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a b s t r a c t

The thickness–twist modes in an inhomogeneous piezoelectric plate with two imperfectly bonded inter-
faces are analyzed, and an exact solution is obtained according to the spring-type relation from the equa-
tions of the linear theory of piezoelectricity. The frequency shift, the displacement and the stress
components are all obtained and plotted. Both theoretical analysis and numerical examples show that
the effect of mechanical imperfection is more evident than that of the electrical imperfection on the
thickness–twist modes. Results show that the displacement and the stress components all change obvi-
ously due to the imperfectly bonded interfaces. The relationship between the frequency shift Dx and the
non-dimensional number c that is related to the imperfect interfaces is linear, which can be used to pro-
vide the foundation for a new experimental procedure for measuring the level of the interface bonding.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

Piezoelectric materials can be made into various functional de-
vices, such as sensors, actuators, filters and delay lines, which are
widely used in electronic technology, mechanical engineering,
medical appliance and other modern industrial fields [1]. Owing
to wide application, the mechanism study of propagation of waves
in piezoelectric structures and devices has drawn increasing atten-
tion of researchers in recent years [2–4]. Thickness–twist vibration
modes (anti-plane or shear horizontal modes) of crystal plates are
often used as the operating modes for resonators and acoustic
wave sensors [5,6]. When the sixfold axis of a 6 mm crystal is par-
allel to the major surface of a plate, thickness–twist waves can
propagate not only in a homogeneous piezoelectric plate [7,8],
but in an inhomogeneous piezoelectric plate as well [9–11].

In principle, the mechanical and the electrical behaviors in piezo-
electric materials should satisfy the kinetic equations and Maxwell
equations. Along this approach, the shear horizontal waves in two
inhomogeneous media [12,13] and in functionally graded piezoelec-
tric layered structures [14,15] have been respectively investigated.
Meanwhile, due to the brittleness nature of piezoelectric ceramics
and the possible defects of impurity, cavities and micro-cracks, fail-
ures of devices take place easily under mechanical and/or electrical
loadings. In order to overcome above-mentioned disadvantages, the
shear horizontal waves in a pre-stressed layered piezoelectric struc-
ture have been considered [16–18]. Besides, SAW devices loaded
with viscous liquid have also been taken into account [19,20].
All rights reserved.
However, most of the work is on the perfectly bonding interface
between the two portions, i.e. the displacement and the tractions
are continuous [12–20]. It has been recently pointed out that
imperfectly bonding sometimes exists in devices and little is
known about its effects [21], e.g., the aging of the glue which is ap-
plied at an interface, the defection of fabrication and corrosion of
the materials, etc. In the simplest description of the mechanical
behavior of an imperfect interface, the interface can be treated as
a layer that geometrically has a zero thickness but still possesses
elasticity and interface elastic strain energy, e.g., the shear-lag
model in which the tangential displacement at an interface is al-
lowed to be different from both sides of the interface in order to
accounting for the deformation of the interface layer [22–25].

In this paper, we investigate the effect of the imperfectly
bonded interfaces in an inhomogeneous piezoelectric plate in
which the central portion is different from the rest portions using
a spring-type relation [26], which is different from the shear-lag
model [22–25]. Different from the previous work, the mechanical
imperfection and the electrical imperfection are all taken into ac-
count. Since the material tensors of crystals of 6 mm symmetry
have the same structures as polarized ceramics, our analysis is also
valid for 6 mm piezoelectric crystals. This includes widely used
materials like ZnO and AlN.
2. Governing equations and boundary conditions

Consider an inhomogeneous piezoelectric plate of 6 mm crys-
tals or polarized ceramics with the depth of 2h, as shown in
Fig. 1. The ceramic material is poled in the x3 direction determined
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by the right-hand rule from the x1 and x2 axes. The central portion
x1 < |a| is made of one piezoelectric material, and the outer por-
tions x1 > |a| are made of another one. We consider the imperfect
boundary conditions at x1 = |a|. The plate is unelectroded, and the
surfaces are traction-free at x2 = ±h.

2.1. The governing equations

The thickness–twist mode of the central portion (x1 < |a|) can be
represented by displacement components u and electrical poten-
tial function u as follows:

u1 ¼ 0; u2 ¼ 0; u3 ¼ uðx1; x2; tÞ; u ¼ uðx1; x2; tÞ ð1Þ

A function w can be introduced through u = w + eu/e [9–11],
and the governing equations of thickness–twist mode can be
obtained:

�cr2u ¼ q€u; r2w ¼ 0 ð2Þ

where r2 ¼ @2=@x2
1 þ @

2=@x2
2 is the Laplace operator, q is the mass

density, c44 = c, e15 = e and e11 = e are the elastic, the piezoelectric
and the permittivity coefficients, respectively. The relative elastic
constant is �c ¼ c þ e2=e. The nontrivial stress and electric displace-
ment components are

T23 ¼ �cu;2 þ ew;2; T13 ¼ �cu;1 þ ew;1

D2 ¼ �ew;2; D1 ¼ �ew;1

ð3Þ

where an index after a comma denotes partial differentiation with
respect to the coordinate.

Similarly, for the outer regions (x1 > |a|) of the plate, the govern-
ing equations are

�c0r2u0 ¼ q0€u; r2w0 ¼ 0 ð4Þ

The nontrivial stress and electric displacement components are

T 023 ¼ �c0u0;2 þ e0w0;2; T
0
13 ¼ �c0u0;1 þ e0w0;1

D02 ¼ �e0w0;2;D
0
1 ¼ �e0w0;1

ð5Þ
2.2. The boundary conditions

For the unelectroded and traction-free surfaces, T23 = 0, T 023 ¼ 0
and D2 = 0, D02 ¼ 0 at x2 = ±h, which are equal to

x2 ¼ �h : u;2 ¼ 0; u0;2 ¼ 0; w;2 ¼ 0; w0;2 ¼ 0 ð6Þ

For the imperfectly bonded interfaces at x1 = ±a, we adopt the
spring-type relation [8], which requires

x1 ¼ �a :
T13 ¼ T 013 ¼ Kðu0 � uÞ
D1 ¼ D01 ¼ Cðu0 �uÞ

(
ð7Þ

where K (N/m3) is the effective interface elastic stiffness parameter
and C (C/V m2) is the electrical imperfection parameter, which
simultaneously describe how well the two materials are bonded.
Fig. 1. An inhomogeneous transversely piezoelectric plate that the central portion
is different from the rest portions with imperfectly bonded interfaces.
When K = 0 and C = 0, the three portions lose their mechanical
and electrical interaction. When K =1 and C –1, we consider
the electrical imperfection only. The circumstance of C =1 and
K –1 is the only consideration of the mechanical imperfection,
which is the same as the shear-lag model [22–25]. The case of
K =1 and C =1 is for the perfect interface with continuous dis-
placement and electrical function across the interface.

We assume the two interfaces at x1 = ±a have the same charac-
teristics, i.e., they have the same effective interface elastic stiffness
K and the same electrical imperfection parameter C simulta-
neously. As we know, this is impossible in practice, but it is helpful
to investigate and understand the effect of the imperfect interfaces
on the characteristics of the thickness–twist mode waves. Besides,
the displacement and the electric potential are finite, which
requires

jx1j ! 1 : u0 ! 0; u0 ! 0 ð8Þ
3. Propagating wave solutions

It can be verified that solutions to Eqs. (2) and (4) can be classi-
fied into waves symmetric and anti-symmetric in the x1 direction
[5,7,8]. Here we only investigate the waves which are symmetric
in the x1 direction. So for the central portion, we have [9–11]

u ¼ A1 cosðn1x1Þ cosðn2x2Þ expðixtÞ
w ¼ B1 coshðn2x1Þ cosðn2x2Þ expðixtÞ

�
ð9Þ

where A1 and B1 are undetermined constants, n1 and n2 are wave
numbers in the x1 and x2 directions, n2 ¼ mp

2h ðm ¼ 0;2;4; . . .Þ, x is
the wave frequency and i2 = �1. In particular, m = 0 is called face-
shear mode, which will not be considered in the following.

Eq. (9) has satisfied with Eq. (6) and the second equation in Eq.
(2). Inserting Eq. (9) into the first equation in Eq. (2), we have

n1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qx2

�c
� n2

2

r
¼

ffiffiffiffi
q
�c

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � mp

2h

� �2 �c
q

s
¼ 1

mr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 �x2

m

q
ð10Þ

where mT ¼
ffiffiffiffiffiffiffiffi
�c=q

p
is the bulk shear wave velocity of the piezoelec-

tric material occupying x1 < |a| and xm ¼ mp
2h

� �
mT is the correspond-

ing cut-off frequency of thickness–twist waves.
Similarly, for the modes of the outer portions [9–11]

u0 ¼
A01 exp �n01ðx1 � aÞ

� 	
cosðn2x2Þ expðixtÞ; x1 > a

A01 exp n01ðx1 þ aÞ
� 	

cosðn2x2Þ expðixtÞ; x1 < �a

8<
:

w0 ¼
B01 exp �n2ðx1 � aÞ½ � cosðn2x2Þ expðixtÞ; x1 > a

B01 exp½n2ðx1 þ aÞ� cosðn2x2Þ expðixtÞ; x1 < �a

( ð11Þ

where A01 and B01 are undetermined constants, n01 is the wave num-
ber in the x1 direction, which satisfied

n01 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

2 �
q0x2

�c0

r
¼ 1

m0T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x02m �x2

q
ð12Þ

Similarly, m0T ¼
ffiffiffiffiffiffiffiffiffiffiffi
�c0=q0

p
is the bulk shear wave velocity of the out-

er piezoelectric material and x0m ¼ mp
2h

� �2m0T is the corresponding
cut-off frequency.

Substituting Eq. (9) into Eq. (3) and inserting Eq. (11) into Eq. (5)
respectively, T13, D1, T 013 and D01 can be obtained. According to the
boundary conditions Eq. (7), we can get

�c0A01n
0
1 � e0B01n2 ¼ K A01 � A1 cosðn1aÞ

� 	
��cA1n1 sinðn1aÞ þ eB1n2 sinhðn2aÞ ¼ ��c0A01n

0
1 � e0B01n2

e0B01n2 ¼ C B01 þ e0
e0 A
0
1 � B1 coshðn2aÞ � e

e A1 cosðn1aÞ
� 	

�eB1n2 sinhðn2aÞ ¼ e0B01n2

8>>>>><
>>>>>:

ð13Þ



7.14

7.16

7.18

7.20

7.22

7.24

7.26

ω
(M

H
z)

a/h

γ = 0

γ = 0.2
 γ = 0.5
γ = 0.9

(a) The frequency ω

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

2 4 6 8 10 12 14 16 18 20
-9000

-8000

-7000

-6000

-5000

-4000

-3000

-2000

-1000

0
Δω

( H
z)

a/h

γ = 0.2
γ = 0.5
γ = 0.9

(b) The frequency shift ωΔ

Fig. 2. The frequency x and the frequency shift Dx of the first mode as a function
with the ratio a/h. (a) The frequency x. (b) The frequency shift Dx.
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Eq. (13) is a four linear, homogeneous equation for A1, B1, A01 and B01.
For nontrivial solutions, the determinant of the coefficient matrix
has to vanish, which yields the frequency equation

M ¼ Mperfect þMK þMC þMKC ¼ 0 ð14Þ

where

Mperfect ¼ �c0n01 � �cn1 tanðn1aÞ
� 	

½e0 þ e tanhðn2aÞ�

� n2ee2 e
e
� e0

e0


 �2

tanhðn2aÞ;

Mk ¼ �
1
K

�
�cn1�c0n01 tanðn1aÞ½e0 þ e tanhðn2aÞ�

þee0n2 tanhðn2aÞ e2

e2
�c0n01 �

e02

e02
�cn1 tanðn1aÞ

� 
�
;

MC ¼
1
C
fee0n2 tanhðn2aÞ½�cn1 tanðn1aÞ � �c0n01�g;

MKC ¼
ee0n2�c0n01 tanðn1aÞ�cn1 tanhðn2aÞ

KC

ð15Þ

If we consider the electrical imperfection only, i.e., C – 0 and
K =1, so MK = MKC = 0. Eq. (14) can be abbreviated as the form

M ¼ Mperfect þMC ¼ 0 ð16Þ

Similarly, if we consider the mechanical imperfection only, i.e.,
K – 0 and C =1, so MC = MKC = 0. Eq. (14) can be abbreviated as
the form

M ¼ Mperfect þMK ¼ 0 ð17Þ

which is the outcome by the shear-lag model [22–25]. For the per-
fect interfaces, i.e., K =1 and C =1, Eq. (14) can be written as

Mperfect ¼ 0 ð18Þ

which is the same as the work by Yang et al. [9].

4. Numerical results

We choose the trapped mode for consideration, i.e.,
xm < x < x0m [8–10]. The central region and the outer regions
are chosen to be PZT-5 and PZT-6B, respectively. The correspond-
ing material parameters are list as Table 1 [27]. As a numerical
example, the plate thickness is chosen to be h = 1 mm, and m = 2.

Contrasting the mechanical imperfection MK and the electrical
imperfection MC in Eq. (15), we can find that MK has the domi-
nant term of �cn1�c0n01 which has order of the product of �c and �c0,
while MC has the dominant term of ð�cn1 tanðn1aÞ � �c0n0Þ. Gener-
ally speaking, �c and �c0 have the order of 1010 as Table 1 depicted.
Hence, if the effective interface elastic stiffness K equals to the
electrical imperfection parameter C, the value of MK will be
Table 1
The material parameters.

Materials q (kg/m3) c (1010 N/m2) e (C/m2) e (10�8 C/V m)

PZT-6B 7550 3.55 4.6 0.360
PZT-5 7750 2.11 12.3 0.811

Table 2
The absolute values of MK, MC and MKC.

The first mode The third mode The fifth mode

MK 1.5415 � 103 1.2136 � 103 0.5618 � 103

MC 5.3950 � 10�18 5.0565 � 10�18 4.5370 � 10�18

MKC 9.4603 � 10�19 7.2184 � 10�19 2.9289 � 10�19
much bigger than that of MC. In order to prove the conclusion,
we choose K = C = 1 � 1016 to calculate MK and MC. The absolute
values of MK, MC and MKT are list as Table 2, which shows that
the effect of mechanical imperfection is more evident than that
of the electrical imperfection.
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According to Table 2, we only consider the mechanical imper-
fection in the following, i.e., C =1 and K – 0. Assuming a non-
dimensional number c ¼ �cn2=K , so Eq. (14) can be written as the
form
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�c0n01 � �cn1 tanðn1aÞ
� 	

e0 þ e tanhðn2aÞ½ � � n2ee0
e
e
� e0

e0


 �2

tanhðn2aÞ

¼ c
n1�c0n01 tanðn1aÞ

n2
e0 þ e tanhðn2aÞ½ �

�

þ ee0 tanhðn2aÞ
�c

e2

e2
�c0n01 �

e02

e02
�cn1 tanðn1aÞ

� 
�
ð19Þ
where c = 0, i.e., K =1 is related to the perfect interfaces. The fre-
quency shift can be defined as Dx ¼ �x�x0, where �x is the fre-
quency of the plate when the interfaces are imperfect, and x0

represents the frequency of the plate with the perfect interfaces.
Fig. 2 is the frequency x and the frequency shift Dx of the first
mode as the function with the ratio a/h.

Owning to the relation xm < x0m, the frequency of the first
mode decreases with the increasing a/h, this can be seen from
Fig. 2a. On the other hand, the frequencies will decrease if the
interfaces are imperfectly bonded, which is because the imperfect
interfaces reduce the stiffness of the plate. The two points illustrate
the validity of the phase velocity equations obtained in our re-
search work. When the ratio a/h is small, the imperfect interfaces
make a great impact on the frequencies of the plate, and with
the ratio a/h increasing, this kind of effect falls off, which can be
seen from Fig. 2b. The frequencies of the higher modes have the
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same tendency with the increasing ratio a/h, which are not de-
picted here. In the following discussion, we choose a/h = 10.

Fig. 3 is the frequency shift Dx as a function with c. From Fig. 3,
we can conclude that the frequency shift Dx = 0 if the interfaces
are perfect, i.e., c = 0 or K =1, which also provides that our compu-
tation results are correct. Compared with the higher order modes,
the first mode has a relatively smaller frequency change. The rela-
tionship between the frequency shift Dx and the non-dimensional
number c is linear, which can be explained by Chen et al. [24]. This
relationship can be used to provide the foundation for a new
experimental procedure for measuring the level of the interface
bonding.

In order to deal with the imperfect interface, the spring-type
relation can be applied, in which the interface can be treated as a
layer that geometrically has a zero thickness but the tangential dis-
placement is allowed to be different from both sides of the inter-
face, so the discontinuous displacement can be seen at the
imperfect interfaces, which can be proved by Fig. 4. Whether the
interface is imperfect or not, the amplitude of the displacement
component decays rapidly along the x1 direction when the fre-
quency of the plate x satisfies xm < x < x0m. In the region
|x1| > 0.02 m, the displacement almost equals to zero, which means
we cannot receive the thickness–twist waves. This is related to the
energy-trapping phenomenon of the thickness–twist modes [7–
11], in which the vibration is confined to the central portion of
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Fig. 7. The stress component and the stress change dT13 of the fifth mode along the
x1 direction when A1 = 10�4 and x = 7.283 MPa.
the plate and essentially, there is almost no vibration in the rest
of the plate. So the plate can meet practical needs, such as wiring
and mounting, in which the vibration of the outer portion cannot
affect the central portion. On the other hand, the displacement in
the case of imperfectly bonding is a little bit smaller than that in
the case of perfectly bonding because the imperfectly bonding also
absorbs some energy of the waves when they propagate through it.
The displacement components of the higher modes have the simi-
lar tendency along the x1 direction, which are not discussed here.

Similar with Dx, we can also define dT13 as the stress change.
Figs. 5–7 are the stress component T13 or T 013 and the stress change
dT13 along the x1 direction when A1 = 10�4. The energy-trapping
phenomenon of the thickness–twist modes also can be seen own-
ing to the frequency x we adopted satisfies xm < x < x0m, and the
stress component T13 or T 013 and the stress change dT13 are all anti-
symmetric about x1 = 0, which is because of the symmetric mode of
the displacement component and the electrical potential function
we adopted in Eqs. (9) and (11). Considering the imperfect inter-
faces, the stress component changes more evidently in the central
portion x1 < |a| than in the outer portions x1 > |a|, especially the
stress T13 or T 013 changes most severely at the imperfect interfaces,
which can be seen from Figs. 5–7.
5. Conclusions

The effect of the imperfectly bonded interfaces about the thick-
ness–twist mode in an inhomogeneous piezoelectric plate in which
the central portion is different from the rest portions is analyzed
with the spring-type relation, which simultaneously takes the
mechanical imperfection and the electrical imperfection into ac-
count. Results show that the effect of mechanical imperfection is
more evident than that of the electrical imperfection. The linear
relationship between the frequency shift Dx and the non-dimen-
sional number c can be used to measure the level of the interface
bonding. The results theoretically can be used in the design of
wave propagation in the piezoelectric coupled structures with an
imperfect interface.
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