

1 λ−1 
2 + 

[
ln 

(
1 − λ−1 

1 λ−1 
2 λ−1 

3 

)
+ λ−1 

1 λ−1 
2 λ−1 

3 + χλ−2 
1 λ−2 

2 λ−2 
3 

]
− t 3 v 

kT 
(57) 

In the absence of external mechanical loading, the normalized

coustic input p 0 / 
√ 

ρ0 c 
2 
0 

kT / v can be extracted as a function of the

tretches λ2 and λ3 by setting σ2 v / kT = 0 and σ3 v / kT = 0 . The re-

ationship between λ2 and λ3 is given in an implicit form as: 

v 
[
t 3 

(
λ2 

2 − 1 

)
− t 2 

(
λ2 

3 − 1 

)]
+ λ1 λ2 λ3 ( t 3 − t 2 ) 

[
ln 

(
1 − λ−1 

1 λ−1 
2 λ−1 

3 

)
+ λ−1 

1 λ−1 
2 λ−1 

3 + χλ−2 
1 λ−2 

2 λ−2 
3 

]
= 0 (58) 

Finally, the acoustomechanical response of the polymeric gel

an be obtained by solving the nonlinear equations of (56) –(58) . 

Fig. 4 plots the nonlinear acoustomechanical deformation of

olymeric gel under prescribed uniaxial constraints of λ =1, 2, 3
1 
nd 4. Under different uniaxial constraints, the gel exhibits differ-

nt initial swelling stretches in the two unconstrained directions

hen p 0 / 
√ 

ρ0 c 
2 
0 

kT / v = 0 . As the stretch is increased, the acoustic

nput-stretch curves show periodical variations but slightly differ-

nt extremal points under different uniaxial constraints. This is at-

ributable to the nonlinear relationship between the stretches in

q. (58) , as presented in Fig. 4 (b). The quasi-periodical variation of

tretch λ2 with stretch λ3 is induced by the periodical variation

f acoustic stress with stretch λ3 . The larger the prescribed stretch

1 , the smaller the stretch λ2 at a given stretch λ3 . The molecules

olume ration vC plotted in Fig. 4 (c) as a function of λ3 also shows

uasi-periodical variation. The larger the prescribed stretch λ1 , the

ore the solvent molecules that the polymers imbibe at the same

tretch λ3 . The variation of acoustic input with molecules volume

atio is presented in Fig. 4 (d), which exhibits a nonlinear chaos

ehavior for molecule migration under acoustic loading. Moreover,

his chaos behavior is sensitive to the initial molecules volume ra-

io. The periodical trend of the acoustic input-stretch curve and

he quasi-periodical trend of the vC - λ3 curve contribute to the re-

eated and increased loop configuration of the chaos curve. 

. Unconstrained acoustical actuation 

As a final example, consider a freestanding polymeric gel layer

mmersed in solvent and subjected to two counterpropagating

coustic waves, as illustrated in Fig. 5 . The gel initially has isotropic

welling stretches since no constraint is enforced. When subjected

o the acoustic inputs, the gel deforms further due to acous-

ic stressing. The wave propagation governed by elastodynamical

quations satisfies the same boundary conditions as in the uniaxial

onstraint case. Therefore, the velocity and acoustic fields as well

s the acoustic stresses have the same expressions as those pre-

ented in Section 5 . 

Upon acoustical actuation, the polymeric gel can imbibe more

olvent molecules and swell to a larger deformation since the

coustic stress can help overcome the osmotic pressure. When the

coustic stress and elastic stress balance with the osmotic pressure,

he gel reaches a steady state. This acoustically actuated swelling

ehavior is governed by: 

σ1 v 
kT 

= Nv 
(
λ1 − λ−1 

1 

)
λ−1 

2 λ−1 
3 + 

[
ln 

(
1 − λ−1 

1 λ−1 
2 λ−1 

3 

)
+ λ−1 

1 λ−1 
2 λ−1 

3 + χλ−2 
1 λ−2 

2 λ−2 
3 

]
− t 1 v 

kT 
(59) 

σ2 v 
kT 

= Nv 
(
λ2 − λ−1 

2 

)
λ−1 

1 λ−1 
3 + 

[
ln 

(
1 − λ−1 

1 λ−1 
2 λ−1 

3 

)
+ λ−1 

1 λ−1 
2 λ−1 

3 + χλ−2 
1 λ−2 

2 λ−2 
3 

]
− t 2 v 

kT 
(60) 

σ3 v 
kT 

= Nv 
(
λ3 − λ−1 

3 

)
λ−1 

1 λ−1 
2 + 

[
ln 

(
1 − λ−1 

1 λ−1 
2 λ−1 

3 

)
+ λ−1 

1 λ−1 
2 λ−1 

3 + χλ−2 
1 λ−2 

2 λ−2 
3 

]
− t 3 v 

kT 
(61) 

here the gel stretches satisfy: 

v 
[
t 3 

(
λ2 

1 − 1 

)
− t 1 

(
λ2 

3 − 1 

)]
+ 

[
λ2 

1 λ3 ln 

(
1 − λ−2 

1 λ−1 
3 

)
+1 + χλ−2 

1 λ−1 
3 

]
( t 3 − t 1 ) = 0 , λ1 = λ2 (62) 

Since no external mechanical force is applied, σ1 v / kT =
 , σ2 v / kT = 0 and σ3 v / kT = 0 . The normalized acoustic input

p 0 / 
√ 

ρ0 c 
2 
0 

kT / v can thence be extracted as a function of gel

tretches. Fig. 6 presents the nonlinear acoustomechanical gel

esponse for selected values of mixing parameter: χ =0.2, 0.3,

.4 and 0.5. As shown in Fig. 6 (a), as the mixing parameter

hanges, the gel exhibits different initial swelling stretches when

p 0 / 
√ 

ρ0 c 
2 
0 

kT / v = 0 . The larger the mixing parameter is, the smaller
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Fig. 4. Nonlinear acoustomechanical deformation of a polymeric gel layer under selected uniaxial constraints of λ1 =1, 2, 3 and 4: (a) acoustic input p 0 / 
√ 

ρ0 c 
2 
0 
kT / v plotted 

as a function of out-of-plane stretch λ3 ; (b) in-plane stretch λ2 plotted as a function of λ3 ; (c) ratio of molecules volume over dry polymers vC plotted as a function of λ3 ; 

(d) p 0 / 
√ 

ρ0 c 
2 
0 
kT / v plotted as a function of vC . 

Fig. 5. Schematic of a freestanding polymeric gel layer immersed in solvent and 

subjected to two counterpropagating acoustic waves p = p 0 e 
j ωt . When immersed in 

solvent, the dry polymer with initial undeformed dimensions ( L 1 , L 2 , L 3 ) freely 

swells to become a gel with dimensions ( l s 1 , l s 2 , l s 3 ). Then the gel is struck by an 

acoustic input and deforms to the current state of dimensions ( l 1 , l 2 , l 3 ). 
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s  
the initial swelling stretch is, because the enthalpy of mixing with

a larger mixing parameter tends to motivate the molecules to leave

the gel. The acoustic input-stretch curves display periodical vari-

ations when the stretch is increased, as the acoustic stress is a

periodical function of the stretch. It is also found that the larger

the mixing parameter, the smaller the acoustic input needed to

maintain the same stretch. As illustrated in Fig. 6 (b) and (c), both

the stretch λ1 and molecule volume ratio vC are quasi-periodical

functions of the stretch λ . At the same stretch λ , the larger the
3 3 
ixing parameter is, the smaller the stretch λ1 and molecule vol-

me ratio vC are. As observed in Fig. 6 (d), the variation of acoustic

nput as a function of molecules volume ratio shows a nonlinear

haos behavior, which is sensitive to the mixing parameter or ini-

ial swelling stretch. The periodical feature of the acoustic input-

tretch curve and the quasi-periodical feature of the vC - λ3 curve

lay a dominant role in the nonlinear chaos behavior, namely, the

epeated and increased loop configuration of the curves. 

. Concluding remarks 

A nonlinear acoustomechanical field theory is developed for

olymeric gels immersed in external solvent by combining the

coustic radiation stress theory and the nonlinear elasticity the-

ry of gels, with diffusion mass transport of solvent molecules in

nd out of the gel accounted for. For convenience of solving the

lastodynamical equations that govern acoustic wave propagation,

his field theory is established in Eulerian coordinates. Therefore,

ll the state variables are presented with their own true values,

hich can be readily transformed to their nominal values. Non-

inear gel elasticity is accounted for by utilizing the Flory–Rehner

ree energy functions for network stretching and molecule-polymer

ixing. The developed field theory is applied to first calculate the

elocity and acoustic fields as well as the distribution of acous-

ic radiation stresses inside and outside the gel, and then analyze

ts nonlinear acoustomechanical behavior. Specifically, biaxial con-

traint, uniaxial constraint and freestanding cases are considered.
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Fig. 6. Nonlinear acoustomechanical deformation of a freestanding polymeric gel layer for selected mixing parameters: (a) acoustic input p 0 / 
√ 

ρ0 c 
2 
0 
kT / v plotted as a func- 

tion of out-of-plane stretch λ3 ; (b) in-plane stretch λ1 plotted as a function of λ3 ; (c) ratio of molecules volume over dry polymers vC plotted as a function of λ3 ; (d) 

p 0 / 
√ 

ρ0 c 
2 
0 
kT / v plotted as a function of vC . 
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he periodical response and nonlinear chaos behaviors of acous-

ically actuated polymeric gels are revealed. Results presented in

his study are helpful for innovative design of acoustically triggered

ensors and actuators made of polymeric gels, and can enlighten

he application of ultrasound in biomedical engineering. 
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