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1. Introduction

The propagation of sound in a micro-slit is a fundamental 
problem in acoustics, serving the physical basis for character-
izing sound absorbers designed with micro-slits [1] and porous 
media [2, 3]. These structures (e.g. micro-slit absorbers [4]) 
can be used as sound absorption materials in ventilation sys-
tems [5], aerocraft [6] and public buildings [7]. The problem 
has been extensively investigated during the past century.

The pioneering work was attributed to Rayleigh [8], who 
calculated the acoustic field between two parallel plates by 
solving Navier–Stokes equations. Under the assumptions that 
the viscous skin depth was a small fraction of the slit width, 
an approximated solution of the acoustic field was obtained. 
Nonetheless, although the solution has wide applicability it 
is unnecessarily complicated. Allard and Atalla [2] simpli-
fied the analysis by assuming that the flow was incompress-
ible and the pressure was constant on a cross-section. By 
separately solving the fluid and heat transfer equations, they 

obtained analytical expressions of velocity components and 
temper ature distribution. Exact solutions of sound field in 
uniform pores having circular, slit, rectangular and triangular 
cross sections were presented by Stinson and Champoux [9]. 
For a single slit, they considered separately and described 
the viscous effect and thermal effect of the sound field by 
an exact solution involving the hyperbolic tangent function. 
By introducing the concepts of tortuosity and porosity, they 
further analyzed the effective density and effective modulus 
of parallel smooth slits, as well as parallel smooth channels 
having other pore shapes, and validated these theoretical solu-
tions against experimental measurements. Besides, for mul-
tiple micro-slits with varied widths distributed in parallel or 
series, the acoustic parameters can be determined using semi- 
phenomenological methods. Following Johnson et  al [10] 
who defined and calculated the viscous characteristic length 
and tortuosity in order to determine acoustic properties in the 
lower- and upper- frequency limits, Allard et al [11] analyzed 
the thermal behavior of sound propagation. To determine the 
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necessary important acoustic parameters, Horoshenkov et al 
[12, 13] developed an analytical method to calculate the vis-
cosity correction function in porous media with both uniform 
and non-uniform cross section area, where a log-normal pore 
size distribution was taken into consideration. Based on the 
two-point Pade approximation, they successfully obtained 
simple solutions of the viscosity correction function, which 
were proved to be of high accuracy in whole frequency range. 
Their work was considered to be quite useful because the 
param eters used in their solutions were routinely obtained in 
the characterization of porous media. Following their approach, 
we also tried to obtain simple solutions of the acoustic param-
eters of micro rough slits as functions of the basic geometrical 
parameters of the surface roughness. In general, for a single 
slit or parallel slits having the same cross-sectional area, there 
is an exact solution of the sound field. However, for multi slits 
with varying cross-sectional areas along the length, there is no 
exact solution. As a result, one needs to investigate the asymp-
totic behaviors (i.e. lower- and upper- frequency limits) of the 
channels first and then approximate relevant acoustic param-
eters for much wider frequency ranges.

Great efforts have been made to investigate sound propa-
gation in micro-slits [1, 14–19]. Although existing models 
can provide accurate predictions of the acoustic properties 
of micro-slits, they do not take surface roughness into con-
sideration. Previous theoretical and experimental invest-
igations show that surface roughness can significantly affect 
sound propagation and fluid flow in pipes and slits [20]. In 
the nineteenth century, Darcy [21] introduced a dimension-
less parameter, namely the Darcy friction factor, to evaluate 
the roughness effect on pressure drop. After a series of exper-
imental studies on fluid flow in different kinds of rough pipes 
[22], the Darcy friction factor was found to be influenced by 
both the Reynolds number and relative roughness. Nikuradse 
[23] and Colebrook [24, 25] carefully conducted experiments 
to evaluate the influence of uniform roughness on pressure 
drop, and then proposed approximated equations  to predict 
the Darcy friction factor. Based on Colebrook’s equations and 
experimental data, Moody [26] presented a diagram, where 
the Darcy friction factor is expressed as a function of both 
the Reynolds number and relative roughness. In recent years, 
the flow constriction effect has been discovered from experi-
ments and numerical simulations [20, 27, 28]. For instance, 
Kandlikar [29] revealed that flow inside a channel is resisted 
by the constricted flow diameter. Especially for larger relative 
roughness [30], increasing surface roughness increases pres-
sure drop, leading to a growing Darcy friction factor.

Existing studies concerning the influence of surface rough-
ness on flow field were rarely conducted from an acoustic per-
spective. Stinson and Champoux [9] theoretically investigated 
the influence of pore shape on sound propagation in porous 
media having uniform cross sections  and introduced a new 
shape factor, which was independent of the sound frequency. 
This new shape factor has been widely used as an important 
parameter in the design of micro perforated panel [31]. Cortis 
et al [32] studied the influence of wedge-shaped microstruc-
ture on the acoustic properties of micro channels in the high 
frequency range. Achdous and Avellaneda [33] investigated 

the influence of pore-size dispersion and pore roughness on 
the permeability of porous media. More recently, Meng et al 
[34] calculated the acoustic field in micro tubes covered by 
surface-mounted fibrous roughness elements and provided 
approximated solutions to the velocity and temperature dis-
tributions. Imran Bashir et al [35] experimentally investigated 
the influence of periodic rectangular strips on the propaga-
tion of surface wave and demonstrated that the surfaces com-
posed of parallel strips could be considered as locally reacting 
slit-pore layers. And when the strips were distinct from each 
other, they would behave as the surface with periodic rough-
ness. While these models focused on particular kinds of sur-
face roughness (e.g. wedge- or fibrous-shape), they also had 
quite complicated mathematical forms. In particular, the influ-
ence of wavy-shape roughness, which is believed to be more 
common in nature, is nonetheless analytically studied. From 
an engineering perspective, simple analytical expressions of 
the influence of surface roughness on the acoustic properties 
of micro-slits are preferred.

The present study aims to analyze the acoustic properties 
of micro-slits having periodic wavy roughness. To simplify the 
problem for analytical study, several assumptions are made: 
(1) geometrical dimension of micro-slit (sub-millimeter scale) 
is much smaller than the wavelength of sound wave; (2) wavy 
roughness is evenly distributed on the inner surface of the slit, 
with relatively small amplitude (so that small parameter anal-
ysis is applicable); (3) sound wave is viscous, incompressible 
and traveling under low Reynolds numbers (creeping flow 
regime, �Re 1); (4) flow inside the slit is fully developed, 
with end correction neglected [36]. Under these assumptions, 
analytical models for the key acoustic parameters that govern 
the acoustic properties of micro-slits, including static flow 
resistivity, tortuosity and effective density, are developed. 
For validation, numerical simulations are performed with the 
finite element (FE) code COMSOL.

2. Descriptions of roughened micro-slit

Figure 1 illustrates schematically a single micro-slit with struc-
tured surface roughness: a, named as the diameter of the slit, 
is much smaller than the wavelength of sound; d, representing 
the length of the slit, is large enough to ensure fully developed 
flow in the slit; r, denoted as the amplitude of roughness, satis-
fies r  ⩽  0.1a to ensure small relative roughness; b, defined as 
the wavelength of roughness, is relatively big to avoid large 
slope of the boundary wall (i.e. �b r). Acoustic radiation is 
generated by a plane wave, perpendicular to the inlet cross 
section of the slit (figure 1).

Surface roughness is generated in a wavy pattern, which 
can be characterized as:

ε
ε

= −
= +

Y a g X
Y a g X

1 , up
0 , bottom

( ( ))
( ( )) (1)

where (X, Y ) are the Cartesian coordinates, ε is the relative 
roughness defined by ε  =  r/a, g(X ) is the boundary function 
given by g(X )  =  cos(βx/a), and β represents the wave number 
of roughness, given by β  =  2πa/b.
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3. Analytical model

For sound absorbing porous media, effective density and 
effective compressibility are two of the most important mac-
roscopic acoustic parameters, which are usually very difficult 
to be determined by direct calculations of the acoustic field. 
Often, approximation (semi-phenomenological) models such 
as that proposed by Johnson I [10] are employed, which usu-
ally consist of two parts. The first part determines key acoustic 
parameters in the low and high frequency limits, while the 
second part takes these limits into fitting functions to obtain 
approximate solutions of effective density and effective com-
pressibility for porous media. Such an approach is adopted in 
the present study.

In section 3.1, solutions for flow field and static flow resis-
tivity of rough micro-slit in static incompressible creeping 
flow are obtained using the perturbation method [37–44]. 
Tortuosity is determined in static incompressible inviscid 
flow with the small parameter method [40] in section 3.2. In  
section 3.3, effective density and effective compressibility are 
obtained using the semi-phenomenological model of Johnson 
et al [10].

3.1. Viscous flow field and static flow resistivity

Static flow resistivity in a rough micro-slit can be measured 
in static incompressible creeping flow and defined by [2, 45]

σ =
∆P

dU
 (2)

where σ is the static flow resistivity, ΔP is the pressure drop 
across the slit, d is the length of the slit (figure 1), and U is the 
volume average velocity (i.e. the average velocity of the fluid 
flow in a unit cell).

According to equation  (2), the exact values of average 
velocity and pressure drop are necessary for the calculation. In 
this study, with small relative roughness assumed (i.e. ε � 1), 
the flow field is obtained by solving the dimensionless Stokes 
equations  using the perturbation method [41, 42]. Detailed 
description of the non-dimensional treatment for the system 
is presented in the appendix. With reference to figure 2, the 
Stokes equation in dimensionless form is:

= −∇ +∇p u0 2 (3)

⎧
⎨
⎪

⎩⎪

ε= = =
∂
∂
= = =

u v y g x

u

y
v y

0, at

0, at
1

2

( )
 (4)

where (x, y) are the dimensionless coordinates, u is the velocity 
component in x direction, and v is the velocity component in 
y direction.

Substitution of ψ ψ= ∂ ∂ = −∂ ∂u y v x,/ /  into (3) and (4) 
results in:

Figure 1. Illustration of a micro-slit covered by wavy roughness.

Figure 2. Sketch of a micro-slit with wavy roughness.
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ψ∇ = 04 (5)

⎧

⎨
⎪⎪

⎩
⎪
⎪

ψ ψ
ε

ψ ψ

∂
∂
=
∂
∂
= =

∂
∂
=
∂
∂
= =

x y
y g x

x y
y

0,  at

0, at
1

2

2

2

( )
 (6)

where ψ is the stream function.
The solution to a disturbed system can be expanded 

into a basic solution and a series of disturbed solutions, as 
[40–42]:

ψ ψ εψ ε= + +x y x y x y o, , ,0 1( ) ( ) ( ) ( ) (7)

where ψ0 is the zero order solution and ψ1 is the first order 
solution. For simplicity, only the first order approximation is 
considered in the present study. In order to qualify the distur-
bance source, it is necessary to revise the boundary condition, 
i.e. equation  (6) at y  =  εg(x), by taking Taylor expansion of 
ψ(x, y), as:

( ) ( ) ( )
( )

( ) ( )

( )ψ ψ ε
ψ

ψ ε

= +
∂
∂

+ +

ε= =
=

=

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

x y x y g x
x y

y

x y o

, ,
,

, .

y g x y
y

y

0 0
0

0

1 0

 

(8)

The two terms, ψ∂ ∂ ε=x y g x/ ( ) and ψ∂ ∂ ε=y y g x/ ( ), in (6) can be 
treated in a similar manner. Substitution of (7) into (5) yields:

( )ψ ε ψ ε∇ + ∇ + =o 0.4
0

4
1 (9)

According to the order of the small parameter ε, (9) can be 
decomposed into two independent equations, namely, the 
zero- and first-order equations. The zero-order governing 
equations are given by:

ψ

ψ ψ

ψ ψ

∇ =

∂
∂
=

∂
∂
= =

∂
∂
=
∂
∂

= =

⎧

⎨
⎪⎪

⎩
⎪
⎪

x y
y

x y
y

0

0, 0 at 0

0 at
1

2

.

4
0

0 0

0
2

0
2

 (10)

In dimensionless coordinates, the volume average velocity 
has a magnitude of unity. Therefore, the basic solution is 
ψ = −y y3 20

2 3, resulting in = −u y y6 10 ( ).
The first-order governing equations are:

⎧

⎨
⎪⎪

⎩
⎪
⎪

ψ

ψ ψ
ε β

ψ ψ

∇ =

∂
∂
=

∂
∂
= − + =

∂
∂
=
∂
∂

= =

x y
g x q x y

x y
y

0

0, 6 , , at 0

0 at
1

2

4
1

1 1

1
2

1
2

( ) ( )
 

(11)

where q(x, ε, β) is an additional term introduced to account 
for flow constriction effect, which is a function of position x, 
relative roughness ε and wave number of roughness β. The 
flow constriction effect represents the reduction of hydraulic 
radius in the micro-slit due to surface roughness. To simplify 

the analysis, q(x, ε, β) is replaced below by its integral average 

value in x direction, ∫ε β ε β= β
π

π β
Q q x x, , , d

2 0

2
( ) ( )

/
.

To separate x and y in equation (11), the Fourier transform 
of ψ1 in x direction is performed:

∑ψ ϕ= β

=−∞

∞

y e
k

k
jk x

1 ( ) (12)

where ϕk( y ) is the Fourier expansion of ψ1. Substitution of 
(12) into (11) results in:

( ( ) )

( ) ( )

( ) ( )

∑

∑ ∑

∑ ∑

ϕ

ϕ ϕ

ϕ ϕ

∇ =

∂
∂

=
∂
∂

= − − +

=

∂
∂

=
∂
∂

=

=

β

β β

β β

β β

=−∞

∞

=−∞

∞

=−∞

∞

−

=−∞

∞

=−∞

∞

⎧

⎨

⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

y

x
y

y
y

Q

y

x
y

y
y y

e 0

e 0, e

3e 3e e

at 0

e e

0

at
1

2

.

k
k

jk x

k
k

jk x

k
k

jk x

x x

k
k

jk x

k
k

jk x

4

0

2

2

 

(13)
According to the boundary condition at y  =  0 in (13), only the 
terms of k  =  −1, 0, 1 exist:

ψ ϕ ϕ ϕ= + +β β
−

−y y ye ej x j x
1 1 1 0( ) ( ) ( ) (14)

where ϕ ϕ+β β
−

−y ye ej x j x
1 1( ( ) ( ) ) quantifies the periodic fluctua-

tion of the flow field and ϕ y0( ) quantifies the overall deviation 
of the flow field. Equation (13) can be separated into two inde-
pendent equations. For k  =  −1, 1:

⎧

⎨
⎪⎪

⎩
⎪
⎪

ϕ
β

ϕ
β ϕ

ϕ
ϕ

ϕ
ϕ

∂
∂

−
∂
∂

+ =

=
∂
∂
= − =

=
∂
∂

= =

y y

y
y

y
y

2 0

0, 3, at 0

0, 0, at 1 2

4
1

4
2

2
1

2
4

1

1
1

1

2
1

2
/

 (15)

For =k 0:

/

ϕ

ϕ

ϕ

∂
∂

=

∂
∂
= =

∂

∂
= =

⎧

⎨
⎪
⎪

⎩
⎪
⎪

y

y
Q y

y
y

0

, at 0

0, at 1 2.

4
0

4

0

0
2

2

 (16)

The solution of (15) is given by:

ϕ
β

=
− +

− + −

+ + −

β β
β β

β β

−
−

−

y y

y

3

2 e e
1 1 e e

1 e 1 e

y

y

1( ) [( ( ) )

( ( ) ) ]

 

(17)

where, according to the symmetry of ϕ1( y ) and ϕ−1( y ), one 
has ϕ1( y )  =  ϕ−1( y ).

The solution of (16) is given by:

ϕ = − + +y Ry Ry Qy
2

30
3 2( ) (18)
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where Q and R are two unknown functions of β and ε. With 
ε taken as a constant, it turns R  =  R(β) and Q  =  Q(β). Flow 
conservation dictates that:

⎡

⎣
⎢

⎛
⎝
⎜

⎞
⎠
⎟

⎤

⎦
⎥∫ ∫

ϕ ϕ ϕ
+ + =

π β
β β− −

y

y

y

y

y
y x

d

d

d

d
e

d

d
e d d 0j x j x

0

2

0

1 2
0 1 1( ) ( )/ /

 (19)

where 
⎡
⎣⎢

⎤
⎦⎥∫ ∫ +

π β ϕ β ϕ β−− y xe e d d
y

y
j x y

y
j x

0

2

0

1 2 d

d

d

d
1 1( )/ / ( ) ( )  is zero 

because of the integration property of trigonometric function. 
Substitution of (18) into (19) then yields:

β β= −R Q3 .( ) ( ) (20)

In equation (11), an additional function q(x, ε, β) is intro-
duced without adding new equations and hence there lacks 
a boundary condition to determine the final solution of the 
flow field. An approximation method is proposed to solve 
the problem, as demonstrated below.

As the wave number of surface roughness is varied, there 
are two limits of viscous resistivity, corresponding separately 
to β 0→  and β ∞→ . When β 0→ , the wavy roughness is dis-
tributed sparsely. As a result, due to a decline in the boundary 
area, the gradient of viscous stress is minimized, resulting in 

−∇ = −∇
β

u u2
min

2
0

( ) ( ) → . In sharp contrast, when β ∞→ , 

the wavy roughness is distributed densely, thus preventing the 
flow from passing near the boundary. Correspondingly, the 
gradient of viscous stress near the boundary is maximized, 

causing −∇ = −∇
β ∞

u u2
max

2( ) ( ) → . As the wavy rough-

ness can hinder the flow, β−∇ u2( ( )) is assumed to be mono-

tonic increasing function of β so that −∇ >
β
∂
∂

u 02( ) . With 

reference to (7) and (14), it turns out that 
⎡
⎣⎢

⎤
⎦⎥− >

β
ϕ∂

∂
∂
∂

0
y

3
0

3  

and hence >
β
∂
∂

0R . As logistic function [46, 47] satisfies most 

of the properties of βR( ), it is reasonable to adopt logistic 

regression to fit βR( ) and βQ( ):

⎛

⎝
⎜

⎞

⎠
⎟β =

+
+

β

β

−

−

π

π

R R R
2e

1 e
1 2

1
5

1
5

( ) (21)

⎛

⎝
⎜

⎞

⎠
⎟β =

+
+

β

β

−

−

π

π

Q Q Q
2e

1 e
1 2

1
5

1
5

( ) (22)

where R1, R2, Q1 and Q2 are four constants to be determined.

When β  →  ∞, the flow field may be determined by consid-
ering an analogue with laminar flow in a smooth slit of diam-
eter (1  −  2ε), leading to:

→
( )( )

( )
ε ε

ε
=

− − −
−

β ∞u
y y6 1

1 2
.

3 (23)

Flow conservation requires ∫ ∫=
π β π β

β ∞u x u xd d
0

2

0

2
→

/ /
, from 

which:
ε ε
ε

=
− +
−

R
3 6 12 8

1 2
2

2

3

( )
( )

 (24)

( )
( )
ε
ε

=
−
−

Q
6 1

1 2
.2 3 (25)

When β  →  0, the flow field may be decided by an ana-
logue with laminar flow in a slit with varying width of 
(1  −  2εcos(βx)), resulting in:

→
( ( ))( ( ) )

( ( ))
ε β ε β

ε β
=

− − −
−

βu
y x x y

x

6 cos 1 cos

1 2 cos
.0 3 (26)

Due to flow conservation, ∫ ∫=
π β π β

β=u x u xd d
0

2

0

2
0

/ /
. It fol-

lows that:

ε

ε ε ε ε
=

+

−
−

−
R

3 2 1

1 4

3

1 2
1

2

2 2.5 3

( )
( ) ( ) (27)

ε ε

ε

ε
ε

=
−

−
−

−
−

Q
24 15

1 4

6 1

1 2
.1

3

2 2.5 3( )
( )

( ) (28)

Finally, based on equations (17)–(28), the solution for velocity 
field in static incompressible creeping flow is obtained as:

( )
( ) ( )

( )
( )

( )

( )
( )

( )
( )

( )

( ) [( ) ( ( ) ) ( )

( ( ) ) ]
( ) [( ( ) ) ( ( ) ) ]

ε

ε

ε ε ε ε

ε ε
ε

ε ε

ε

ε
ε

ε
ε

ε β
β

β

β
εβ β
β

= −

+

+

−
−

− +

+
− +
−

× − +

+
−

−
−

−
− +

+
−
−

+
− +

− + − + − + −

− + −

=
− +

− + − + + −

β

β

β

β

β β
β β β β β β

β β

β β
β β β β

−

−

−

−

−
− − −

−

−
− −

π

π

π

π

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎛

⎝
⎜⎜
⎛

⎝
⎜

⎞

⎠
⎟

⎞

⎠
⎟⎟

⎛

⎝
⎜

⎞

⎠
⎟

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

u y y

y y

x
y

y

v
x

y y

6 6

2
3 2 1

1 4

3

1 2
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(29)

Static flow resistivity in the present rough slit is given by:

⎡

⎣
⎢

⎤

⎦
⎥σ

σ
ε

ε ε ε
=

+

−
−

− +
+

−

β

β

−

−

π

π

2 1

1 4

1

1 2

2e

1 e

1

1 20

2
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1
5

1
5

( )
( ) ( ) ( )

 (30)

where σ = µ
a0
3

2  is the flow resistivity in a smooth slit [2].

3.2. Ideal flow field and tortuosity

According to Johnson et al [10], when ideal non-viscous fluid 
is considered, the tortuosity can be calculated as:

α =∞ M Mu u2
V V

2( ) / ( ) (31)

where α∞ is the tortuosity, Mu2
V( )  is the volume average of 

the square of velocity at point M and Mu V( )  is the volume 
average of velocity. Mu( ) can be obtained by solving the 
potential flow problem:

∇ Φ = 02 (32)

where Φ is the potential function from which = ∂Φ ∂u x/  and 
= ∂Φ ∂v y/ .
Impermeable slit wall is assumed, leading to boundary 

condition = ∂ ∂v u g x x/ ( )/ . Here, for simplification of the final 
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expressions, ε β=g x xcos( ) ( ) is replaced by ε β=g x xsin( ) ( ) 
so that:

( ) ( ) ( )εβ β ε=
∂
∂

= =
v

u

g x

x
x y g xcos , at . (33)

Due to symmetry, the boundary condition at the central line 
(figure 2) is:

= =v y0, at 1 2./ (34)

The perturbation expansion of Φ yields:

ε εΦ = Φ + Φ + o0 1 ( ) (35)

where Φ0 and Φ1 are zero- and first-order solutions. 
Substitution of (35) into (32) leads to:

∇ Φ =
∇ Φ =

⎧
⎨
⎩

0

0
.

2
0

2
1

 (36)

The inlet velocity of u0  =  1 and v0  =  0 gives:

Φ = x.0 (37)

The first-order solution can be obtained by solving

∂ Φ
∂

+
∂ Φ
∂

=
x y

0.
2

1
2

2
1

2 (38)

According to equations  (33), (35) and (37), the first-
order boundary condition at slit wall can be written as 

β β∂Φ ∂ =y xcos1/ ( ). For simplification, this is approximated 
as:

β β
∂Φ
∂
= =

y
x ycos , at 0.1 ( ) (39)

Note that the above approximation is valid only when the peri-
odic roughness has a wavelength larger than amplitude, i.e. 

�π β ε2 / .
At slit central line, the boundary condition is:

/∂Φ
∂
= =

y
y0, at 1 2.1

 (40)

Taking the Fourier expansion of Φ1 in x direction yields:

∑ ζΦ = β

=−∞

∞

y e .
k

k
k x

1
i( ) (41)

According to the boundary condition of (39), only the terms of 
= −k 1, 1 remain, namely:

ζ ζ ζ ζΦ = + =β β
−

−
−y y y ye e , .x x

1 1
i

1
i

1 1( ) ( ) ( ) ( ) (42)

In general, as inviscid flow is assumed, no flow constriction 
effect is in force. Substitution of (42) into (38)–(40) gives rise 
to:

β ζ
ζ

ζ
β

ζ

− +
∂
∂

=

∂
∂
= =

∂
∂
= =

⎧

⎨
⎪⎪

⎩
⎪
⎪

y
y

y

y
y

y
y

0

1

2
,  at 0

0, at 0.5.

2
1

2
1

2

1

1

( )
( )

 (43)

The solution to (43) is given by:

( )
( ) ( )

ζ =
−

+
−β

β
β

β
β−y

1

2 1 e
e

e

2 1 e
e .y y

1 (44)

From (35), (37) and (42), the velocity field is obtained as:

( ) ( )
( )

( ) ( )
( )

εβ β

εβ β
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−
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−
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⎪
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1 e
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e

1 e
e cos .

y y
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 (45)

Finally, the tortuosity is obtained by substituting (45) into 
(31), as:

α ε β= +
+
−

β

β∞ 1
e 1

e 1
.2

 (46)

3.3. Effective density and effective compressibility

According to the semi-phenomenological model for porous 
media [2], the effective density ρ and the effective compress-
ibility C of the present micro-slits with surface roughness can 
be obtained as:

⎜ ⎟
⎛

⎝
⎜⎜

⎡

⎣
⎢

⎛
⎝

⎞
⎠

⎤

⎦
⎥

⎞

⎠
⎟⎟ρ ρ α

ν
ω

α ω
ν

= + − + +
Λ

∞
∞

j k
c c

k

c

j
1 1

2
0

0

0
2 1 2

/
/

 
(47)

( ) /γ γ
γ

× = −
−

+ +ν
ω

ω
ν

Λ′
′

′
′

⎡
⎣⎢

⎤
⎦⎥

C P
1

1 1

.

j k

j
0

4

2 1 2

0 (48)

Table 1. Acoustic parameters.

Acoustic  
parameter Symbol Expression

Characteristic 
viscous length

Λ ( / ) / //µα σΛ = ∞8 2 31 2

Characteristic 
thermal length

Λ′ ( )( )
/
∫π ε βΛ = +′
π −

t t2 1 sin d
0

2 2 2 2
1

Static viscous 
permeability

k0 /µ σ=k0

Static thermal 
permeability

′k0 /′= Λ′k 120
2

Table 2. Material parameters.

Material parameter Symbol Value

Atmospheric pressure P0 = ×P 1.013 25 10 Pa0
5

Fluid density ρ0 ρ = −1.23 kg m0
3

Specific heat ratio γ γ = 1.4
Prandtl number Pr =Pr 0.74
Dynamic viscosity µ µ = × ⋅−1.79 10 Pa s5

Kinematic viscous coefficient ν /ν µ ρ= 0

Kinematic thermal coefficient ν ′ /ν ν=′ Pr
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where c  =  5/6 is given in micro slit, the remaining acoustic 
parameters are defined in table 1. Relevant environmental and 
material parameters are listed in table 2.

3.4. Extension to a porous medium containing parallel  
rough slits

The previous analysis of acoustic properties of a single 
rough slit can be extended to study porous media containing 
a series of parallel rough slits. Following the approach of 
Stinson and Champoux [9], consider an idealized porous 
material composed of parallel rough slits having identical 
width, length and surface geometry. Let the porosity of the 
material be represented by Ω, and the ratio of slit length to 
the length of the porous material by τ. Based on these defi-
nitions, the effective density and effective compressibility 
of the porous material can be obtained as ρ ρτ= Ωm

2/  and 
= ΩC Cm . Accordingly, the characteristic impedance and 

wavenumber of the porous material are ρ=Z Cm m m/  and 

ω ρ=k Cm m m .
In practice, the width of the pores in a porous material may 

be randomly distributed. Horoshenkov et  al [12, 13] studied 
this problem by adopting a log-normal statistical distribution 
in porous media. Approximated solutions of the viscosity cor-
rection function were obtained and proved to be accurate in the 
whole frequency range. The current research on parallel rough 
slits may be extended to study porous media by using the same 
method.

4. Validation of analytical model with numerical 
simulation

FE simulations are performed to verify the proposed analytical 
model. Static flow resistivity determined in viscous fluid, tortu-
osity determined in non-viscous fluid as well as effective den-
sity and effective compressibility calculated in viscous sound 
field are obtained using COMSOL Multiphysics 5.0. The equa-
tions solved in the FE simulations are given in appendix B.

4.1. Static flow resistivity and tortuosity

According to figure 3(a), numerical simulations of steady vis-
cous incompressible flow passing a rough micro-slit are car-
ried out using the Creeping Flow Model of COMSOL. With 
the diameter of the slit fixed as 1 mm, its length is set suffi-
ciently large to ensure at least four periods of wavy roughness 
in the direction of flow. All triangular elements are adopted 
to discretize the governing equations, with grid dependence 
carefully analyzed to ensure numerical convergence. The grid 
near the boundary has been refined automatically, based on the 
geometry of the wavy roughness. The inlet velocity is 0.01 m 
s−1, while the outlet is set as Laminar Outflow. The remaining 
walls of the slit are all set as No Slip. Taking the two dimen-
sional (2D) model of figure 3(a) into the Stationary Solver, one 
can finally obtain the velocity distribution in the fully devel-
oped range of flow. Subsequently, based on average velocity 
and pressure drop, the static flow resistivity is calculated by 
equation (2).

Figure 3. Finite element simulations: (a) computational domain for determining static flow resistivity; (b) computational domain for 
calculating the effective density and effective compressibility.
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Simulations of inviscid incompressible flow are performed 
with the Laminar Flow Model. Slip Boundary Condition 
( =u n· 0) is adopted on slit wall and the dynamic viscosity of 
the fluid is set as zero. Once the flow filed is determined, the 
tortuosity is calculated by equation (31).

4.2. Effective density and effective compressibility

With reference to figure 3(b), FE simulations of viscous sound 
waves passing a rough micro-slit are performed using the 
2D Acoustic-Thermoacoustic Interaction Model. Typically, 
the simulation model is consisted of two parts. The first is 
named as the ‘input’, i.e. red region of figure 3(b), where the 
Pressure-Acoustics Model (a physical model in COMSOL, 
where viscosity is ignored) is applied. Plane wave radia-
tion generated in this domain propagates along the slit. The 
second is considered as the rough channel, i.e. blue region, 
where the Thermoacoustics Model (another physical model 
in COMSOL where thermal and viscous effects are both 
taken into consideration) is employed. Simulations of effec-
tive density and effective compressibility are performed in 
this domain. Both parts are meshed by triangular elements, 
with grid independence ensured before final calculation.

According to figure  3(b), the inlet of the first part is set 
as plane wave radiation perpendicular to the cross section of 
slit, while the outlet of the second part is set as Solid Wall. 
While the interface between the two parts are set as Acoustic-
Thermoacoustic Boundary, the remaining boundaries are all set 
as Sound Hard Boundary (a boundary condition in COMSOL, 
which is assumed to be solid, no-slip and isothermal). The fre-
quency range considered is < f0 10 Hz4⩽ . Upon substituting 
the FE model to the Frequency Domain Solver, the sound field 
is obtained.

Based on the numerical results of sound field, the effec-
tive density and effective compressibility are determined 
with the transfer function method [17, 48]. Firstly, the sur-
face impedance at the entrance of the rough slit (i.e. sur-
face-1 in figure 3(b)) is calculated by =Z p vs in in/ , where 
p in and v in are the surface average of acoustic pressure 

and velocity at the entrance. Then, the transfer function 
of the acoustic system is given by =T p pin out/ , where 
p out is the surface average of acoustic pressure at the outlet 

(i.e. surface-2 in figure 3(b)). Therefore, the characteristic 
impedance and propagation constant can be calculated from 

= −Z Z T T1s
2 2( )/  and θ = T jdarccosh( )/ . Finally, based 

Figure 4. Theoretical model predictions compared with numerical simulation results for dimensionless flow velocity at selected heights 
of roughened micro-slit: (a) y  =  0.5 (center line of channel), (b) y  =  0.4, (c) y  =  0.3; (d) y  =  0.2 and (e) y  =  0.1, for the case of ε  =  0.05, 
β  =  0.2π.

Figure 5. Comparison of theoretical predictions and numerical results on static flow resistivity: (a) influence of relative roughness 
(a  =  1 mm, β  =  0.2π); (b) influence of wave number of roughness (a  =  1 mm, ε  =  0.1).
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on the relations of ρ=Z C( / )  and θ ω ρ= C , the effective 
density and effective compressibility are obtained.

5. Results and discussion

5.1. Static flow resistivity

5.1.1. Velocity distribution in creeping flow. The influence of 
roughness on velocity distribution in static incompressible 
creeping flow is quantified, with reference to equation  (29). 
For the case of ε  =  0.05 and β  =  0.2π, figure  4 compares 
theor etical model predictions with numerical simulation 
results for dimensionless velocity component u at selected 
channel heights (y  =  0.5, 0.4, 0.3, 0.2, 0.1). Corresponding 
results of smooth slit are given as reference. The predictions 
match well with numerical results.

The results of figure  4 reveal two significant features of 
the flow field: one is periodic fluctuation with reference to  
equation (15), and the other is overall deviation with reference 
to equation (16). The periodic fluctuation represents the periodic 
variation of u, which exhibits the same period as the roughness. 
The phase of the periodic fluctuation depends on position (i.e. 
the value of y). As y is near the slit center line 0.5, u has the 
same phase as the roughness (figure 4(a)). In contrast, when y 
approaches εcos(βx) near the roughened slit wall, u has a phase 
opposite to that of roughness (figure 4(e)). Consequently, when 
ε β∈y xcos , 0.5( ( ) ), there must exist a phase-change-line, where 

the phase of the periodic fluctuation changes (figure 4(d)). 
According to equation  (29), the exact position of this phase-
change-line can be calculated by solving the following equation:

β β
β β β

− =
+ + −
− + − −

β β
β β β β

β β βy
e e

2e e e 2e

e e 1 e
y2

2 2

0

0

( ) ( ) (49)

where y  =  y0 is the phase-change-line, which is merely influ-
enced by the wave number of the roughness. In addition, 
the amplitude of periodic variation depends on the position, 
highest near the center line and the boundary line, and lowest 
near the phase-change-line. Although the average amplitude 
of the periodic variation is considerably large relative to the 
average velocity, it has little contribution to the growth of 
pressure drop across the slit, due mainly to the following int-
egral properties of the trigonometric function:

[ ( ) ( ) ]
/

∫ ϕ ϕ+ =
π β

β β
−

−y y xe e d 0.j x j x

0

2

1 1 (50)

Overall deviation represents the overall variation of average 
velocity v along y direction. It quantifies the difference 
between the symmetrical axis of the periodic variation and 
the velocity with the smooth slit serving as reference (i.e. red 
dot line in figure 4). The results of figures 4(a)–(c) show that 
the difference is small enough to be neglected. In comparison, 
visible difference between figures 4(d) and (e) can be found. 
In most cases, the difference can be neglected without loss of 
accuracy [41]. However, in the present problem, overall devia-
tion is critical [42]. From the view point of fluid dynamics, 
the resistance of surface roughness leads to flow concentra-
tion near the center line (i.e. overall deviation), thus reducing 
the hydraulic radius. According to σ µ= a30

2/ , decreasing 
hydraulic radius increases static flow resistivity. On the other 
hand, pressure drop is the second-order derivative of velocity. 
Mathematically speaking, the magnitude of a second-order 
derivative is irrelevant to the magnitude of its original func-
tion. Although the overall deviation of flow velocity is so small 
that it can be neglected, the corresponding increase in pressure 
drop can be large, as illustrated in the following section.

5.1.2. Static flow resistivity. The influence of wavy rough-
ness on static flow resistivity is investigated. To eliminate 
the influence of geometric scale, the static flow resistivity σ 
in a rough slit is normalized by σ0 in the reference smooth 
slit. To validate the proposed model of equation  (30), com-
parisons between analytical predictions and numerical results 
are made. Each blue symbol in the figure represents the static 
flow resistivity of a particular kind of micro rough slit, which 
has been simulated independently. The calculation error of 
different simulations may lead to the lack of smoothness in 
the numerical results, which can be improved by refining the 
grid. As shown in figure 5(a) for the case of a  =  1 mm and 
β  =  0.2π. Figure 5(b) for the case of a  =  1 mm and ε  =  0.1, 
good agreement is achieved. The static flow resistivity is sig-
nificantly affected by the presence of surface roughness.

According to figure 5(a), increasing relative roughness not 
only causes the static flow resistivity to grow but also increases 
the rate of growth. While the lower limit is given by σ/σ0  =  1 
when ε  =  0. However, there is no upper limit.

Figure 6. Comparisons of theoretical predictions and numerical results on tortuosity: (a) influence of relative roughness (a  =  1 mm, 
β  =  0.2π); (b) influence of wave number of roughness (a  =  1 mm, ε  =  0.05).
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The static flow resistivity increases with increasing wave 
number of roughness, but with decreasing growth rate;  
figure  5(b). The lower limit is given by σ σ ε= +2 10

2/ ( ) /
( )ε−1 4 2 2.5 at β 0→ , and the upper limit is given by 
σ σ ε= − −1 20

3/ ( )  at β ∞→ . The difference between the lower 
and upper limits is huge, which demonstrates that the static flow 
resistivity is critically dependent upon the distribution density 
of roughness.

The growth of static flow resistivity with increasing rough-
ness can be reasoned by the reduction of hydraulic radius. 
The presence of surface roughness increases the perimeter of 
slit boundary, but does not change the cross-sectional area, 
resulting in smaller hydraulic radius and thence higher vis-
cous stress. According to equation  (29), the period average 
of the increase in viscous stress, which can be calculated by 

∫ ∇β
π

π β
u xd

2 0

2
1

/
, is the largest on the slit boundary and smallest 

at the center line. As a result, the flow rate near the center line 
is larger than that near the boundary, which leads to the overall 
deviation of the flow field detailed in section 5.1.

5.2. Tortuosity

This section aims to evaluate analytically the influence of 
wavy roughness on tortuosity, with corresponding numer-
ical simulation results given for comparison. Figure  6(a) 

displays the influence of relative roughness for the case of 
a  =  1 mm, β  =  0.2π, while figure  6(b) displays the influ-
ence of wave number of roughness for the case of a  =  1 mm, 
ε  =  0.05. In a smooth slit, α∞  =  1. In both cases, the agree-
ment between analytical prediction and numerical simula-
tion is good.

It is seen from figure 6 that the tortuosity increases mono-
tonically with relative roughness and a lower limit is found 
when ε 0→ . Increasing the wave number of roughness also 
causes significant increase in tortuosity, and there is a lower 
limit given by α ε= +∞ 1 2 2 when β 0→ . For both cases, no 
upper limit is found. In fact, equation  (46) is reliable only 
when �β π ε2 / . As verification, the lower limit predicted 
using an alternative method [2] is provided here. When β 0→ , 
the flow field is evenly distributed in the rough slit, which can 
be equivalent to a series of smooth slits. Thus the velocity 

components can be approximated by =
ε β−

u x y,
x

1

1 2 sin
( )

( )
 

and =v x y, 0( )  which, together with equation  (31), leads to 

α ε= −′
β∞

1 1 4
0

2
→ / . The difference between the two lower 

limits of tortuosity is:

α α ε ε ε− = − − + =′
β β

∞ ∞
− o1 4 1 2

0 0

2 0.5 2 2
→ →

( ) ( ) ( ) (51)

which demonstrates that the proposed expression of tortuosity 
has considerable accuracy near the lower limit.

Figure 7. The exact solutions (i.e. equations (52) and (53)) compared with the present model (i.e. equations (47) and (48)) for normalized 
effective density and normalized effective compressibility (a  =  1 mm, d  =  50 mm): (a) real part of effective density; (b) imaginary part of 
effective density; (c) real part of effective compressibility; (d) imaginary part of effective compressibility.
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The increase of tortuosity depends in general on the slope 
of the boundary function characterizing the roughened slit 
surface. In fact, the wavy slit boundary changes flow direc-
tion on the boundary, which is passed to the whole flow field 
without decay (i.e. without viscous dissipation). As a result, 
the change of flow direction causes diffusion of the flow field, 
increasing thus the tortuosity.

5.3. Effective density and effective compressibility

For a better comparison, let the frequency be normalized by 

=′ ρ
µ

f
f a

4
0

2( ), the effective density be normalized by ρ/ρ0 and 

the effective compressibility be normalized by C  ×  γP0. Since 
equations  (47) and (48) are approximated solutions of the 
sound field of a micro-slit, their accuracy needs to be checked. 
The exact solutions of effective density and effective com-
pressibility of a slit in the limit of zero roughness are given 
by [9]:

ρ ρ = −
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

s j

s j
1 1

tanh
0

( )
/ (52)

γ γ× = + −C P
s j

s j
1 1

tanh Pr

Pr
0

( )
( ) (53)

where ωρ µ=s a 40
2/ . Figure  7 compares the exact solu-

tions, i.e. equations  (52) and (53), of normalized effective 
density and normalized effective compressibility with the 
present approximated solutions, i.e. equations (47) and (48). 
The results demonstrate that, in the limit of zero-roughness, 
the approximated solutions do approach the exact solutions in 
the whole frequency range considered. The maximum relative 
deviation is less than 1%.

Figure 8 plot the effective density and effective compress-
ibility as functions of dimensionless frequency, ′f , with corre-
sponding results for smooth slit included as reference. Without 
loss of generality, relevant geometrical parameters are given 
by a  =  1 mm, d  =  50 mm, β  =  2π and ε  =  0.1. Figure  8(a) 
reveals a significant increase in the real part of effective density 
in a rough micro-slit relative to that of a smooth one. The incre-
ment remains unchanged in the whole frequency range consid-
ered. Based on figure 8(b), while the increase in the imaginary 
part of effective density is significant at relatively low frequen-
cies, it gradually vanishes as the frequency is increased. These 
limiting properties of the effective density can be elaborated 
using the present analytical model, as illustrated below.

In the low frequency range, the effective density has a first-
order approximation in angular frequency ω given by:

ρ ω α ρ
σ
ω

= − j0 0( ) (54)

Figure 8. Comparisons of analytical predictions and numerical results on normalized effective density and normalized effective 
compressibility (a  =  1 mm, d  =  50 mm, β  =  2π and ε  =  0.1): (a) real part of effective density; (b) imaginary part of effective density;  
(c) real part of effective compressibility; (d) imaginary part of effective compressibility.
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while, in the high frequency range, it has a first-order approx-
imation in ω1/  as:

ρ ω α ρ
µ
ωρ

= + −
Λ

∞

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

j1 1
1 2

.0
0

( ) ( ) (55)

For the real part, ρ ρ α α= ≈ω ∞lim Real 1.20 0 0( / )→  and 
ρ ρ α=ω ∞ ∞lim Real 0( / )→ . As the real part of effective den-

sity is proportional to tortuosity, the increase in tortuosity can 
definitely lead to increase in the real part of effective density 
in the whole frequency range. It also means that the relative 
error of the real part of effective density can be approximated 
by the relative error of the tortuosity, which accounts for the 
minor deviation (around 10%) between the theoretical predic-
tions and numerical results in figure 7(a).

For the imaginary part, ρ ρ σ ω= −ωlim Imag0 0( / ) /→  and 

ρ ρ α= −ω
µ
ωρ∞ Λ ∞lim Imag j

0
2

0

( / )→ . The lower limit is infi-

nite and the upper limit is zero. Clearly, in the low frequency 
range, the convergence rate of the imaginary part is propor-
tional to static flow resistivity. Consequently, in the low fre-
quency range, it is the increase in static flow resistivity that 
causes the growth of the imaginary part of effective density.

As concerning the effective compressibility, according to 
figures 8(c) and (d), there is no obvious difference between 
rough and smooth micro-slits. In other words, roughness has 
little effect on the thermal properties of the slit. In fact, the 

lower limit of the normalized effective compressibility is 

γ γ ω× = − ′ γ
ν

Λ −
′

C P j0 12

12

 when ω 0→  and the upper limit is 

γ γ× = + − −ν
ωΛ′
′C P j1 10

3 2

2

2

2( )( )  when ω ∞→ . The 

influence of roughness, decided by Λ′, only appears in the infi-
nite term. Given that equation (48) critically depends on the 
characteristics of these limitations, roughness may have little 
influence on the thermal properties of the micro-slit.

Figure 9 provides more details concerning the effect of 
roughness on effective density. The influence of relative 
roughness is illustrated in figures  9(a) and (b) for the case 
of a  =  1 mm, β  =  2π. The influence of wave number of 
roughness is illustrated in figures  9(c) and (d) for the case 
of a  =  1 mm, ε  =  0.1. According to the results presented in  
sections  5.1 and 5.2, both the relative roughness and wave 
number of roughness can lead to the growth of static flow 
resistivity and tortuosity. Such growth increases the effective 
density as well, as shown explicitly in equations (54) and (55).

6. Conclusion

An analytical model for the influence of wavy surface rough-
ness on the acoustic properties of micro-slits is established. 
Small parameter analysis is performed by assuming that the 
roughness has relatively small amplitude compared to slit 

Figure 9. Predicted roughness effect on normalized effective density: (a) influence of relative roughness on the real part (a  =  1 mm, 
β  =  2π); (b) influence of relative roughness on the imaginary part (a  =  1 mm, β  =  2π); (c) influence of wave number of roughness on the 
real part (a  =  1 mm, ε  =  0.1); (d) influence of wave number of roughness on the imaginary part (a  =  1 mm, ε  =  0.1).
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opening. Finite element simulations are performed to validate 
the proposed model, with good agreement achieved. The main 
conclusions drawn are as follows:

 (i) For static creeping flow, the variation of flow velocity fol-
lows a trigonometric pattern, where the periodic fluctuation 
dictates the period, phase and amplitude, while the overall 
deviation determines the symmetrical line. The static flow 
resistivity of the micro-slit increases significantly with 
increasing relative roughness or wave number of roughness 
or both.

 (ii) Increasing the relative roughness or wave number of 
roughness increases the tortuosity of the micro-slit. The 
extent to which the tortuosity is increased depends on 
the slope of the boundary function that characterizes the 
roughened slit surface.

 (iii) The presence of wavy roughness increases the effective 
density of the micro-slit, with its real part determined by 
tortuosity and its imaginary part by static flow resistivity, 
but has little effect on the effective compressibility.

It should be noted that there are some limitations of the cur-
rent research: (i) the solutions can only be applied to the study 
of rough micro-slits; (ii) the Reynolds number must be small to 
ensure the inertial effect can be neglected; (iii) the wavelength 
of the roughness should be large enough to avoid a big slope 
on the boundary; (iv) only wavy roughness has been taken into 
consideration. These problems need to be further studied in 
future research. Nevertheless, the proposed approximated solu-
tion is accurate enough to be applicable in the design of micro-
slit panels and other relevant acoustic structures. And the given 
perturbation method can be applied to the study of other kinds 
of rough micro-channels with different cross sections.
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Appendix A. Non-dimensional treatment

With references to figures 1 and 2, for low Reynolds number 
flow, take a as the reference length, U as the reference velocity, 
and µU a/  as the reference pressure [49]. Then,

µ
= = = = ∇ = ∇x

x

a

y

a U
p

p

U a a
u

u
,  y , ,    ,

1 
/

  (A.1)

where (x, y), u, p and ∇ are separately the coordinates, velocity 
vector, pressure and gradient operator in dimensionless form, 
while x y,( ), u, p  and ∇ are the corresponding variables in 
dimensional form. Accordingly, the dimensionless Navior–
Stokes equation is given by:

⋅ ⋅ ∇ = −∇ +∇pu u uRe 2( ) (A.2)

where Re is the Reynolds number defined by = ρ
µ

Re
Ua0 . When 

Re is infinitely large, equation (A.2) is reduced to equation (3).

Appendix B. The equations solved in the FE 
simulations

In the current research, all the numerical simulations 
are performed by finite element method embedded in 
COMSOL_Multiphysics_5.0.

Numerical simulations of steady viscous incompress-
ible flow passing a rough micro-slit are carried out using the 
Creeping Flow Model of COMSOL. The equation solved in 
Creeping Flow Model is given by

µ µ

ρ

= ∇ ⋅ − + ∇ + ∇ − ∇ ⋅ +

∇ ⋅ =

⎡
⎣⎢

⎤
⎦⎥p I u u u I F

u

0
2

3
0

T

0

( ( ) ) ( )

( )
 

(B.1)

where F is the volume force.
Numerical simulations of inviscid incompressible flow are 

performed with the Laminar Flow Model of COMSOL. The 
equation solved in Laminar Flow Model is given by

ρ µ µ

ρ

⋅ ∇ = ∇ ⋅ − + ∇ + ∇ − ∇ ⋅ +

∇ ⋅ =

⎡
⎣⎢

⎤
⎦⎥pu u I u u u I F
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3
0.

T
0

0

( ) ( ( ) ) ( )
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(B.2)

Numerical simulations of viscous sound wave passing a 
rough micro-slit are performed using the 2D Acoustic-
Thermoacoustic Interaction Model. The equation  solved in 
Pressure Acoustic Model is given by

⎛

⎝
⎜

⎞

⎠
⎟

ρ
ω

ρ
∇ ⋅ − ∇ − −

−
=p

c k p
Qq

1
t

z t

0
d

0
2 2

0
m( )

[( / ) ]

 (B.3)
where pt is the acoustic pressure, Qm is the monopole source, 
qd is the dipole source, kz is the wave number of the fluid, c0 
is the speed of sound.

The equation solved in Thermoacoustics Model is given by

( ( ) ) ( )

( )

ωρ µ µ µ

ωρ ρ
ωρ ωα

= ∇ ⋅ − + ∇ + ∇ − − ∇ ⋅

+ ∇ ⋅ =
= −∇ ⋅ − ∇ + +

⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥p

c T k T T p Q

u I u u u I

u

i
2

3
i 0

i i

T
0 B

0

0 p 0 0 
(B.4)

where μB is the bulk viscosity, cp is the heat capacity at con-
stant pressure, T0 is the equilibrium temperature, T is the 
temper ature, α0 is the coefficient of thermal expansion (iso-
baric), Q is the heat source.

These models are carefully introduced in the help files of 
COMSOL.
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