
Cancer Treatment Reviews 38 (2012) 904–910
Contents lists available at SciVerse ScienceDirect

Cancer Treatment Reviews

journal homepage: www.elsevierheal th.com/ journals /c t rv
New Drugs

Interleukin-6 signaling pathway in targeted therapy for cancer

Yuqi Guo a,b, Feng Xu c,d, TianJian Lu c,d, Zhenfeng Duan b, Zhan Zhang a,b,⇑
a The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
b Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital, Boston, MA, USA
c The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, PR China
d Biomedical Engineering and Biomechanics Center, Xi’an Jiaotong University, Xi’an, PR China

a r t i c l e i n f o
Article history:
Received 4 August 2010
Received in revised form 9 February 2012
Accepted 26 April 2012

Keywords:
Interleukin-6
Stat3
Monoclonal antibodies
Targeted therapy
Cancer
0305-7372/$ - see front matter � 2012 Elsevier Ltd. A
http://dx.doi.org/10.1016/j.ctrv.2012.04.007

⇑ Corresponding author. Address: Department of
Third Affiliated Hospital of Zhengzhou University, Z
Tel.: +11 86 371 66991970; fax: +11 86 371 6699197

E-mail address: ttahozzu@yahoo.com (Z. Zhang).
s u m m a r y

Interleukin-6 (IL-6) is a multifunctional cytokine which plays an important role in a wide range of
biologic activities in different types of cell including tumor cells. IL-6 is involved in the host immune
defense mechanism as well as the modulation of growth and differentiation in various malignancies.
These effects are mediated by several signaling pathways, in particular the signal transducer and
transcription activator 3 (Stat3). There exists abundant evidence demonstrating that deregulated overex-
pression of IL-6 was associated with tumor progression through inhibition of cancer cell apoptosis, stim-
ulation of angiogenesis, and drug resistance. Clinical studies have revealed that increased serum IL-6
concentrations in patients are associated with advanced tumor stages of various cancers (e.g., multiple
myeloma, non-small cell lung carcinoma, colorectal cancer, renal cell carcinoma, prostate cancer, breast
cancer and ovarian cancer) and short survival in patients. Therefore, blocking IL-6 signaling is a potential
therapeutic strategy for cancer (i.e., anti-IL-6 therapy) characterized by pathological IL-6 overproduction.
Preliminary clinical evidence has shown that antibody targeted IL-6 therapy was well tolerated in cancer
patients. In this review, we detail the progress of the current understanding of IL-6 signaling pathway in
cancer as well as an antibody targeted IL-6 therapy for human cancer.

� 2012 Elsevier Ltd. All rights reserved.
Introduction

Initially identified as a T-cell-derived regulating factor in B cell
differentiation, Interleukin-6 (IL-6, a glycoprotein composed of 184
amino acids and of 26 kDa in molecular weight) is now known as a
multi-functional cytokine.1–5 Following the cloning of IL-6 DNA, it
has been shown that IL-6 can be produced by various cell types,
including tumor cells. IL-6 plays important roles in with a wide
range of biological activities in immune regulation, hematopoiesis,
and oncogenesis. IL-6 has been found to be involved in normal cell
inflammatory processes, host immune defense mechanisms, and
modulation of cellular growth. IL-6 is able to cross the blood–brain
barrier and resulting synthesis of PGE2 in the hypothalamus, there-
by changing the body’s temperature set point.6 In normal muscle
tissue, IL-6 stimulates energy mobilization which leads to
increased body temperature. IL-6 can be secreted by macrophages
in response to specific microbial molecules. IL-6 stimulates acute
phase protein synthesis, and increases the production of neutro-
phils in the bone marrow. It promotes the growth of B cells and
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is antagonistic to regulatory T cells. Most importantly, IL-6 is
involved in the proliferation and differentiation of various malig-
nant tumor cells.7,8 For example, increased production of IL-6 has
been implicated in a wide range of cancers, such as multiple
myeloma (MM),9–11 endometrial cancer,12 lung cancer,13 colorectal
cancer,14 renal cell carcinoma,15,16 cervical cancer,17 breast can-
cer18,19 and ovarian carcinoma.20,21 Overexpression of both IL-6
and its receptors (IL-6R and sIL-6R) has been found in breast carci-
noma,18 prostate cancer22 and oral squamous cell carcinoma
(OSCC).23 Elevated levels of IL-6 have been found in culture super-
natant of multidrug resistant cell lines24–27 and the elevated IL-6
levels in the serum of cancer patient have been associated with
poor clinical outcomes.28–30 These findings suggest that blocking
IL-6 may prove to be therapeutic for cancer in which IL-6 is
overproduced.

Targeted chemotherapy is an area of great potential in cancer
therapy. Targeted anti-IL-6 antibody therapy has been used in
clinical trials and found to be well tolerated in patients of different
cancers, including ovarian cancer, breast cancer, multiple myelo-
ma, renal cell carcinoma, and B-lympho-proliferative disor-
ders.28,31 Recent studies show that CNTO 328, a chimeric murine
anti-human IL-6 antibody, can neutralize the function of IL-6 and
reduce the incidence of cancer-related anorexia and cachexia
without serious adverse effects.28,31
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In the present review, we describe the advance in IL-6 signaling
pathway and detail the progress of the current state-of-the-art
methods to treat cancers by targeting the IL-6 antibody. We first
present the biology of IL-6 and discuss IL-6 as a prognostic factor
for cancer. Then, we summarize recent advances in the antibody
targeted IL-6 therapy for cancer. Last, we discuss the current chal-
lenges and future prospects of targeting IL-6.
IL-6 signaling pathway in cancer

IL-6 signals through a cell-surface type I cytokine receptor com-
plex consisting of the ligand-binding protein of IL-6Ra chain (also
called CD126), and the signal-transducing component gp130 (also
called CD130). IL-6 belongs to a cytokine family comprising IL-6,
IL-11, leukaemia inhibitory factor (LIF), oncostatin M (OSM), ciliar
neurotrophic factor (CNTF), cardiotrophin-1 (CT-1) and cardio-
trophinlike cytokine (CLC).32,33 These cytokines share a common
glycoprotein 130 receptor (gp130) component34 that modulates
the transcription of several liver-specific genes during acute
inflammatory states. IL-6 affects cell behavior through receptor
type I, which is a type of hematopoietic cytokine gp130 receptor
expressed in lymphoid and nonlymphoid cells as well as malignant
cells. There are two types of receptor for IL-6, i.e., cell membrane
IL-6 receptor (IL-6R) with low affinity that forms a complex with
gp130 after binding with IL-6 and activating the tyrosine kinase
JAK, and a soluble IL-6 receptor (sIL-6R) which binds with IL-6
and then with the membrane receptor b chain – gp130, leading
to the intracellular signal.35,36

The signal transduction of IL-6 involves the activation of janus
kinase (JAK) tyrosine kinase family members, resulting in the
activation of transcription factors of the signal transducers and
activators of transcription 3 (Stat3).32,36 (Fig. 1). A variety of events
take place downstream of gp130 activation through the ligand,
including the activation of cytoplasmic tyrosine kinases and the
modification of transcription factors. Although gp130 has no
intrinsic kinase domain, the JAK1, JAK2 and tyrosine kinase2
(TYK2) of the JAK family are found to be associated constitutively
with gp130 and are activated in response to IL-6 family mem-
bers.32,33,37 The activation of these kinases, in turn, leads to tyro-
sine phosphorylation of the Stat3. Following phosphorylation and
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Fig. 1. IL-6-Jak-Stat signaling pathway. IL-6 binds to the IL-6R and induces a cascade o
translocates to the nucleus where it targets genes involved in apoptosis, proliferation and
acetylation, Stat3 forms a dimer in which the SH2 domain of one
phospho-Stat3 (pStat3) molecule binds to the phosphorylated
Tyr705 of the other and vice versa. The pStat3 dimer then translo-
cates from the cytoplasm to the nucleus.38 Within the nucleus,
pStat3 dimers recognize and bind a canonical 8–10 base pair
inverted repeat DNA element with a consensus sequence 50-
TT(N4–6)AA-30 that is commonly referred to as an interferon
(IFN)-gamma activated sequence (GAS) element. The engagement
of pStat3 dimers then initiates a change in the transcription of a
number of genes including the apoptotic regulatory genes BcL-XL,
MCL-1, XIAP, c-myc, and Fas.39 The termination and modulation
of the IL-6-Jak-Stat3 signalling pathway is mediated by the SOCS
(suppressor of cytokine signalling) feedback inhibitors and PIAS
(protein inhibitor of activated Stat) proteins (Fig. 1). Stat3 also
binds to p53 and inhibit its function as a regulator of apoptosis.
Although the full spectrum of pStat3 target genes is not well de-
fined, Stat3 has been identified as the prime transcriptional regula-
tor mediating the IL-6 dependent cell growth, differentiation, and
survival signals.33,40 This critical function of Stat3 is supported by
experiments demonstrating that the transfection of dominant-neg-
ative Stat3 completely inhibits the anti-apoptotic effect of IL-6 in
carcinoma cells.41 In addition to Stat3 signaling pathway, IL-6 also
activates Ras, MAPK, Cox-2, Wnt and PI3K/AKT pathways.42,43

These different pathways together contribute to the pro-tumori-
genic and antiapoptotic activities of IL-6. In myeloma cells, at least
two independent pathways by which IL-6 can activate PI3K and
AKT, One pathway was mediated through RAS activation which
was independent of p85, and a second that was mediated via
p85 and a Stat3-containing complex. Additional studies in onco-
genic, mutated RAS-containing myeloma cells confirmed the exis-
tence of the RAS-mediated pathway of PI3K-AKT activation.44 In
another study, IL-6 was dependent on c-Met signaling in activating
both Ras and p44/42 MAPK by a mechanism involving the tyrosine
phosphatase Shp2.45
Potential roles of IL-6 in cancer

IL-6 is one of the most ubiquitously deregulated cytokines in
cancer, with over-expression of IL-6 observed in virtually every
tumor that has been studied.12,46–48 Several investigators have
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Table 1
Potential roles of IL-6 in tumorigenesis.

Cancer Related factor (s) Mechanism (s) Refs.

Multiple myeloma Myc, Stat3, FGFR Transformation, growth 83,84

Ovarian cancer Stat3, VEGF Growth, drug resistance 70,71

Lung cancer EGFR, Stat3 Transformation 72–74

Bladder cancer NF-kappaB Transformation 75–77

Breast cancer Notch, Ras, HER2 Transformation 68,78,79

Colon cancer Stat3, c-Myc Proliferation 80

Prostate cancer IGF-1R, ErbB2 Growth 81,82
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reported an aberrant IL-6 pathway activation in a variety of human
cancer cell lines and solid tumors, including epithelial tumors of
ovary, breast and prostate as well as multiple myelomas, leuke-
mias and lymphomas.12,21,48–52 IL-6 has been found to play an
important role in various tumor behaviors including the develop-
ment, cell migration, invasion, growth of malignancies,53 prolifera-
tion, apoptosis,54 progression,28,55 angiogenesis and differentiation
of tumor cells.56 For example, IL-6 aids tumor growth by inhibiting
cancer cell apoptosis and inducting tumor angiogenesis,57,58 and
contributes to the proliferation of colorectal cancer cells and other
cancers, especially at the advanced stage of development.59 IL-6
has also been shown to enhance endothelial cell migration,60 a
key step in angiogenesis, and dissemination of solid tumors.
Furthermore, certain tumors including myeloma, AIDS associated
Kaposi sarcomas, and some T and B-cell lymphomas are all stimu-
lated by IL-6.29,61

The role of IL-6 has been related to other factors. For example,
IL-6 regulates tumor cell proliferation through activation epithelial
growth factor, hepatocyte growth factor and other factors.62–65 It
stimulates angiogenesis and tumor vascularisation through regu-
lates vascular endothelial growth factor (VEGF) synthesis.66

In cancer stem cell studies, IL-6 has been implicated as a poten-
tial regulator of normal and tumor stem cell self renewal.67,68

Human primary mammospheres (MS) from node invasive breast
carcinoma tissues expressed higher IL-6 levels than MS from
matched non-neoplastic mammary glands did. IL-6 mRNA was de-
tected only in basal-like breast carcinoma tissues, which is an
aggressive breast carcinoma variant exhibiting stem cell features.
IL-6 treatment triggered Notch-3-dependent upregulation of the
Notch ligand Jagged-1 and promoted MS and MCF-7-derived
spheroid growth. Moreover, IL-6 induced the Notch-3-dependent
upregulation of the carbonic anhydrase IX gene and promoted a
hypoxia-resistant/invasive phenotype in MCF-7 cells and MS.
Finally, autocrine IL-6 signaling relied heavily upon Notch-3 activ-
ity to sustain the aggressive features of MCF-7-derived hypoxia-se-
lected cells.68 These studies support the hypothesis that IL-6
induces malignant features in Notch-3-expressing stem/progenitor
cells from human ductal breast carcinoma and normal mammary
glands. Recently, the IL-6 downstream protein Stat3 has been
found to regulate cancer stem cells in brain tumors as well.69 When
Stat3 is inhibited, cancer stem cells in glioblastomas lose their
stem-cell characteristics permanently, suggesting that Stat3 regu-
lates the growth and self-renewal of stem cells within glioblasto-
mas. Strikingly, a single, acute treatment with Stat3 inhibitors
was effective, implying that a Stat3 inhibitor does in fact stop
tumor formation.69 In summary, the potential roles of IL-6-Jak-Stat
signaling pathway in tumorigeneis have been reported in different
tumor models, including ovarian,70,71 lung,72–74 bladder,75–77

breast,68,78,79 colon,80 prostate cancer,81,82 and multiple myelo-
ma83,84 (Table 1).

IL-6 has also been correlated with cancer drug resistance where
modulating the IL-6 pathway directly affects the cellular resistance
to drug treatments. For example, breast cancer cells that are sensi-
tive to drug treatment do not express IL-6, but multi-drug resistant
breast cancer cells produce high levels of IL-6.51 IL-6 is found to be
an autocrine and paracrine growth factor for prostate cancer cell
lines and serves as a resistance factor for cisplatin-mediated cyto-
toxicity.50 Treatment with combined cisplatin and an anti-IL-6 or
IL-6R antibody reverses the cisplatin resistance of renal carcinoma
cell lines in vitro.85 Similarly, exogenous IL-6 treatment rendered
tumor cells resistant to apoptosis induced by a number of cytotoxic
agents including doxorubicin, VP-16 and cisplatin.26 In contrast,
specific blockade of IL-6 by antisense oligonucleotide sensitized
the effect these drugs had on tumor cells.26 Finally, we and others
have shown that IL-6 production is increased in ovarian cancer cell
lines resistant to paclitaxel as well as in serum and ascites of ovar-
ian cancer patients.21,24,46,49 Stat3 is overexpressed in most paclit-
axel-resistant ovarian cancer cells. Inhibition of Stat3 activation
results in significant decreases in paclitaxel resistance and en-
hanced apoptosis. Drug-resistant recurrent tumors have signifi-
cantly greater phosphorylated Stat3 (pStat3) expression as
compared with matched primary tumors. Tumors with associated
inflammatory cell infiltrates also have a higher proportion of cells
staining intensely for nuclear phosphorylated Stat3 as compared
with tumors without inflammatory infiltrates, consistent with par-
acrine activation of the Stat3 pathway by immune-mediated cyto-
kines IL-6.86 IL-6 is also promoting tumor cell to escape cell death
induced by chemotherapy drugs. IL-6 increases the expression of
several antiapoptotic proteins through Stat3. Together, these data
strongly support the theory that IL-6 is a potent and clinically
important regulator of anti-apoptotic gene expression and drug
resistance.

Preclinical and translational findings indicate that IL-6 plays an
important role in diverse malignancies and provides a biologic
rationale for targeted therapeutic investigations. The success in
treating certain diseases with drugs that antagonize IL-6 signaling
has since provided further support for a pathological role of IL-6 in
cancer. Various compounds antagonize IL-6 production, including
corticosteroids, nonsteroidal anti-inflammatory agents, estrogens,
and cytokines.87 However, as expected, these drugs also have ef-
fects on tumor cells that far beyond their anti-IL-6 properties.28

Current targeted biological therapies mainly focus on IL-6-conju-
gated toxins and mAbs against IL-6 and IL-6R.11,88 For example,
the CNTO 328 antibody has been shown to be capable of neutraliz-
ing IL-6’s function in different types of human cancer including
multiple myeloma89, ovarian cancer,18,28,90–92 and prostate can-
cer.93 Our study shows CNTO 328 specifically suppressed IL-6 in-
duced Stat3 phosphorylation and Stat3 nuclear translocation.
Treatment with CNTO 328 significantly decreased Stat3 down-
stream protein levels, including MCL-1, Bcl-XL and survivin. CNTO
328 also increased the cytotoxic effects of paclitaxel in a paclitaxel
resistant ovarian cancer cell line in vitro (unpublished data). The
down-regulation of IL-6 signaling using the CNTO 328 can enhance
the antitumor activity of the proteasome inhibitor bortezomib in
multiple myeloma by attenuating inducible chemoresistance.90

For example, treatment of both IL-6-dependent and IL-6-indepen-
dent multiple myeloma cell lines with CNTO 328 enhanced the
cytotoxicity of bortezomib. CNTO 328 enhanced bortezomib-med-
iated activation of caspase-8 and caspase-9, and attenuated
bortezomib-mediated induction of antiapoptotic hsp-70.89,90

Methods based on humanized anti-IL-6R mAb (rhPM-1,
IgG1class) have also been developed, such as PM1 tested in pa-
tients with MM and rheumatoid arthritis. Other methods include
using a mixture of anti-IL-6 or anti-IL-6R mAbs that can shorten
the half-life of the IL-6/IL-6R complexes (from 4 days to less than
20 min) in vivo.94,95 Tocilizumab (namely MRA) is a humanized
antihuman IL-6R antibody engineered by grafting the complemen-
tarily determining regions of a mouse anti-human IL-6R antibody
into human IgG1j to create a human antibody with a human
IL-6R binding site.95 Tocilizumab binds to the IL-6-binding site of
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human IL-6R and inhibits IL-6 signaling, leading to the neutraliza-
tion of IL-6 activities.96

More recently, a novel high-affinity fully human anti-IL-6 mAb,
1339 has been developed.9 The mAb 1339 significantly inhibited
the growth of multiple myeloma cells in the presence of bone mar-
row stromal cells in vitro. This is associated with the inhibition of
phosphorylation of Stat3, extracellular signal-regulated kinase 1/
2, and AKT. In addition, mAb 1339 enhanced the cytotoxicity in-
duced by dexamethasone, and other drugs including bortezomib,
lenalidomide, and perifosine in a synergistic fashion. More impor-
tantly, mAb 1339 significantly enhanced the growth inhibitory ef-
fects of dexamethasone in vivo in a SCID-hu mouse model of
multiple myeloma. The mAb 1339 treatment also resulted in the
inhibition of osteoclastogenesis in vitro and bone remodeling in
SCID-hu mode. In addition, several small molecule compounds
inhibit IL-6 or IL-6 downstream proteins have been developed
and currently being evaluated in preclinical and clinical models
of cancer.42
IL-6 as a prognostic factor for cancer

IL-6 concentrations have been found to depend upon tumor
stage, which is correlated with patient survival. For example, serum
IL-6 concentration in patients is associated with the progression,
histological grade, bowel wall invasion,97,98 as well as tumor size
and shorter survival periods99 of colorectal cancer. Serum IL-6 con-
centration has also been found to be correlated with the different
stages of pancreatic cancer in patients with cachexia.100 Higher ser-
um and ascites levels of IL-6 have been found in patients with ovar-
ian cancer, which have been shown to correlate with the extent of
the disease and poor clinical outcome.41,49,50,57,101 Existing studies
report that the concentrations of IL-6 were significantly higher in
patients with breast carcinoma in the advanced stage of the tumor,
especially those having liver metastases.102 In patients with high IL-
6 concentrations, the response to treatment with chemotherapy
and hormone therapy was worse.102 Patients with higher IL-6 levels
have a shorter survival while a reduction in the levels of IL-6 was
visible in patients who responded better to therapy.101,102 Our re-
cent study in ovarian cancer shows there is a trend toward greater
IL-6 expression in the recurrent tumors as compared with the
matched primary tumors. There is also an increase in the intensity
of IL-6 expression in the recurrent metastatic lesion as compared
with the primary metastasis.103 These results suggest that IL-6
has the potential to be used as an independent prognostic factor
for cancer. For example, the role of IL-6 as a prognostic factor has
been found in stomach cancer104–106 and breast carcinomas.19
Targeting IL-6 with monoclonal antibody for cancer therapy

Most of the clinical experience in direct inhibition of IL-6 for
cancer therapy has been with the use of murine or humanized
monoclonal antibodies (McAbs). Several IL-6 antibodies have been
developed in recent years and evaluated in clinical trials, such as
anti-IL-6 chimeric McAb, CNTO 328 (Siltuximab) developed by
Centocor and BE-8, developed by Diaclone.9,28,31 Earlier investiga-
tions used BE-8, a murine anti-IL-6 monoclonal antibody which
is, however, associated with several problems.28 For example, BE-
8 cannot efficiently block the daily production of IL-6 levels
>8 mg.28,107 Moreover, it is difficult to suppress delayed IL-6
production without performing repeated dosing due to the short
half-life of BE-8 (3–4 days). This is a challenge as murine antibod-
ies generally are neutralized by human antimouse responses.28,108

On the other hand, CNTO 328 is a human-mouse chimeric anti-
body, constructed from a murine anti IL-6 McAb, with anti-tumor
and anti-inflammatory activities.31,108 It contains the antigen-
binding region of the human immunoglobulin G j (IgG j) immu-
noglobulin and the variable antigen-binding region of the murine
anti-IL6 antibody. CNTO 328 has a long half-life (approximately
2 weeks) without significant immunogenicity and hence may be
more beneficial clinically relative to BE-8. It also has a high affinity
for recombinant as well as native IL-6. This feature enables it to in-
hibit the binding of IL-6 to the IL-6R, resulting in the blockade of
the IL-6/IL-6R/gp130 signal transduction pathway and, subse-
quently, antitumor and anti-inflammatory activities.31,93,108 CNTO
328 has been for a phase II multicenter trial in multiple myeloma.
In addition to BE-8 and CNTO 328, several fully human McAb or
humanized McAb to IL-6 have also been developed, including
CNTO 136 and ALD518.109 These IL-6 antibodies have been evalu-
ated in clinical trials in patients with rheumatoid arthritis and
systemic lupus erythematosus.109
Targeted IL-6 as a potential clinical therapy for cancer

CNTO 328 also shows promise for ovarian cancer in clinical
trials.110 In this trial, the primary endpoint was response rate as as-
sessed by combined RECIST and CA125 criteria. One patient of
eighteen evaluable had a partial response, while seven others
had periods of disease stabilization. In patients treated for
6 months, there was a significant decline in plasma levels of IL-6-
regulated CCL2, CXCL12, and VEGF. Gene expression levels of fac-
tors that were reduced by CNTO 328 treatment in the patients sig-
nificantly correlated with high IL-6 pathway gene expression and
macrophage markers in microarray analyses of ovarian cancer
biopsies. The investigators noted that the percentage of women
who received clinical benefit from CNTO328 is an unusually high
proportion for an experimental cancer drug study. Typically, only
5–20% of participants secure any benefit from taking untried treat-
ments, according to the investigators.110 In a phase I/II study of
CNTO 328 in metastatic renal cell cancer, the results showed CNTO
328 was well tolerated overall, with no maximum tolerated dose or
immune response observed. CNTO 328 stabilised disease in >50% of
progressive metastatic renal cell cancer patients with one partial
response was observed.111 In a phase I study of prostate cancer
patients, no adverse events related to CNTO 328 treatment were
observed. Patients treated with CNTO 328 showed with higher lev-
els of apoptosis markers. Following a single dose, serum concentra-
tions of CNTO 328 declined in a biexponential manner. The study
also showed a decrease in pStat3 and p44/p42 mitogen-activated
protein kinases. In addition, gene expression analyses indicate
down-regulation of genes immediately downstream of the IL-6 sig-
naling pathway and key enzymes of the androgen signaling path-
way.112 In a trial for patients with metastatic castration-resistant
prostate cancer who received prior docetaxel-based chemother-
apy, treatment with CNTO 328 plus mitoxantrone/prednisone
was well tolerated, although improvement in outcomes was not
demonstrated.113 In another phase II trial of CNTO328 in chemo-
therapy-pretreated patients with castration-resistant prostate
cancer, treatment of CNTO 328 resulted in a PSA response rate of
3.8% and a RECIST stable disease rate of 23%. Despite evidence of
CNTO-mediated IL-6 inhibition, elevated baseline IL-6 levels por-
tended a poor prognosis.114 These clinical trial results highlight
the fact that the efficiency of CNTO 328 based strategy may be im-
proved in combination with other chemotherapy agents.

Antibody targeted IL-6 therapy using BE-8 or CNTO 328 has also
been applied in clinical trials in patients with lymphoma, myelo-
ma, renal cell carcinoma, Castleman disease, and B-lympho-prolif-
erative disorders.108,115 Improved performance status and
amelioration of fever in patients without serious adverse effects
have been observed.108 Clinical trials using BE-8 to treat HIV-1-po-
sitive patients with immunoblastic or polymorphic large cell lym-



Table 2
Recent and on-going trials with the anti-IL-6 signaling drugs.

Agent Target Disease Refs.

CNTO 328 IL-6 Ovarian cancer
Renal cell cancer
Prostate cancer
Castleman disease

110–115

BE-8 IL-6 Lymphoma
Multiple myeloma

107,116

Tocilizumab IL-6R Arthritis
Castleman disease

Crohn’s disease
Oral cancer

23, 117–121

Jak inhibitor Jak Myeloproliferative neoplasms
Psoriasis

122–125
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phoma showed that antitumor activity was not only limited and
inconsistent but also associated with side effects of reduced plate-
let count.116 A combination therapy of BE-8, DXM and high-dose
melphalan, followed by autologous stem cell transplantation, has
been shown to significantly inhibit IL-6 activity in advanced MM
patients without toxic or allergic reactions.107 However, side
effects of increased incidence of thrombocytopenia and neutrope-
nia were observed.107 Clinical studies have shown that the inhibi-
tion of IL-6 signaling by Tocilizumab is therapeutically effective in
rheumatoid arthritis, juvenile idiopathic arthritis, Castleman’s dis-
ease, and Crohn’s disease.117–121 Therapies strictly targeting IL-6R
using Tocilizumab are effective in treating oral squamous cell car-
cinoma through inhibiting angiogenesis.23 However, there is yet no
evidence showing whether it is a better strategy to inhibit the IL-6
ligand or block the IL-6R completely. In a phase I study in patients
with Castleman’s disease, eighteen (78%) of 23 patients (95% CI,
56% to 93%) achieved clinical benefit response (CBR), and 12 pa-
tients (52%) demonstrated objective tumor response. The overall
results suggest that CNTO328 is an effective treatment with favor-
able safety for the management of Castleman’s disease.115 Re-
cently, inhibitions of IL-6 signaling through different Jak
inhibitors have been reported in the treatment of myeloprolifera-
tive neoplasms and psoriasis.122–125 (Table 2)

Conclusions

The increasing knowledge regarding the molecular biology
mechanisms of IL-6 and its interrelations to human cancer will
lead to the development of novel antibody based therapies. New
IL-6 target treatments not only target malignant tumor cells, but
also target the interactions of cancer cells with their microenviron-
ment. Extensive studies have identified IL-6 as a crucial part of
tumor cell survival, proliferation, migration and drug resistance
(Fig. 1, Table 1). The identification of novel IL-6 antibodies in the
laboratory is followed by rationally designed clinical trials that val-
idate these antibodies, either as a single agent or in combination
with other chemotherapy drugs. During the last decade, several
McAbs that inhibit IL-6 activity in preclinical models have been
developed, with promising results both in cancer cell lines and ani-
mal models. Further investigations in xenograft tumor models are
needed for predictions of the therapeutic efficacy of IL-6 McAbs. In
addition, several of the IL-6 McAbs and IL-6 downstream protein
small molecule inhibitors are now undergoing phases I and II clin-
ical trials, which will continue to establish the therapeutic efficacy
of anti-IL-6 therapy in human cancer (Table 2).
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