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Abstract. Chemomechanically responsive gels, with great potential applications in the fields of smart struc-
tures and biomedicines, present autonomously oscillatory deformation driven by the Belousov-Zhabotinsky
chemical reaction. The dynamic behavior of the responsive gels is obviously affected by the external me-
chanical load. This approach proposed a kinetic model with an ordinary differential equation to describe
the oscillatory deformation of the gels under the mechanical load. Then the periodic solutions and phase
diagrams of the oscillation are obtained using the improved Runge-Kutta and shooting methods. The
results demonstrated that bifurcations are typically existent in the system and the characters of the oscil-
latory deformation regularly depend on the mechanical load as well as the concentration of reactants and
the stoichiometric coefficient of chemical reaction. This development is supposed to promote the practical
applications of the chemomechanically responsive gels.

1 Introduction

Polymer gel is a complex network with long cross-linked
polymers absorbing a lot of small molecules. Some syn-
thetic gels are volumetrically sensitive to external stimu-
lus, such as pH, temperature, light, and electric field [1–
4]. These responsive gels generate periodic swelling-
deswelling behaviors by rhythmically switching of the ex-
ternal stimulus and are developed as various functional
devices (e.g., actuators, sensors, and micro-valves) [5–
7]. However, a recent development demonstrated that a
gel presents an autonomous self-oscillation driven by the
Belousov-Zhabotinsky chemical reaction (BZ reaction) [8].
The gel exhibits the unique capacity to transduce the
chemical energy to the periodic deformation of the vol-
ume. This behavior is of particular interests because it is a
hallmark of living organisms, for instance, the myocardial
tissue similarly involves the conversion between chemical
energy and mechanical action [9]. Recently, increasing at-
tention is attracted on the related theories, experiments
and applications [10–13].
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In the chemomechanically responsive gels, the reac-
tive catalyst Ru(bpy)3 is bonded on the polymer chains
(fig. 1). The BZ reaction is activated while the gel with
the fixed catalyst is immerged into the reactive solution
without catalyst. During the BZ reaction, the fixed cat-
alyst Ru(bpy)3 periodically transforms between the oxi-
dized state Ru(bpy)3+3 and the reduced state Ru(bpy)2+3 ,
which induces periodic changes of the hydrophobicity of
polymer chains and correspondingly results in the oscilla-
tory deformation of the gel. Moreover, the characters of
the oscillatory deformation greatly depend on the param-
eters of the chemical reaction, such as the concentration
of reactants, stoichiometric coefficients, reaction rate con-
stants and pH [14,15]. On the other hand, a recent exper-
iment demonstrated the influence of mechanical force on
the chemical reaction as well [16]. They resuscitated the
BZ reaction and changed the characters of the reaction
by applying a mechanical load on the gel. Consequently,
the self-oscillation of the gel is a highly coupling process
involving the large deformation of the gel and the com-
plicated mechanism of chemical reaction, which gives con-
siderable challenges to the related researches.

Fortunately, a series of admirable experiments have
been done on the responsive gels and several significant
devices have been invented using the smart materials [17,
18]. For instance, a soft robot, consisting of the smart
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Fig. 1. Schematic of the chemomechanically responsive gels driven by the Belousov-Zhabotinsky (BZ) reaction. The catalyst of
BZ reaction, Ru(bpy)3, is covalently bonded on the polymer chain and performs a redox process during the reaction, switching
between the oxidized state and the reduced state. Different hydrophobicities of Ru(bpy)2+3 and Ru(bpy)3+3 result in the swelling
and deswelling of the gel.

materials, is developed to walk on a platform like an in-
sect [19]. Moreover, these smart materials are also adopted
to make various structures of mass transport, biomimetic
actuator and heart muscle [9,20]. All of the exploratory
applications are designed as dynamic structures induced
by the self-oscillation of the gel. Therefore, comprehensive
analysis of the characters of the oscillatory deformation
could greatly contribute to the practical applications of
the materials.

Besides the experimental achievements, a number of
related explorations have also been done in the field of
theories [21–23]. The first reasonable model of the chemo-
mechanically responsive gels is provided by Yashin and
Balazs [24]. They coupled the deformation of the gel to-
gether with the kinetics of chemical reaction, investigated
the trigger of chemical oscillation in a block of respon-
sive gel induced by mechanical compression [25] and fur-
ther probed the global response of localized mechanical
impact in the gel [26]. It is worth noting that most of
the studies focused on an inhomogeneous gel with a large
size, in which pattern formation and propagation of chem-
ical waves are observed in response to mechanical stim-
uli. These studies, using PDE equations with some spe-
cific system parameters to describe the chemical and me-
chanical evolution, are helpful to the application of self-
oscillating gels in the field of signal transmission and en-
ergy transduction, etc. However, theoretical prediction of

the dynamic behavior of a miniaturized gel with homoge-
neously oscillatory deformation under a mechanical load
is also very important for the application of self-oscillating
gels as micro-actuator, micro-valve, etc.

As a related theory on a miniaturized gel, Suo et al.
proposed another general model to describe large deforma-
tion of a responsive gel considering the diffusion of solvent
in the gel, and comprehensively analyzed the influence of
the mechanical load on the deformation and diffusion [27],
which could be used to describe the mechanical behavior of
a miniaturized gel. Unfortunately the model does not refer
to the kinetics of the chemical reaction. Therefore, a mod-
ified kinetic model considering the externally mechanical
load, deformation of the miniaturized gel and the kinetics
of the chemical reaction is necessary to better uncover the
coupling process between mechanics and chemistry.

For addressing the above objects, this paper proposed
a modified model for the chemomechanically miniaturized
gels under mechanical load. An ordinary differential equa-
tion (ODE) is obtained to describe the real-time state of
the oscillatory deformation. Periodic solutions and phase
diagrams of the self-oscillating process are probed. Finally,
we demonstrated the influence of the mechanical load on
the oscillating system by bifurcation analysis, which could
contribute to the better understanding of the smart ma-
terials and the practical applications.
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Fig. 2. Swelling of a gel with solvent diffusion and mechanical
load. (a) Reference state: a unit cube of dry polymer network.
X is the initial coordinate of a mark on the gel. (b) Current
state: while immerging the dry network into solvent with chem-
ical potential μs, the gel swells by the stretch of λ under the
homogenously mechanical load σ. The mark moves to x(X, t)
due to the deformation of the gel.

2 Theoretical modeling

2.1 Mechanical equilibrium

To begin with the mechanical analysis (fig. 2), a unit cube
of dry network is taken to be the reference state. For char-
acterizing the deformation of the gel while immerging the
dry network into solvent, a mark on the gel moving from
the initial coordinates X to the current position x(X, t)
over a time t is described by the deformation gradient F
with the components

FiK =
∂xi(X, t)

∂XK
, i,K = 1, 2, 3. (1)

After a period of homogenously swelling process by a
stretch of λ, the gel obtains the mechanical equilibrium
among the elastic stress of polymer, externally mechan-
ical load σij and the osmotic pressure of solvent with a
chemical potential μs in the reservoir. Following the previ-
ous approach [28], the influence of solutes on the chemical
potential of solvent is practically ignored while an ideally
dilute solution is considered. Then the equation governing
the mechanical equilibrium is given [27] (see appendix A)

σij =
∂W

∂FiK

FjK

det(F)
− μs

Ω
δij , (2)

where, Ω is the volume of a molecule while δij is a function
defined as δij = 1(i = j) and δij = 0(i �= j). The free
energy of the gel W comes from two parts: stretching the
network and mixing the polymers with solvent molecules,
i.e., W = Wnet + Wmix.

Based on Flory and Rechner’s theories [29], the free
energy of stretching the network is taken to be

Wnet =
1
2
NkBT [FiKFiK − 3 − 2 log(det(F))], (3)

where N is the number of polymer chains per volume in
the reference state, kB is the Boltzmann constant while T
is the temperature of the system.

The free energy of mixing polymer chains with solvent
molecules has been studied by Flory [30] and Huggins [31].
Considering the effect of the fixed metal-ion catalyst, the
form of Flory-Huggins free energy of mixing is modified
as

Wm =
kBT

Ω

[
(det(F) − 1) ln

(
1 − 1

det(F)

)

+(χ − χv · ΩCZ)
(

1 − 1
det(F)

) ]
. (4)

This contribution consists of the entropy of mixing the
polymers and the solvent molecules, and the enthalpy of
mixing with a dimensionless parameter χ. In addition, the
influence of the catalyst bonded on the polymer chains of
the responsive gel is especially considered here, which con-
tributes to the enthalpy of mixing through changing the
hydrophobicity of the polymer chains. The dimensionless
variable ΩCZ is the total volume of the catalyst molecules
Ru(bpy)3+3 in the reaction and χv is the related parameter,
i.e., the enthalpy of mixing also depends on the quantity of
Ru(bpy)3+3 . Then the deformation of the gel is linked with
the oscillating chemical reaction by the item χv · ΩCZ .

Recalling that the volume fraction of polymer chains in
a gel relates to the deformation gradient by φ = 1/det(F)
and setting a homogenously mechanical load σ1 = σ2 =
σ3 = σ (e.g., hydrostatic pressure) and the chemical po-
tential of solvent in the reservoir μS = 0 in eq. (2), cor-
respondingly, eq. (2), together with eqs. (3) and (4), is
specified as

σ = NkBT (φ1/3 − φ)

+
kBT

Ω
[ln(1 − φ) + φ + χφ2 − χvvφ], (5)

where the true concentration of the fixed catalyst in the
current state v relates to the number of catalyst molecules
by v = ΩCZ/det(F). The first item on the right-hand
side of eq. (5) describes the elastic stress of polymer chains
while the last item is related to the osmotic pressure. Here,
we mainly consider the oscillatory deformation of a suffi-
ciently small gel, which means that the diffusion of the sol-
vent is very fast comparing with the process of chemical
reaction and the system obtains mechanical equilibrium
instantaneously during the chemical reaction. When the
gel swells freely without any constraint, i.e., σ = 0, the
elastic stress of polymer chains and the osmotic pressure
of the solvent reach mutual equilibrium and then eq. (5)
is reduced to be similar to the model mentioned in the
literature [15].

2.2 Kinetics of reaction and diffusion

To describe the BZ reaction, Field et al. developed the
Field-Körös-Noyes (FKN) mechanism and gave the Oreg-
onator model to describe the mechanism, including five
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reactions [32]

A + Y
k1H2

−→ X + P, (6a)

X + Y
k2H−→ 2P, (6b)

A + X
k3H−→ 2X + 2Z, (6c)

2X
k4−→ A + P, (6d)

B + Z
k5−→ 1

2
fY, (6e)

where A = [BrO−
3 ], B = [oxidizable species], P = [HOBr],

H = [H+], X = [HBrO2], Y = [Br−] and Z = [Mox].
k1, k2, k3, k4, k5 are, respectively, the reaction rate con-
stants of each reaction. The stoichiometric coefficient f
represents the number of Br− produced by the reduction
of two molecules of Mox, which is changeable for the os-
cillating reactions with different catalysts including Ce4+,
Fe(phen)3+3 and Ru(bpy)3+3 . Moreover, f , also related to
the temperature and pH, is supposed to be larger than 0.5
in an oscillating reaction [33]. For the chemomechanically
responsive gels, the characters of the chemical reaction
and the deformation of the gel obviously depend on the
parameter f .

The Oregonator model treats the concentration of re-
actants A, B, P , H as constants while X,Y,Z are treated
as changeable intermediates. Considering that the concen-
tration of Y changes much faster than X and Z, it is
assumed that dY

dt ≡ 0. Therefore, kinetics of the chemi-
cal reaction could be described with only two variables X
and Z. The dimensionless concentration variables u = X

X0
,

v = Z
Z0

are adopted for the following theoretical analysis,
where X0, Z0 are the reference concentrations.

According to the law of mass conservation, the changes
of the concentration of reactants mainly consist of two
parts: chemical reaction and diffusion, namely

dc

dt
=

(
dc

dt

)
R

+
(

dc

dt

)
D

, c =
[
u
v

]
, (7)

where, (dc
dt )R represents the concentration changes in-

duced by the chemical reaction while (dc
dt )D represents the

concentration changes induced by diffusion.
In this paper, the volume fraction of polymers φ is a

variable to describe the volume changes of the gel. Con-
sidering the influence of polymer network on the concen-
tration of reactants [15,28], the concentration changes of
the two intermediates caused by the chemical reaction are
given as (

dc

dt

)
R

=
[

F (u, v, φ)
εG(u, v, φ)

]
, (8)

where

F (u, v, φ) = (1−φ)2u−u2−(1−φ)fv
u−q(1−φ)2

u+q(1−φ)2
, (9)

G(u, v, φ) = (1 − φ)2u − (1 − φ)v. (10)

In the above equations, the dimensionless parameters ε
and q are related to the initial concentration of reactants

and reaction rate constants, namely

ε =
k5B

k3HA
, q =

2k1k4

k2k3
. (11)

While the gel keeps an oscillatory deformation due to
the chemical reaction, the reactants in the gel diffuse to-
gether with the solvent. The equation of diffusion could
be written as [15](

dc

dt

)
D

=
[
−u(1 − φ)−1 dφ

dt

vφ−1 dφ
dt

]
(12)

2.3 State equations of the gel

To probe the real-time state of the responsive gel, a state

variable y =
[
φ

φ̇

]
is defined to describe the oscillatory

deformation. According to the theories of nonlinear dy-
namics, φ is the generalized displacement of the gel while
φ̇ is the generalized velocity, i.e., φ̇ = dφ/dt. Correspond-
ingly, the governing equation of the state variable could
be derived from the condition of mechanical equilibrium
eq. (5) and the kinetics of reaction and diffusion eq. (7).

The variable v in eq. (5) is reformulated as a function
of φ, namely

v(φ) =
1
χv

{
− σΩ

kBT
· 1
φ

+ ΩN(φ−2/3 − 1)

+
[
ln(1 − φ)

φ
+ 1 + χφ

]}
. (13)

Substituting eqs. (8)-(10) and (12) into eq. (7), together
with eq. (13), gives the governing equations of the oscilla-
tory deformation in the form

ẏ = d

[
φ

φ̇

] /
dt

=

⎡
⎣ φ̇

F (φ,φ̇)
A(φ) − v′(φ)(1−φ)+2v(φ)

(1−φ)2A(φ) φ̇ −
[

1
1−φ + A′(φ)

A(φ)

]
φ̇2

⎤
⎦, (14)

where

A(φ) =
h(φ)/χv − v(φ)/φ

ε(1 − φ)2
, (15)

h(φ) =
σΩ

kBT

1
φ2

− 2
3
NΩφ− 5

3

− ln(1 − φ)
φ2

− 1
φ(1 − φ)

+ χ. (16)

A′(φ) in eq. (14) is the derivative of eq. (15), i.e.,
A′(φ) = dA(φ)/dφ, while similarly v′(φ) is the derivative
of eq. (13). In addition, F (φ, φ̇) in eq. (14) is the reformu-
lation of eq. (9) where the variables u and v are replaced
by the functions of φ and φ̇. Besides the expression of v in
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Fig. 3. Oscillatory deformation of the gel. The volume frac-
tion of polymers φ(t) is related to the current volume of the
gel V (t) and the initial volume of the dry polymers in the ref-
erence state V0. The character of oscillation depends on the
dimensionless concentration of reactants ε (i.e., ε = k5A

k3HB
),

with different values of 0.1, 0.2, 0.3. The other constant di-
mensionless parameters: f = 0.7, χv = 0.105 and − σΩ

kBT
= 0.

eq. (13), the variable u derives from the second component
of eq. (7) with the expression

u = A(φ)φ̇ +
v

(1 − φ)
. (17)

Accordingly, the governing ordinary differential equa-
tion (14), only involving the variable φ, presents the ki-
netic model for studying the dynamic behaviors of the
oscillatory deformation of the gel.

2.4 Periodic solutions

The improved Runge-Kutta numerical method [34] with
changeable steps is adopted to solve eq. (14). Figure 3
gives the simulation of the oscillatory deformation and
shows the influence of the dimensionless concentration of
reactants ε (i.e., ε = k5B

k3HA ) on the characters of oscilla-
tion while the other parameters are kept constant, such as
the dimensionless mechanical load − σΩ

kBT = 0, χv = 0.105
and f = 0.7 while the initial value of φ is selected as 0.06.
Additionally, fig. 3 suggests that the dynamic process of
the gel tends to a periodic oscillation and the frequency is
visibly changeable depending on the concentration of reac-
tants, but the amplitude of deformation changes slightly.
In order to further analyze the state of the gel, the periodic
solution of the oscillation is also obtained by adopting an
improved shooting method [35]: assuming y(0)−y(T ) = 0
(T is the dimensionless period), the periodic solution of os-
cillation is converted to the boundary value problem of the
ordinary differential equation (14) and then the bound-
ary value problem is solved by using the Newton-Raphson
method [36].

Fig. 4. Phase diagrams of the limit-cycle oscillation of the gel.
The changing rate of the volume fraction of polymers φ̇ is plot-
ted with respect to the volume fraction φ. The stoichiometric
coefficient f of the BZ reaction depends on the type of cat-
alyst, pH and temperature. The other constant dimensionless
parameters: f = 0.7, ε = 0.354 and − σΩ

kBT
= 0.

3 Results and discussion

3.1 State analysis of a free gel

In the phase space of the oscillatory deformation of a free
gel without any mechanical load, we obtained the phase
diagrams of limit-cycle oscillations plotting the general-
ized velocity of the gel φ̇ with respect to the generalized
displacement φ within a period solved by the shooting
method (fig. 4). Each cycle represents the periodic solu-
tion of the oscillatory deformation with different values
of the stoichiometric coefficient f , i.e., the state diagrams
of the gel depend on several factors, such as the type of
catalyst, temperature and pH. Here, taking the cycle with
f = 0.7 as an example, φ changes between 0.004 and 0.054
while φ̇ changes between −0.008 and 0.005. Meanwhile,
fig. 4 shows that the domain of the limit-cycle becomes
narrow while f increases, i.e., changing the stoichiometric
coefficient results in different patterns of oscillatory de-
formation of the gel. Moreover, the maximum values of
φ rarely change while the minimum values of φ are vari-
ous, i.e., different values of f only change the maximum
volume of the gel. When the other parameters are kept
constant (− σΩ

kBT = 0, χv = 0.105 and ε = 0.354) and
f is sufficiently large, it is predicted that the limit-cycles
shrink toward the stable point (0.054, 0). A deductive rea-
son for this phenomenon is that a bigger value of f means a
higher catalytic efficiency of the fixed catalysts, and conse-
quently less catalysts are needed to periodically transform
between the states of Ru(bpy)3+3 and Ru(bpy)2+3 while
the redundant catalysts consistently maintain the state of
Ru(bpy)2+3 . In a prepared responsive gel, the total num-
ber of Ru(bpy)3+3 and Ru(bpy)2+3 is constant. The maxi-
mum values of φ (i.e., the minimum volume of the gel) de-
pend on the numbers of Ru(bpy)2+3 and rarely change be-
cause all of Ru(bpy)3 have been in the state of Ru(bpy)2+3
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Fig. 5. Sensitivity of the dynamic behavior of the gel. With
the same initial values of volume fraction, φ(0) = 0.06, and
system parameters (− σΩ

kBT
= 0, χv = 0.105 and f = 0.7), the

gel maintains a periodic deformation while ε = 0.60, but tends
to a steady state while ε = 0.61.

when Ru(bpy)3+3 are completely reduced to the state of
Ru(bpy)2+3 at the stable point of the cycles (0.054, 0).
Differently, the maximum number of Ru(bpy)3+3 present-
ing in the reaction depends on f and affects the minimum
value of φ. For instance, more Ru(bpy)2+3 are activated
to participate in the redox process and transform to the
state of Ru(bpy)3+3 if f is small.

Besides the influence of the stoichiometric coefficient,
the state of the gel is also sensitive to the dimensionless
parameter ε, which is related to the concentration of re-
actants and reaction rate constants. Here, we investigated
two phase diagrams of the gel with slightly different val-
ues of ε, as shown in fig. 5. The gel with ε = 0.60 shows
a limit-cycle oscillation while the gel with ε = 0.61 tends
to a steady state. The initial value for these simulation is
uniformly selected as φ(0) = 0.06.

3.2 State analysis of a constrained gel

Being different from the phase diagrams of the free gel, bi-
furcation, a unique phenomenon in the nonlinear dynamic
system, is analyzed to further uncover the state changes
of the constrained gel with a mechanical load. Figure 6
gives a series of bifurcations under different mechanical
loads and shows the state changes of the gel depending
on f . Recalling the relation among the current volume of
the gel V , the initial volume of dry polymers V0 and the
volume fraction of polymers φ as V

V0
= 1

φ , we used the cur-
rent volume to analyze the bifurcations of the gel in this
section. If there is no mechanical load, i.e., the dimen-
sionless parameter − σΩ

kBT = 0 (fig. 6, blue line), the gel
presents a steady state with a sufficiently large or small
values of f but the volumes of the steady states are var-
ious. When f locates in the middle range (i.e., approx-
imately 0.6 < f < 1.1), the gel maintains a continuous
oscillation between the maximum volume and the mini-
mum volume.

Fig. 6. f -related bifurcations of the state of the gel. Un-
dergoing a dimensionless mechanical load − σΩ

kBT
, the volume

changes of the gel, V/V0, is plotted as a function of the stoi-
chiometric coefficient f . For each curve with different mechan-
ical loads (0, 0.0001, 0.0002, 0.0003), the maximum volume
Vmax and minimum volume Vmin of the gel are different in
the middle section (i.e., approximately 0.6 < f < 1.1), which
means that the gel maintains a periodic deformation (oscilla-
tory state). Differently, the maximum volume and the mini-
mum volume merge together while f is sufficiently small or
large (i.e., approximately f < 0.6 or f > 1.1), which indi-
cates that no oscillation exists in this area (steady state). In
addition, ε = 0.354; χ = 0.105.

If there is a mechanical load applying on the gel, the
maximum volume of the oscillatory state of the gel de-
creases with the mechanical load increasing (− σΩ

kBT =
1 × 10−4, 2 × 10−4, 3 × 10−4). Meanwhile, the amplitudes
of oscillatory deformation get smaller and, on the oppo-
site, the range of f for the continuous oscillation becomes
a little bigger.

In addition to the influence of a mechanical load on
the f -related bifurcations, we also analyzed the bifurca-
tions with respect to the concentration of reactants under
a mechanical load, because the concentration of reactants
is a much easier factor to control within the application
of the responsive gel. Figure 7 presents the bifurcations
of the constrained gel depending on ε. It is obvious that
the gel exhibits oscillatory deformation while ε is smaller
than the critical value and keeps in a steady state once
ε exceeds the critical value. What is more important is
the influence of mechanical load on the bifurcations. The
amplitudes of the oscillatory deformation decrease with
the mechanical load increasing and meanwhile the critical
value of ε obviously becomes larger. Interestingly, within
a certain range of the concentration of reactants (i.e., ap-
proximately 0.6 < ε < 0.7), the state of the gel is uniquely
sensitive to the mechanical load, i.e., the state of the gel
could transform from a steady state to an oscillatory state
while the mechanical load increases but the other param-
eters are kept constant, which indicates a potential appli-
cation of the gel as a force-sensor.
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Fig. 7. ε-related bifurcations of the state of the gel. In the
left part of each curve with different mechanical loads (i.e.,
− σΩ

kBT
= 0, 0.0001, 0.0002, 0.0003), different values of Vmax

and Vmin indicate the oscillatory state of the gel. While ε is
larger than the critical points, the gel comes into a steady
state. Here, f = 0.7; χ = 0.105.

4 Remarks

Coupling the thermodynamics of the gel and kinetics of re-
action and diffusion, this paper developed a kinetic model
to describe the dynamic behaviors of chemomechanically
miniaturized gels under mechanical load. The oscillatory
deformation of the gel is theoretically governed by an or-
dinary differential equation (ODE). State analysis, based
on the solution of the ODE by improved Runge-Kutta
and shooting numerical methods, suggests that the gel
presents a periodically oscillatory deformation with the
form of limit-cycle pattern in the phase diagrams, but the
gel tends to a steady state while the parameters of the
system (e.g., the stoichiometric coefficient and reactant
concentration) locate in the improper ranges. Addition-
ally, the diagrams of bifurcations further suggest that the
state of the gel visibly depends on the mechanical load
as well as the parameters of the system, i.e., the charac-
ters of the oscillatory deformation and the critical points
of bifurcations are obviously affected by the mechanical
load. These results may be helpful to the inventive in-
sights of the practical applications of the smart materi-
als.

This work was supported by the National Natural Science
Foundation of China (Grant No.11072185), the National “111
Project” Foundation of China (Grant No. B06024) and “Zhi
Gu” Innovation Program of Southern China. In addition, this
work was based on some constructive suggestion from Prof.
Zhigang Suo while the first author studied at Harvard Univer-
sity (US) as a joint PhD candidate.

Appendix A.

Appendix A.1. Mechanical equilibrium: eqs. (2)
and (5)

Thermodynamics dictates that the Helmholtz free energy
(G) of the system should never increase, namely

δG ≤ 0. (A.1)

The inequality holds when the system is not in equilib-
rium, and the equality holds when the system is in equi-
librium.

The change of Helmholtz free energy of the system is
the sum over the parts: the free energy (W ) in the gel, the
free energy in the external solution, and the mechanical
force doing work, namely

δG = δW − μsδC − siKδFiK . (A.2)

μs is the chemical potential in the reservoir while C is the
number of solvent molecules in the gel. siK is the compo-
nent of normal stress applied on the gel. FiK is the com-
ponent of deformation gradient F. The Helmholtz free en-
ergy of the gel is taken to be a function of the deformation
gradient and the number of solvent molecules

W = W (F, C). (A.3)

Taking a unit cube of dry polymers as a reference state,
we assume that individual polymers and solvent molecules
are incompressible, namely

1 + ΩC = det(F), (A.4)

where, Ω is the volume of a molecule.
The condition of incompressibility indicates that C

and FiK are not independent variables in eqs. (A.2)
and (A.3). According to differential calculus, when the
gel absorbs a number of solvent molecules and deforms by
δFiK , the free energy of the gel changes by

δW =
∂W

∂FiK
δFiK . (A.5)

Recalling the relation ∂ det(F)/∂FiK = HiK det(F),
eq. (A.4) gives

δC =
1
Ω

HiK det(F)δFiK . (A.6)

Together with (A.5) and (A.6), (A.2) becomes

δG =
[

∂W

∂FiK
− μs

Ω
HiK det(F ) − siK

]
δFiK . (A.7)

The system is always considered in the state of thermody-
namic equilibrium. According to eq. (A.1) and eq. (A.7),
we obtain

siK =
∂W

∂FiK
− μs

Ω
HiK det(F ). (A.8)
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Considering that the true stress relates to the nomi-
nal stress by σij = siKFjK/det(F) and the definition
HiKHjK = δij , the equation governing the mechanical
equilibrium is given as

σij =
∂W

∂FiK

FjK

det(F)
− μs

Ω
δij , (A.9)

where δij is a function defined as δij = 1(i = j) and δij =
0(i �= j).

The free energy of the gel W comes from two parts:
stretching the network and mixing the polymers with sol-
vent molecules, i.e., W = Wnet + Wmix, which is given as
eqs. (3) and (4).

Together with eqs. (3) and (4), eq. (A.9) is specified as

σij = NkBT

[
FiKFjK

det(F)
− δij

det(F)

]
+

kBT

Ω

×

⎡
⎣ ln

(
1 − 1

det(F)

)
+ 1

det(F)+

(χ − χv · ΩCZ) 1
det(F)

1
det(F)

⎤
⎦

×δij −
μs

Ω
δij . (A.10)

Recalling that the volume fraction of polymer chains in
a gel relates to the deformation gradient by φ = 1/det(F)
and setting a homogenously mechanical load σ1 = σ2 =
σ3 = σ (e.g., hydrostatic pressure) and the chemical po-
tential of the solvent in the reservoir μS = 0 in eq. (A.9),
correspondingly, eq. (A.10) is simplified as eq. (5).

Appendix A.2. State equation: eq. (14)

The derivative of eq. (13) is

dv

dt
=

h(φ)
χv

dφ

dt
, (A.11)

where h(φ) is given as eq. (16).
Combining eq. (A.11) and the expression of dv/dt in

eq. (7), the variable u is solved as a function of v and φ,
namely

u = A(φ)
dφ

dt
+

v

(1 − φ)
, (A.12)

where A(φ) is given in eq. (15).
Consequently, the derivative of u gives

du

dt
= A′(φ)

(
dφ

dt

)2

+ A(φ)
d2φ

dt2

+
v′(φ)(1 − φ) + v(φ)

(1 − φ)2
dφ

dt
, (A.13)

where A′(φ) is the derivative of A(φ), i.e., A′(φ) =
dA(φ)/dφ, while similarly v′(φ) is the derivative of v(φ)
in eq. (13).

By eliminating du/dt in eqs. (A.13) and (7), the state
equation of φ is given as

d2φ

dt2
=

F
(
φ, dφ

dt

)
A(φ)

−
[
A′(φ)
A(φ)

− 1
1 − φ

](
dφ

dt

)2

−v′(φ)(1 − φ) + 2v(φ)
(1 − φ)2

dφ

dt
. (A.14)

According to the theories of dynamics, the governing
equation (A.14) is reformulated as eq. (14).
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