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Experimentally measuring the apparent contact angle on a curved surface usually requires a specific
instrument, which could be costly and is not widely accessible. To address this challenge, we proposed
a simple wetting model to theoretically predict the apparent contact angle of a droplet on convex and
concave spherical surfaces, which requires knowing the volume of the droplet, surface curvature
and intrinsic contact angle. Using this theoretical model, we investigated the influence of radius and
hydrophobicity of curved surfaces on wetting behaviors. For a concave surface, the droplet on it could
exhibit a convex or concave morphology depending on the detailed parameters. The critical volume for
a droplet changing from convex to concave shape was determined in this study. Employing this model,
the contact angle on curved surface with microstructures was also investigated. The model may
contribute to the understanding of natural wetting phenomenon and better design of related structures.

� 2015 Elsevier B.V. All rights reserved.
1. Introduction contact angle and interfacial tension of a droplet was firstly
The contact angle of a droplet on a curved surface is widely
involved in the fields of engineering [1,2], biomedicine [3], and nat-
ural world [4,5]. For example, curved microstructures fabricated on
a surface can modify the hydrophobicity of the surface through
affecting droplet-surface interactions [6,7]; changes of droplet
shape can be used to characterize the sensitivity and specificity
of biomembranes [8]; and some plant leaves and insect wings
are capable of high water repellence (e.g., lotus leaf, morpho but-
terfly) [9–11]. Investigation of droplet contact angle not only con-
tributes to assessing the wettability of the surface (i.e., hydrophilic
or hydrophobic ability) and understanding the related natural phe-
nomena, but also promotes the better design of functional surfaces
and improves the intellectualization of related structures. For
instance, novel artificial materials with super water- or oil-proof
capability have been designed through designing special curved
surfaces [12,13].

With the contact surface assumed absolutely smooth, stiff,
homogenous and inert (i.e., an ideal surface), the relation between
described by Young’s equation [14,15]. Further, whilst the
Wenzel equation determined the contact angles on a rough surface
for homogeneous wetting regime [16], the Cassie–Baxter equation
developed the theories for heterogeneous wetting regime (e.g.,
porous contact surface) [17]. However, these studies mostly
focused on the contact angle of a droplet on flat surface, Fig. 1(a).
Recently, a theory of wetting on ideal spherical surfaces, proposed
by Extrand and Moon [18] demonstrated that the wetting equation
h ¼ hðh0; a;RÞ could determine the apparent contact angle h by
experimentally measuring the contact radius a and the intrinsic
contact angle h0, R being radius of the solid spherical surface,
Fig. 1(b). In addition, h could be quantified through another pro-
posed equation h ¼ hðh0; r;RÞ, where the droplet radius r is experi-
mentally measured [19]. Besides spherical surfaces, a recent study
extended the theory to concave surfaces and proposed a different
wetting equation h ¼ hðVL; a;RÞ, where the droplet volume (VL)
could be manually controlled in the experiment [20], Fig. 1(c).
However, it is technically challenging to measure the horizontal
contact area between the droplet and nonplanar surface, the center
of the hemispherical droplet, and the intrinsic contact angle on
nonplanar surface, which has limited the practical applications of
these theories on convex and concave spherical surfaces.
Therefore, there is still an unmet need for a wetting model that
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Fig. 1. Schematic of a droplet on different surfaces. (a) Flat surface. (b) Convex surface. (c) Concave surface. ALG , ASL and ASG are separately areas of liquid–air, liquid–solid and
solid–air interfaces; cLG , cSL and cSG are related coefficients of surface tension.
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can be readily employed to determine the contact angle of a dro-
plet on convex and concave spherical surfaces.

Measuring the apparent contact angles on the curved surfaces
could be expensive, and usually the specific instruments are neces-
sary. In this study, we proposed a simple wetting model to predict
the apparent contact angle on curved surfaces h ¼ hðh00;VL;RÞ,
which describes the quantitative relation between the apparent
contact angle h and the intrinsic contact angle on flat surface h00,
the curvature R and the droplet volume VL. For the intrinsic contact
angle, h00, it is a known constant parameter for the droplet and the
ideal curved surface made of known materials. For most material,
h00 is already available in handbooks. The curvature of the convex
or concave (i.e., R) is measured with ease, and the droplet volume
VL is known as the liquid could be controlled when dripping it.
Thus, it avoids the need for the specific equipment. This theoretical
model was verified by performing a set of experiments on contact
angles of droplets on spherical and concave surfaces. Then it was
employed to investigate the influence of different parameters on
the apparent contact angles. In addition, this model was
extended to discuss the contact angle on curved surfaces with
microstructures.

As for the applicability, predicting the apparent contact angle
and thus the morphology of the droplet on curved surface could
be significantly important. Wetting behavior on ideally flat sur-
faces merely occurs in lab experiments. However, curved surfaces
are more widely encountered in nature and industrial process.
For instance, cactus’ spines could collect fog from the air due to
the wetting behavior on curved surfaces [25]. This is much favor-
able for the cactus to survive in the desert. Some research has
shown that the wetting behavior on curved surface can be used
to separate oil from water [26], which is significant as we are
now facing a more and more critical energy crisis. Thus studying
the wetting behavior on curved surfaces could help understanding
the nature and may have potential applications in engineering.
2. Theoretical model

When a drop spreads on an ideal solid surface (Fig. 1), the con-
tact area between the liquid and the solid surface (i.e., liquid–solid
interface), ASL, becomes larger. Meanwhile, the contact area
between the solid surface and air (i.e., solid–air interface), ASG,
decreases, as ASG þ ASL ¼ constant. However, dependent upon the
apparent contact angle h, the changing trend of the contact area
between the liquid and air (i.e., liquid–air interface), ALG, varies.
According to Young’s theory on interface energy and with the
effects of gravity ignored [21], thermodynamic equilibrium of the
system dictates:

dALG

dASL
¼ cSG � cSL

cLG
ð1Þ

where cSG, cSL and cLG are separately the coefficients of surface ten-
sion amongst the three objects. Depending only on the materials,
temperature and pressure, these parameters remain constant in
experiments. Eq. (1) is valid for flat, spherical and concave surfaces.
For a flat surface, Eq. (1) reduces to Young’s equation:
dALG=dASL ¼ cos h00. For a spherical surface, by considering small
changes db and da, the area of liquid–air interface is determined
by the integral equation ALG ¼

R p
b 2pr2 sin bdb while the area of

liquid–solid interface is calculated by ASL ¼
R a

0 2pR2 sinada. Based
on the assumption of liquid incompressibility and the geometrical
relations among the angles of curvatures (a, b), radius of droplet
(r) and contact angles (h, h0), we arrived at (see Appendix):

dALG

dASL
¼ cos h0 ð2Þ

It has been demonstrated that Eq. (2) also holds true for a con-
cave surface. Because cSG, cSL and cLG are constant for given mate-
rials and environment, regardless of the shape of the contact
surface, Eqs. (1) and (2) suggest that the intrinsic contact angle
on an ideal curved surface equals the one on an ideal flat surface,
i.e., h0 ¼ h00, which are both constant. In other words, h0 could be
determined by measuring the contact angle of a droplet on a flat
surface.

By systematically analyzing the geometrical variables shown in
Fig. 1(b) and (c) and adopting the relation between h0 and h00, we
obtained the dimensionless wetting equation for convex and con-
cave spherical surfaces as:
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V� ¼ sin3 h�

sin3 h
f ðhÞ þ n � f ðh�Þ ð3Þ

where f ðxÞ ¼ ð2� 3 cos xþ cos3 xÞ=4 and V� ¼ VL=
4
3 pR3
� �

. For

spherical surfaces, h� ¼ h� h00, n ¼ �1; for concave surfaces,
h� ¼ h00 � h, n ¼ 1. Finally, the contact angle of a droplet on a convex
and concave spherical surface could be determined by Eq. (3), i.e.,
h ¼ hðh00;VL;RÞ.

The aforementioned relation h ¼ hðh00;VL;RÞ can find its applica-
tions in predicting the apparent contact angles on curved surfaces.
The main merits of this method lies in two aspects. Firstly, this
relation is straightforward and all dependent variables could be
obtained with ease. As stated before, the intrinsic contact angle
h00 can be looked up in handbooks. Liquid volume VL is usually
known when dropping it onto the curved surface. Curvature R
can also be measured easily. Secondly, for a concave surface, the
apparent contact angle is impossible to be experimentally mea-
sured as the liquid–solid interface is always blocked by the solid
or the droplet. The theoretical model in this study provides a
means to predict the apparent contact angle on a concave surface.

To formulate the proposed wetting model, it was assumed that
the gravity of droplet is negligible and hence the liquid–air
interface is taken as spherical; due to gravity effect, the shape of
a droplet changes from spherical to nonspherical with increasing
droplet volume [22]. Consequently, the critical volume of the phase
transition is important to determine the applicable range of the
present theoretical model, as analyzed below.When the droplet is
small and exhibits a spherical shape, the height between its
top and the horizontal line passing through the liquid–air–solid
crossover points is:

h ¼ a tan
h
2

ð4Þ

When the droplet is large and exhibits a non-spherical shape
due to gravity effect, the height between its top and the horizontal
line becomes [23]:

h0 ¼ 2
cLG

qg

� �
1� cos hð Þ

� �1=2

1þ cLG

qg

� �1=2 2
2a

" #�1=2

ð5Þ

where q is the density of the liquid and g is the coefficient of
gravitational acceleration.

When the droplet shape transforms from sphericity to non-
sphericity, h ¼ h0 holds. Given that the contact radius a equals
R sinðh� h0Þ for spherical surfaces and R sinðh0 � hÞ for concave
surfaces, the apparent contact angle h at transition can be obtained
by solving Eqs. (4) and (5). Subsequently, upon substituting h into
(3), the critical volume of the droplet is determined. For concave
surfaces, however, solving (4) and (5) cannot always give a reason-
able value of h, affected by the radius (R) of the convex and concave
spherical surface. This implies that the liquid–air interface remains
spherical and does not become non-spherical until the convex and
concave spherical interface extends into a flat one with increasing
droplet volume, i.e., it always has that h – h0. Under such condi-
tions, the critical volume of the droplet exists when the liquid–
air interface becomes flat (i.e., h ¼ 0), which could be determined
by reducing Eq. (3) to VL ¼ 4p

3 R3f ðh0Þ. In addition, the critical value

of R corresponding to the inequality between h and h0 could be
calculated via extreme value analysis of equation h ¼ h0.

3. Experiments

Experimentally, to determine the contact angle of a droplet on
convex and concave spherical surfaces, we used ultrapure water
(coefficient of surface tension c ¼ 72 mN=m and density
q ¼ 998 kg=m3) as droplet medium. Polytetrafluoroethylene
(PTFE, h00 ¼ 108�) and polycarbonate (PC, h00 ¼ 89�), supplied by
McMaster Car LLC (US) and having perfect properties of chemical
inertness, smoothness and homogeneity, were selected to con-
struct solid surfaces. For the measurement of contact angles, a
commercial instrument (model: POWEREACH JC2000CA) with
accuracy of 0:1� was employed, and the minimum droplet volume
produced by the liquid injector was 0:1 lL. With critical dropt
volume considered, in the experiments we orderly chose 3 lL,
5 lL, 7 lL, 9 lL and 11 lL as the droplet volume, and 6.4,
12.7 mm as the diameter of solid spherical surfaces. The experi-
ments were only performed on spherical surfaces due to limitation
on measuring contact angle of droplets on concaved surfaces, as
the liquid–solid interface was always covered by the upper droplet.
As a result, in the present study, we first used a series of experi-
mental data on spherical surfaces to validate the proposed wetting
model and then theoretically predicted important characteristics
of droplets on spherical and concaved surfaces.
4. Results and discussion

4.1. Apparent contact angle on convex and concave spherical surfaces

To verify the constancy of apparent contact angles h00, we
repeatedly measured h00 of water droplets on flat PTFE and PC sur-
faces. The results demonstrated that h00 were 108:0� 0:44� and
89:0� 0:25�, respectively, which are consistent with existing
reports [20]. Consequently, we set h00 ¼ 108� for water on PTFE
and h00 ¼ 89� for PC.

Theoretical and experimental determinations of droplet contact
angles on PTFE spherical surfaces were both presented in Fig. 2(a).
Excellent agreement between theory and experiment is observed.
As the droplet volume (VL) is increased, the liquid–solid interface
becomes larger and the apparent contact angle h increases. With
droplet volume fixed, h for a spherical surface of diameter
2R ¼ 6:4 mm is considerably bigger than that with diameter
2R ¼ 12:7 mm. This implies that a smaller apparent contact angle
is induced if the radius of the solid surface is larger and approaches
the principle contact angles if R is sufficiently large, i.e., h! 108�.
Similar results for droplets on PC surfaces were shown in Fig. 2(b).
Again, the theory agreed well with experiment. For droplets with
same volume, the apparent contact angle for PC surfaces is smaller
than that for PTFE surfaces. Further, h increases with increasing VL

but decreases with increasing R. In addition to our experiments of
water droplets on PTFE and PC spherical surfaces, existing experi-
mental results of Ethylene Glycol (EG) droplets on PTFE surfaces 18
were compared in Fig. 2(c) with our model predictions (for EG dro-
plets on PTFE surfaces, h00 = 89�). For the case of 2R ¼ 6:4 mm, the
small deviation of theory from experiment may be attributed to
surface roughness, experiment operation, etc.
4.2. Contact area on convex and concave spherical surfaces

The area of liquid–solid interface depends not only on droplet
volume but also on surface hydrophobicity. For a given solid spher-
ical or concave surface, the angle of curvature a may be adopted to
characterize changes in contact area whereas the principle contact
angle h00 reflects surface hydrophobicity (e.g., the surface becomes
more hydrophobic with increasing h00). Fig. 3(a) plotted a of spher-
ical surfaces (R ¼ 6:4 mm) as a function of VL for selected values of
h00. With increasing droplet volume, the angle of curvature slowly
increases. However, it decreases as h00 becomes larger. These results
indicate that the contact area shrinks if the surface is more
hydrophobic and extends if the droplet volume increases. Similar
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Fig. 2. Theoretical prediction and experimental measurement of apparent contact
angle of liquid droplet on curved surfaces. (a) Water droplet on PTFE surface. (b)
Water droplet on PC surface. (c) EG droplet on PTFE surface.

(a)

(b)

Fig. 3. Angle of liquid–solid curvature of droplet on convex and concave spherical
surfaces plotted as a function of droplet volume for selected principle contact
angles. (a) Droplet on a convex surface. (b) Droplet on a concave surface.

0

5

10

15

20

25

30

35
o

0 30θ ′ =

cr

 Non-spherical shape

LLV μ

 Spherical shape

66 D. Wu et al. / Chemical Physics 457 (2015) 63–69
behaviors were observed for droplets on concave surfaces, as
shown in Fig. 3(b). There is nonetheless a breakpoint for the curve
of h00 ¼ 30�, representing the maximum droplet volume for spher-
ical liquid–air interfaces. If VL is smaller than this critical value,
the droplet may be taken as a sphere. If VL exceeds this critical
value, the behavior cannot be predicted by the present theory as
the effect of gravity was neglected.
0 2 4 6 8 10 12 14 16

R mm

Fig. 4. Phase transition of droplet shape on a concave surface with respect to
surface radius and droplet volume. rC is the critical surface radius for phase
transition between a convex liquid–air interface and a concave liquid–air interface.
4.3. Critical volume of droplet on concave surface

As stated before, the droplet on a concave surface could exhibit
a convex or concave shape depending on the detailed parameters,
such as the intrinsic contact angle, droplet volume and radius of
solid surface (see the inset of Fig. 4). Another factor that influences
the droplet morphology is the gravitational force. With the
increase of the gravity, the droplet tends to be flatten at its top
and thus being no longer a spherical shape. These two cases, the
droplet transfers from a convex to concave shape, and the droplet
changes from spherical to non-spherical due to gravity, are
referred as the phase transition. To further analyze the phase



Fig. 5. Apparent contact angle on convex and concave spherical surfaces with microstructures. The volume of the droplet is V � ¼ VL=
4
3 pR3
� �

¼ 0:025. (a) Schematic of
droplet’s wetting behavior on curved surfaces with microstructures. (b) The apparent contact angle under Wenzel’s model (i.e., completely wetting). (c) The apparent contact
angle under Cassie–Baxter model (i.e., partially wetting).

D. Wu et al. / Chemical Physics 457 (2015) 63–69 67
transition of droplet shape, we fix the intrinsic contact angle
h00 ¼ 30� and investigate the critical volume with respect to the
radius R of solid concave surface, Fig. 4. Let rc represents the critical
value of R that induces the inequality between h and h0. When
R < rc the transition of shape from convex to concave occurs before
the transition from spherical to non-spherical. The liquid–air inter-
face remains spherical until this interface becomes flat with the
increase of liquid volume. The critical volume which corresponds
the shape from a convex to concave is then calculated by Eq. (3)
with h ¼ 0�. On the other hand, when R > rc, the transition from
spherical to non-spherical due to gravitational force occurs first.
The critical volume is determined by solving Eq. (3) and h ¼ h0. If
the droplet volume is smaller than the critical volume, the gravity
effect of droplet could be neglected and the shape of liquid–air
surface is spherical.

4.4. Apparent contact angle on pre-structured convex and concave
spherical surfaces

This theory could be modified with ease to study the wetting
behavior on convex and concave spherical surfaces with
microstructures. For flat surfaces, it is well know that there are
two models to describe the contact angle on rough surface (i.e.,
the surface with microstructures), the Wenzel’s model and the
Cassie–Baxter model. If the liquid can wet the rough surface com-
pletely (see Fig. 5(a)), the apparent contact angle is governed by
the Wenzel’s equation [24]. For a convex or concave spherical
surface with microstructures, the apparent contact angle can be
obtained by a straightforward combination of the Wenzel’s equa-
tion and Eq. (3).

cos h00 ¼ bcos h0

V� ¼ sin3 h�

sin3 h
f ðhÞ þ n � f ðh�Þ

(
ð6Þ

where b is the roughness ratio, f ðxÞ ¼ ð2� 3 cos xþ cos3 xÞ=4 and

V� ¼ VL=
4
3 pR3
� �

as stated before. For spherical convex surfaces,

h� ¼ h� h00, n ¼ �1; for concave surfaces, h� ¼ h00 � h, n ¼ 1.
Employing Eq. (6), the apparent contact angles can be obtained,
which are depicted in Fig. 5(b). The volume of droplet is specified

as V� ¼ VL=
4
3 pR3
� �

¼ 0:025 and, both convex and concave surfaces

are investigated. As can be seen, the apparent contact angles
increase with intrinsic contact angles and, the values are also
closely dependent on the roughness ratio b. However, there is a
particular point on the curve, for a specific curved surfaces, the
apparent contact angle is independent on the roughness if the
intrinsic contact angle equals 90�.

Another wetting theory for the contact angle on rough surface
would be Cassie–Baxter model, which is suitable for the case that
the liquid partially wets the rough surface [24]. If a curved surface
is rough, then the apparent contact angle can be described by the
combination of Cassie–Baxter equation and Eq. (3), which express
as follows,

cos h00 ¼ bgcosh0 þ g� 1

V� ¼ sin3 h�

sin3 h
f ðhÞ þ n � f ðh�Þ

(
ð7Þ

where the b is the roughness ratio of the wet surface area and g is
the fraction of solid surface area wet by the liquid. The f(x), V*, h*and
n are the same as explained before. For simplification, g ¼ 1=b, indi-
cating that the liquid only wets the top surface of the structures as
shown in Fig. 5(a). The apparent contact angles obtained by Eq. (7)
are depicted in Fig. 5(c). Comparing the curves of b = 3 and that of
b = 1 (b = 1 represents an ideal smooth surface), one can see that
the apparent contact angles would increase significantly by the
microstructures on the surfaces.
5. Conclusions

We developed a simple wetting model to determine the appar-
ent contact angle of a droplet on spherical and concave surfaces,
which can be calculated if the volume of the droplet is known.
The model predictions agreed well with experimental measure-
ments of water droplets on PTFE and PF surfaces and existing data
of EG droplets on PTFE surfaces. The influence of droplet volume
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and surface hydrophobicity on the apparent contact angle as well
as area of liquid–solid interface was quantified. For droplets on
concave surfaces, the critical droplet volume corresponding to
the phase transition of liquid–air interfaces was determined. This
model was then employed to investigate the apparent contact
angle on rough curved surfaces.
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Appendix A. Calculating dALV=dASL with the constrain of
constant volume

A.1. Convex case

Consider the drop whose cross section is drawn in Fig. 1b. As it is
purely geometrical, we denote ALV as Ar so as to remember that this
is the cap surface of a sphere of radius r, and ASL as AR so as to
remember that this is the cap surface of the solid sphere of radius R.

To determine the exact angle, h, we need to know what is the
size of sphere of radius r that the drop is taken from. The volume
of the drop, V, is a volume of the spherical cap of radius r (Vr�C)
minus the volume of the spherical cap of radius R (VR�C).

First we calculate Vr�C and VR�C

Vr�C ¼
Z h

0
pr3 sin 3bdb ¼ 4p

3
r3 2� 3 cos hþ cos 3h

4

� �
ðA:1Þ

VR�C ¼
Z a

0
pR3 sin 3ada ¼ 4p

3
R3 2� 3 cos aþ cos 3a

4

� �
ðA:2Þ

Here we assume a dimensionless function, which means the ratio of
spherical cap volume to the sphere volume with an identical radius.

f ðxÞ ¼ 2� 3 cos xþ cos3 x
4

ðA:3Þ

Hence the volume, V, of the drop that we are interested in is

V ¼ Vr�C � VR�C ¼
4p
3
½r3f ðhÞ � R3f ðaÞ� ðA:4Þ

We can use the geometrical relations

R
r
¼ sin b

sina
; hþ b ¼ p; h� h0 ¼ a

and rewrite Eq. (A.4) as

V ¼ 4p
3

r3 f ðhÞ � sin 3h
sin 3ðh� h0Þ

f ðh� h0Þ
� �

ðA:5Þ

V ¼ 4p
3

R3 sin 3ðh� h0Þ
sin 3h

f ðhÞ � f ðh� h0Þ
� �

ðA:6Þ

Hence the radius, r, can be expressed in terms of the volume, V, and
the angle h

r ¼ 3V
4p

� �1=3

f ðhÞ � sin 3h
sin 3ðh� h0Þ

f ðh� h0Þ
� ��1=3

ðA:7Þ
Second we need to find expressions for Ar and AR

Ar ¼
Z p

b
2pr2 sin bdb ¼ 2pr2ð1þ cos bÞ ¼ 2pr2ð1� cos hÞ ðA:8Þ

AR ¼
Z a

0
2pR2 sin ada ¼ 2pR2ð1� cosðh� h0ÞÞ ðA:9Þ

Putting Eq. (A.7) into Eq. (A.8) we get

Ar ¼ 2pðVÞ2=3 4p
3

f ðhÞ � 4p sin 3h
3 sin 3ðh� h0Þ

f ðh� h0Þ
� ��2=3

ð1� cos hÞ

ðA:10Þ

Now that we have both Ar and AR expressed in terms of constant
volume and intrinsic contact angle as a function of only the angle
of contact, h, we can use the chain rule to find dAr=dAR

dAr

dAR
¼ dAr

dh

� ��
dAR

dh

� �

After performing both derivatives, dividing them and rearranging
we get

dAr=dAR ¼ cos h0: ðA:11Þ
A.2. Concave case

Consider a sessile liquid drop of volume V in a spherical cavity
of a solid (Fig. 1c). The analysis of the concave case differs from that
of the convex case in two aspects. First, the intrinsic contact angle
(h0) is the sum of the apparent value (h) and the curvature angle ðaÞ

hþ a ¼ h0

Second, the liquid drop volume (V) is the sum of apparent spherical
cap volume (Vr�C) and the inverse spherical cap volume (VR�C)

V ¼ Vr�C þ VR�C ðA:12Þ

By following the approach given above, we can get

V ¼ 4p
3

r3 f ðhÞ þ sin 3h
sin 3ðh0 � hÞ f ðh0 � hÞ

� �
ðA:13Þ

V ¼ p
3

R3 sin 3ðh0 � hÞ
sin 3h

f ðhÞ þ f ðh0 � hÞ
� �

ðA:14Þ

We write for the radius r, Ar and AR

r ¼ 3V
4p

� �1=3

f ðhÞ þ sin 3h
sin 3ðh0 � hÞ f ðh0 � hÞ

� ��1=3

ðA:15Þ

Ar ¼ 2pr2ð1� cos hÞ

¼ 2pðVÞ2=3 4p
3

f ðhÞ þ 4p sin 3h
3 sin 3ðh0 � hÞ f ðh0 � hÞ

� ��2=3

ð1� cos hÞ

ðA:16Þ

AR ¼
Z a

0
2pR2 sin ada ¼ 2pR2½1� cosðh0 � hÞ� ðA:17Þ

Repeating the process above, we finally obtain

dAr=dAR ¼ cos h0: ðA:18Þ
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