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A one-dimensional analytical solution was presented for the temporal variation of phase interface in
two-phase materials having randomly distributed stagnant low conducting pores with constant heat flux
boundary. For validation, numerical simulations based on the finite difference method were conducted. It
was demonstrated that the phase interface propagates faster with pore inclusion than that associated
with constant wall temperature boundary. Such faster movement of the phase interface is attributed to
the decreased effective density of the medium as a result of the included low conducting pores. The
decreased effective density reduces the amount of latent heat of the medium whilst the amount of heat
removed at the boundary remains constant. Therefore, at a given period of time, more latent heat is
liberated. In addition, for a given porosity, the influence of pore shape upon phase change interface
location is negligible since the effective conductivity, although varying considerably with pore shape, has
a marginal effect on the behavior of phase change interface.

� 2012 Elsevier Masson SAS. All rights reserved.
1. Introduction

Phase change problems associatedwith solidification ormelting,
collectively known as “Stefan (or Stefan-type) problems”, are
involved in a wide variety of practical applications such as thermal
storage systems of solar energy [1], cooling/heating of buildings [2],
shell-and-tube type heat exchanger systems [3], welding, heat
treatment, and casting [4]. Actual thermal systems involving phase
change are subject to diverse thermal conditions including constant
heat flux and constant temperature at the system boundary. As the
temporal behavior of phase interface that separates two distinct
phases is of great practical importance, numerous efforts have been
devoted to predicting its temporal variation under different thermal
boundary conditions. It appears that Neumann [5] and El-Genk and
Cronenberg [6] firstly reported analytical solutions capable of pre-
dicting the phase change interface location of phase change mate-
rials (PCMs) subject to either constant temperature [5] or constant
heat flux [6] boundary conditions.

Besides the above two exact solutions, a number of approximate
methods have been proposed to predict the temporal variation of
phase interface, including: (a) quasi-steady solution [5], (b) heat
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balance integral method [7], (c) perturbation method [8], (d)
thermal resistance method [9], (e) Megerlin method [10], and (f)
try-and-error method [11]. Amongst these approximate methods,
the quasi-steady solution is the simplest, yet capable of providing
a reasonable accuracy for one-dimensional (1D) phase change
problems particularly when the Stefan number is small (Ste << 1).
For larger Ste numbers, however, the solution leads to relatively
large discrepancies as it neglects sensible heat. To overcome such
discrepancy, Lin [12] modified the quasi-steady solution by
considering the effect of sensible heat.

Goodman [7] provided an approximate solution for the melting
of a semi-infinite slab with constant heat flux thermal boundary
using the heat balance integral method, which was later extended
to many phase change problems. Stephan and Holzknecht [8]
suggested that nonlinear phase change problems can be solved
by the perturbation method when the Stefan number is much less
than unity. In addition, the thermal resistance method [9], Megerlin
method [10] and try-and-error method [11] are widely used.
However, these approximatemethods are effective in solving phase
change problems only when the Stefan number is small. Recently,
numerical methods such as the finite difference method (FDM) and
the finite element method (FEM) have become popular due to their
prediction accuracy and easy convergence [13].

Strictly speaking, the exact solutions (i.e., the Neumann and El-
Genk and Cronenberg solutions) dealing with 1D phase change in
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Nomenclature

cp specific heat at constant pressure (J kg�1 K�1)
fs solid fraction
H total thickness (or length) of PCM parallel to heat

flow (m)bH enthalpy (J)bh sensible enthalpy (J)
ks thermal conductivityof solidphaseof PCM(Wm�1K�1)
kf thermalconductivityof liquidphaseofPCM(Wm�1K�1)
ke effective thermal conductivity of solideliquid phase of

PCM (W m�1 K�1)
L latent heat of PCM (J kg�1)
PCM phase change material
qw00 constant heat flux at x ¼ 0 (W m�2)
qx00 heat flux at the phase interface (W m�2)
qxm00 heat flow per unit mass defined as Q/m at the phase

interface (W kg�1)
qlocal00 local heat flux at certain cross-section (W m�2)

S(t) location of phase interface front (m)
Ste Stefan number defined as Ste ¼ cp(T0 � Tm)/L with

constant temperature boundary
Ste00 modified Stefan number defined as Ste00 ¼ (cpHq00/ks)/L

with constant heat flux boundary
t time (s)
Tm melting temperature of PCM (K)
Ts temperature of PCM in solidified layer (K)
Tf temperature of PCM in liquid layer (K)
Tsolidus solidus temperature of PCM (K)
Tliquidus liquidus temperature of PCM (K)
x axis coinciding with solidification

Greek symbols
a thermal diffusivity of PCM (m2 s�1)
ε void fraction (porosity) of heterogeneous material
x dimensionless solideliquid phase interface location
r density of PCM (kg m�3)
s dimensionless time

Fig. 1. Schematic of one-dimensional solidification with constant heat flux imposed at
the boundary (x ¼ 0).
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a semi-infinite domain are solely applicable to homogeneous
materials. To reveal the physical mechanism of phase change
behavior in a heterogeneous medium having constant wall
temperature boundary and low conducting circular pores, an
extended analytical model has recently been proposed [14e16]. It
was demonstrated that the pore inclusion decelerated the solidi-
fication of the heterogeneous medium due solely to the reduction
in effective thermal conductivity.

It is yet unclear how the pore inclusion affects the phase change
behavior of a heterogeneous medium subject to constant heat flux
boundary conditions. This study aims to investigate the temporal
variation of solideliquid interface location of a heterogeneous
medium under constant heat flux. To emphasize the distinctive
features associated with the constant heat flux boundary, the
temporal behavior of phase interface and temperature distribution
in a solidified layer is compared with that observed under constant
temperature boundary. Due to mathematical complexities associ-
ated with moving boundaries and internal heat generation due to
chemical reactions occurring during phase change, the present
study is restricted to 1D phase change in a semi-infinite hetero-
geneous medium initially at the melting temperature. An analytical
model is developed by combining the phase change model of El-
Genk and Cronenberg [6] for homogeneous media with the effec-
tive thermal conductivity model of Bauer [17] for porous (two-
phase heterogeneous) materials. To validate the model predictions,
numerical simulations based on the finite difference method are
performed. The influence of pore shape and porosity upon the
phase change behavior is quantified.

2. Analytical approach

2.1. Phase change in a dense (homogeneous) material with constant
heat flux thermal boundary

Consider first one-dimensional phase change of a homogeneous
material from liquid to solid, i.e., solidification. Initially, the liquid
with length (or depth) H and infinite width (for simplicity)
is at melting (fusion) temperature Tm. Solidification is initiated from
x ¼ 0 (see Fig. 1) where a constant heat flux (qw00 ¼ constant) is
imposed at time t � 0.

The relevant physical properties of the material in either liquid
or solid state such as the latent heat (L), thermal conductivity (ks for
solid phase and kf for liquid phase), thermal diffusivity (as), and
specific heat at constant pressure (cp) are assumed to be invariant in
temperature, time, and space, but different phases may have
different properties. In addition, S(t) in Fig. 1 represents the phase
interface separating the melt and the solid. Under such conditions,
the temperature distributionmay be expressed as Ts¼ Ts(x,t) for the
solid phase (or solidified layer) and Tf ¼ Tm for the melt. Also, it is
postulated that the transfer of heat within the solidified layer is
solely by conduction. Then, the 1D heat conduction along the x-
direction is governed by:

vTs
vt

¼ as
v2Ts
vx2

; 0 < x < SðtÞ (1)

The initial and boundary conditions are:

Tsðx;0Þ ¼ Tm; at t ¼ 0 (2)

ks
vTs
vx

����
x¼0

¼ q00w; at x ¼ 0 (3)

Tsðx; tÞ ¼ Tm; at x ¼ SðtÞ (4)

ks
vTs
vx

¼ rsL
dSðtÞ
dt

; at x ¼ SðtÞ (5)
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Due to themathematical complexities associatedwith nonlinear
phase change problems, only a few exact analytical solutions exist
for specialized cases [5]. El-Genk and Cronenberg [6] reported an
exact solution for the 1D solidification (freezing) of a semi-infinite
liquid initially at melting temperature. The transient temperature
distribution in the solidified layer of the liquid has the form:

Tsðx; tÞ ¼ Tm þ 2q00w
ks

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ast
�
ierfc

�
SðtÞ

2
ffiffiffiffiffiffiffi
ast

p
�
� ierfc

�
x

2
ffiffiffiffiffiffiffi
ast

p
��s

(6)

Here, the phase interface location S(t) must satisfy:

dSðtÞ
dt

¼ q00w
rsL

erfc
�

SðtÞ
2
ffiffiffiffiffiffiffi
ast

p
�

(7)

where erfc(x) and ierfc(x) are error functions defined respectively as
erfcðxÞ ¼ ð2= ffiffiffiffi

p
p Þ RNx exp ð�h2Þdh and ierfcðxÞ ¼ ð1= ffiffiffiffi

p
p Þexp

ð�x2Þ � xð2= ffiffiffiffi
p

p Þ RNx exp ð�h2Þdh.
Two dimensionless parameters were introduced by El-Genk and

Cronenberg [6] for the solidified layer thickness and time, respec-
tively, as:

xðsÞ ¼
�

q00w
asrsL

�
SðtÞ (8)

ss ¼
 

q00wffiffiffiffiffiffiffiffiffiffiffi
asrsL

p !2

t (9)

Substitution of (8) and (9) into (7) yields:

dx
dss

¼ erfc
�

x

2
ffiffiffiffi
ss

p
�

(10)

Eq. (10) may be solved say using numerical methods for the
dimensionless solideliquid interface location. However, one of the
control parameters, i.e., heat flux qw00, is implicitly expressed in (8)
and (9). Therefore, it is necessary to derive a new dimensionless
form of the solideliquid interface, which can explicitly show the
heat flux term. To this end, Eqs. (8) and (9) are non-
dimensionalized as:

xðsÞ ¼ SðtÞ
H

(11)

ss ¼ ast
H2 (12)

A new form of the solideliquid interface then takes the form:

dx
dss

¼ Ste00erfc
�

x

2
ffiffiffiffi
ss

p
�

(13)

where Ste00 is the modified Stefan number defined as:

Ste00 ¼ q00wH
asrsL

¼ cpH
�
q00w=ks

	
L

¼ cpH
L

$
dT
dx

����
x¼0

(14)

Physically, the modified Stefan number (Ste00) under constant
heat flux thermal boundary is similar to the classical Stefan number
(Ste ¼ cp(T0 � Tm)/L), both denoting the ratio of sensible heat to
latent heat.
2.2. Extended solutions for phase change in a heterogeneous
medium

Consider next a heterogeneous medium containing randomly
distributed stagnant and low conducting circular pores. To
accommodate the pore inclusion analytically, several essential bulk
material parameters need to be modified, including: (1) thermal
conductivity k, (2) density r, and (3) thermal diffusivity a as
a product of thermal conductivity, density and specific heat. In the
following section, the modification of each parameter is discussed
separately.

Bauer [17] reported a model for the effective thermal conduc-
tivity of a discrete phase medium (pore) randomly distributed in
a continuous medium. In terms of the porosity ε (defined as the
relative volume fraction of discrete phase medium to continuous
medium), thermal conductivity kp and pore shape factor b, the
thermal conductivity (kc) of the continuous medium is altered as:

ke � kp
kc � kp

�
kc
ke

�1�2=ð3bÞ
¼ 1� ε (15)

where ke is the effective thermal conductivity of the bulk hetero-
geneous medium. For low conducting gaseous pores distributed
randomly within a continuous medium satisfying kc >> kp, Eq. (15)
reduces to:

ke ¼ kcð1� εÞ3b=2 (16)

For porous media, Gibson and Ashby [18] argued that the
specific heat, latent heat and other physical properties remain
unaffected by pore inclusions whilst the effective density re
becomes:

re ¼ rcð1� εÞ (17)

Correspondingly, the effective thermal diffusivity takes the
form:

ae ¼ fac ¼ acð1� εÞð3b=2Þ�1 (18)

Similar to the case of effective thermal conductivity, for low con-
ducting spherical or circular pores, (18) is reduced to ae¼ ac(1� ε)1/2

[15].
The instantaneous temperature distribution in the melt as well

as the location of solideliquid interface within a porous medium
may be obtained by substituting the effective thermal conductivity
of Eq. (16), the effective density of Eq. (17) and the effective thermal
diffusivity of Eq. (18) into the corresponding solutions for a homo-
geneous medium, yielding:

Tsðx; tÞ ¼ Tm þ 2q00w
ke

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aet
�
ierfc

�
SðtÞ

2
ffiffiffiffiffiffiffi
aet

p
�
� ierfc

�
x

2
ffiffiffiffiffiffiffi
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p
��s

(19)

dSðtÞ
dt

¼ q00w
reL

erfc
�

SðtÞ
2
ffiffiffiffiffiffiffi
aet

p
�

(20)

dx
dse

¼ Ste00eerfc
�

x

2
ffiffiffiffiffi
se

p
�

(21)

where Ste00e ¼ cpHðq00w=keÞ=L.
Finally, under the assumptions made above for the present

model, the exact solutions for the transient temperature distribu-
tion and phase interface location of a semi-infinite heterogeneous
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medium containing randomly distributed stagnant pores subject to
constant heat flux at the boundary (x ¼ 0) are obtained as:
Tsðx; tÞ ¼ Tm þ 2q00w
ð1� εÞ3b=2ks


ð1� εÞð3b=2Þ�1ast

0B@ierfc

0B@ SðtÞ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� εÞð3b=2Þ�1ast

q
1CA� ierfc

0B@ x

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� εÞð3b=2Þ�1ast

q
1CA
1CA

vuuuut (22)
dx
dss

¼ 1
1� ε

Ste00erfc

0B@ x

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� εÞð3b=2Þ�1ss

q
1CA (23)
3. Numerical simulation

Due to difficulties associated with the experimentation for
solidification in heterogeneous media, it is imperative to perform
numerical simulations to validate the analytical model. To this end,
the finite difference method (FDM) embedded within a commer-
cially available software Flow-3D� is employed. The numerically
generated model for a continuous medium containing randomly
distributed circular pore inclusions is shown in Fig. 2. The two-
phase medium is initially at melting temperature, with fixed
cooling heat flow at x ¼ 0 and adiabatic at x ¼ H as thermal
boundary conditions. To ensure 1D heat flow along the x-axis
(Fig. 2), the boundaries in other directions are taken as symmetric.
For simplicity, two-dimensional (2D) circular pores with varying
sizes and adiabatic pore boundaries are considered.

MATLAB� is used to generate data for pores having different
sizes and spatial locations, followed by solid model generation
using a commercial computer aided design software e Solid-
works�. The solid model is then imported for FDM simulations. It
should be noted that, to generate circular pores having desirable
random sizes, the upper and lower limits were set as 5.0 mm and
0.64 mm, respectively.
Fig. 2. Finite difference method (FDM) model for solidification process with c
With the convection term and internal heat generation
neglected, the governing equation for transient heat conduction
with a moving boundary may be expressed as [19]:
vbH
vt

¼ V$ðkVTÞ (24)

where bH denotes the sum of sensible enthalpy bh and the latent heat
of fusion DbH , namely the total enthalpy:

bH ¼ bh þ DbH ¼
 
rbhref þ

ZT
Tref

rcpdT

!
þ ð1� fLÞrL (25)

Here, cp is the specific heat at constant pressure, r is the density,
L defines the latent heat of fusion, and the reference temperature
Tref and enthalpy bhref are chosen as those corresponding to the
melting temperature according to the manual of FLOW-3D� [20].
The solid fraction fs in the enthalpy equations is defined here as:

fs ¼

8>>>><>>>>:
1 at T < Tsolidus solid

Tliquidus � T
Tliquidus � Tsolidus

at Tsolidus < T < Tliquidus mushy

0 at T>Tliquidus liquid

(26)

In the FDM simulations, it is assumed that local thermal equi-
librium is in force at the boundary between the pores and the
surrounding dense material. Fig. 2 presents a typical snapshot of
the simulated solideliquid interface movement. It is seen that the
interface separating the solid and liquid phases is not as straight as
that for dense materials. Further, as expected, the interface is
perpendicular to the pore boundary as the pores are taken as non-
conducting.
onstant heat flux thermal boundary (Ste00 ¼ 0.06) at fixed time s ¼ 3.077.



a

b

Fig. 4. Variation of (a) heat flow per unit area (W/m2) and (b) heat flow per unit mass
(W/kg) defined as Q/m at phase interface front with time for Ste00 ¼ 0.06.
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4. Discussion of results

4.1. Temporal variation of phase interface

Upon initiating cooling (constant heat flux) at x ¼ 0, the melt in
the vicinity of the wall begins to solidify. The solidified layer is
gradually thickened along the x-axis, indicating that the liquide
solid interface progresses with time away from the boundary. The
evolution of this phase interface, represented by its dimensionless
location x, follows the trend as plotted in Fig. 3. In addition to
homogeneous medium (ε ¼ 0), a heterogeneous medium having
randomly distributed non-conducting pores that occupy 50% of the
total volume (i.e., ε ¼ 0.5) is also considered. With water taken as
the continuous medium, both the analytical model predictions and
numerical simulation results employing water as presented in
Fig. 3. The derivation between analytical prediction and numerical
simulation is estimated to be within 4%. With good agreement
achieved, the following discussion is solely based upon the
prediction results from the present analytical model.

For ε ¼ 0, the solidified layer is thickened non-linearly, i.e., the
rate of solidified layer thickening is slightly decreased, even though
the trend shown in Fig. 3 appears to be linear. For a given Ste00

number (e.g., Ste00 ¼ 0.06), this decrease mainly results from the
reduced heat flux at the solideliquid interface. Fig. 4(a) shows that
the heat flux at the interface decreases with time until the liquid
phase is fully solidified. It is interesting to notice that even full
solidification is reached, the heat flux at x ¼ H is non-zero due to
latent heat liberation at the interface.

It is clearly seen from Fig. 3 that the presence of non-conducting
(or very low conducting) pores in a homogeneous medium accel-
erates its solidification, which is distinctively different from the
deceleration of solidification under constant temperature thermal
boundary (see details [14e16]). At a given time, the solidified layer
of the heterogeneous medium (ε ¼ 0.5) is thicker than that of the
homogeneous medium (ε¼ 0). During the process of phase change,
the heat flux at the interface is mainly contributed by latent heat
liberation: for a given homogeneous medium (rs ¼ const.), a larger
heat flux at the interface (ksðvTs=vxÞ ¼ rsLðdS=dtÞ) leads to faster
movement of the phase interface. However, the results of Fig. 4(a)
show the opposite trend, namely, the heterogeneous medium has
a lower heat flux at the interface and its solidification progresses
faster relative to that of the homogeneous medium. The heat per
unit mass, Q/m (W/kg) or specific heat flow at the phase interface
Fig. 3. Analytical and numerical predictions of temporal evolution for solidification
front with constant heat flux thermal boundary (Ste00 ¼ 0.06).
(keððvTe=vxÞ=reÞ ¼ LðdS=dtÞ) is thought to be responsible (Fig. 4(b))
since the effective density is reduced with the inclusion of pores.
For ε ¼ 0.5, the specific heat flow is approximately twice as high as
that of the homogeneous medium.

The accelerated solidification by non-conducting pores may also
be explained using energy conservation argument. For a solidified
layer including the phase interface and the boundary, energy
conservation dictates that:

Qboundary ¼ Qlatent þ Qsensible ¼ re
�
LDSþ cpVDT

	
(27)

where S represents the thickness of the solidified layer, V is the
relative volume, and re and L are the effective density and latent
heat of the heterogeneous medium, respectively. With pore inclu-
sion (ε¼ 0.5), whilst the effective density is reduced as indicated by
Eq. (17), both LDS (latent heat) and VcpDT (sensible heat) increase as
expressed in Eq. (27). The maximum ratio of sensible heat to latent
heat is calculated to be 0.15 and 0.265 for the homogeneous
medium and heterogeneous medium (ε ¼ 0.5), respectively,
demonstrating the dominant role of latent heat in the phase change
process. Therefore, the heat liberated at the phase interface during
phase change should be increased further to satisfy the constant
heat flux at the boundary. This, in turn, increases DS with invariant



Fig. 5. Variation of surface temperature at the boundary (X ¼ 0) for both homogeneous
medium and heterogeneous medium (ε ¼ 0.5) at Ste00 ¼ 0.06.

Fig. 7. Influence of Stefan number upon temporal phase interface location for both
homogeneous medium and heterogeneous medium (ε ¼ 0.5, circular pores) at s ¼ 1.0.
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V and L and hence explains the accelerated solidification in the
presence of pore inclusions.

4.2. Temperature distribution in solidified layer and cooling rate at
boundary

The present analytical model provides an estimate of local
temperature distribution in the solidified layer as well as cooling
rate at the boundary of a heterogeneous medium. The local
temperature normalized by the prescribed constant heat flux is
expressed as:

Q ¼ ½keðT � TmÞ=H�=q00w

¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
se
�
ierfc

�
x

2
ffiffiffiffiffi
se

p
�
� ierfc

�
X

2
ffiffiffiffiffi
se

p
��s

0 � X � x (28)

where X ¼ x/H, and se ¼ ss(1 � ε)(3b/2)�1 is the dimensionless
solidification time for the heterogeneous medium.

The predicted variation of surface temperature at the boundary
(X ¼ 0) is plotted as a function of time for both the homogeneous
and heterogeneous media with fixed cooling condition, Ste00 ¼ 0.06
Fig. 6. Influence of pore shape upon temporal phase interface location for Ste00 ¼ 0.06.
(see Fig. 5). The temperature is seen to decrease linearly with time
and, at any given time, the rate of decrease is greater for the
heterogeneousmedium. This implies that the cooling rate (jDQ/Dsj)
at the boundary is higher if non-conducting pores are included.
Mukherjee et al. [21] demonstrated that the variation in cooling
rate e defined as temperature drop per second (K/s) e during the
fabrication of closed-cell aluminum foams strongly influences the
compressive strength of the foam by changing micro- and macro-
cell topologies. Their experimental results showed that a higher
cooling rate reduces the cell size and increases the compressive
strength of the foam. Therefore, for the processing of closed-cell
metallic foams via the foaming route, the presence of pores will
always increase foam compressive strength if constant heat flow is
imposed at the boundary for the purpose of cooling.
4.3. Effect of pore shape on phase interface location

The present analysis has thus far been performed based on the
assumption of randomly distributed circular pores. For closed-cell
aluminum foams, the shape of pore varies with porosity [22]. For
constant wall temperature boundary condition, it has been estab-
lished that pore shape alters the solidification behavior, as it
Fig. 8. Influence of porosity on full solidification time for Ste00 ¼ 0.06.



Fig. 9. Direct foaming technique for closed-cell metallic foams [25].
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influences significantly of the effective thermal conductivity even if
the porosity is fixed [15]. Whether this holds for constant heat flux
boundary condition is clarified below.

The results presented in Fig. 6 suggest that, for the types of pore
considered in this study (triangle, square, pentagon, hexagon and
circle), pore shape does not playa significant role in solidification: the
evolution of phase interface is almost insensitive to pore shape. For
the five selected pore shapes, the phase interfaces seem to behave in
a very similar manner, collapsing onto a single curve. For example,
with the porosity fixed at 0.5, whilst the thermal conductivity is
decreased by about 30.5% when the pore shape is changed from
a circle to a triangle, the thickening of the solidified layer is decreased
by only 2.69% at s ¼ 8.0 (for more details, see Fig. 6).

The above observation indicates the marginal role of effective
thermal conductivity in determining the temporal evolution of
phase change interface, supporting the argument reported in
references [23,24] that, for a given porosity, the change in pore
shape acts to vary the effective thermal conductivity but not the
effective density. This further implies that the effective density
determines the evolution of phase interface during phase change.

4.4. Effect of Stefan number on phase interface location

The level of heat flux removed from the boundary (i.e., x ¼ 0) is
expressed as Ste00 ¼ (cpHq00/ks)/L. The influence of Ste00 on phase
change interface for both homogeneous and heterogeneous media
is considered in this section. Fig. 7 depicts how the phase interface
evolves with varying cooling heat flux at the boundary.

For a given medium (either dense or porous), the phase change
interface propagates faster as the cooling heat flux is increased,
following the trend in Fig. 7, and the growth rate of the solidified
layer is considerably reduced as the Ste00 number is increased. The
heterogeneous medium (ε ¼ 0.5) reaches full solidification earlier
than the dense material. The solidified layer of the porous medium
(ε ¼ 0.5) having circular pores is approximately 3 times (for
Ste00 ¼ 0.2) and 5 times (for Ste00 ¼ 0.4) thicker than that with
Ste00 ¼ 0.06 at s ¼ 1.0.

4.5. Effect of porosity on full solidification time

The present analysis has considered hitherto phase change
behavior for a fixed porosity (ε ¼ 0.5). It is apparent that the vari-
ation in porosity can significantly influence the bulk properties of
a heterogeneous medium, altering the phase change characteristics
such as the evolution of phase interface, full solidification time, and
temperature distribution in the solidified layer.
As the porosity is increased, the full solidification time is
remarkably reduced as plotted in Fig. 8. The full solidification of the
heterogeneous medium is, for example, twice (for ε ¼ 0.71) and 3
times (for ε ¼ 0.8) shorter than that required for the homogeneous
medium. As previously discussed, subject to the present constant
heat flux boundary condition, the effective density of the bulk
medium governs the evolution of phase change interface. The
increased porosity reduces the effective density of the bulk
medium, resulting in the decreased time required for full solidifi-
cation, indicating that the inclusion of non-conducting pores
accelerates significantly the phase change. It is worth noting that
a mathematical singularity exists when the porosity is unity
(ε ¼ 1.0), as no phase change material exists.
4.6. Practical importance

A typical fabrication route of closed-cell aluminum foams is the
direct foaming [25] as illustrated in Fig. 9 where calcium is firstly
added to aluminum melt at 680 �C then stirred for several minutes
whilst its viscosity continuously increases up to a desirable value
due to the formation of calcium oxide (CaO). Consequently, themelt
becomes highly viscous enough to prevent the gaseous bubbles
from floating to the top. Subsequently, TiH2 which serves as the
blowing agent by releasing hydrogen is added to the melt. The melt
soon starts to expand slowly and gradually fills the foaming vessel.
As the vessel is cooled below the melting temperature of the
mixture, the melt foam turns into solid state.

It has been demonstrated [26,27] that closed-cell aluminum
foams with different pore morphologies exhibit different load-
bearing and energy-absorbing properties. Porosity, pore size and
pore shape are the three main factors controlling the cellular
morphology of a closed-cell metallic foam, which is influenced by
many processing factors such as foaming time (i.e., cooling effec-
tiveness) [22,28]. To better understand such complicated foaming
and solidification process, the solidification behavior of heteroge-
neous media having randomly-distributed circular pores with
negligible thermal conductivity under various thermal boundary
conditions needs to be fully explored.

One of the idealized yet significant thermal boundary condi-
tions, constant heat flux provides the lower bound for the solidi-
fication process. It should be noted that under all the other thermal
boundary conditions e.g., constant wall temperature boundary
condition, the wall heat flux decreases with time. The present
finding suggests that for fabricating closed-cell aluminum foams,
the constant heat flux-like boundary condition can provide rela-
tively short full solidification time compared to any other thermal
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boundary conditions for given morphologies. Such faster cooling of
the melt with pores, which could be achieved by imposing the
constant heat flux thermal boundary, is also known to increase the
foam compressive strength of the final closed-cell metallic foams
via the direct foaming route (Mukherjee et al. [20]).

5. Conclusions

An analytical model capable of predicting the temporal phase
interface front of heterogeneous media with constant heat flux
boundary has been introduced. The model was developed by
combining an existing one-dimensional solidification model for
homogeneous media and an effective thermal conductivity model
for porous media. For validation, numerical simulations on both
homogeneous medium and heterogeneous medium (dense
medium containing randomly distributed non-conducting gaseous
pores) were conducted. Good agreement (derivation within 4%)
between model predictions and numerical simulations is achieved.

Conclusionsdrawnfrompresent studyare summarizedas follows:

(1) The solidification front evolves faster with the inclusion of non-
conducting pores, thickening the solidified layer as a result of
decreased effective density of the bulk medium.

(2) The cooling rate of the heterogeneous medium is much higher
than that of the homogeneous medium.

(3) The evolution of phase change interface is insensitive to vari-
ation in pore shape, indicating that the effective thermal
conductivity plays a minor role in the phase change process.

(4) Increasing the Ste00 number (by increasing the cooling heat
flow) increases considerably the speed of solidification, leading
to significant thickening of the solidified layer.

(5) The presence of non-conducting pores in the heterogeneous
medium reduces the time required for full solidification, and
the time required to fully solidify the heterogeneous medium
decreases with increasing porosity.
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