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Regenerative medicine has rapidly evolved over the past decade owing to its potential applications to

improve human health. Targeted differentiations of stem cells promise to regenerate a variety of tissues

and/or organs despite significant challenges. Recent studies have demonstrated the vital role of the

physical microenvironment in regulating stem cell fate and improving differentiation efficiency. In this

review, we summarize the main physical cues that are crucial for controlling stem cell differentiation.

Recent advances in the technologies for the construction of physical microenvironment and their

implications in controlling stem cell fate are also highlighted.
Introduction
Regenerative medicine has rapidly evolved during the past decade

and opened up a new avenue to meet the demands for tissue and/or

organ transplantation in clinics [1], where stem cells have drawn

considerable attention owing to their unique capability to differ-

entiate into desired cell lineage and to self-renew. For example, stem

cells have been widely explored to repair defective and damaged

tissues such as cartilage [2], heart [3] and neural tissues [4]. Apart

from organ transplantation, the specific cell lineages derived from

stem cells also provide reliable cell sources for drug discovery and

development (e.g. target identification/validation and safety/meta-

bolism studies). For example, physiologically relevant hepatocytes,

derived from stem cells, as opposed to primary hepatocytes, can be

grown in a large scale and have better applications in toxicity tests

[5]. Therefore, there is a great need to grow a large number of

undifferentiated stem cells and to differentiate them into targeted

cell lineages, which remains elusive.

Constant efforts have been made to control the differentiation

of stem cells and to gain new knowledge of the underlying
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mechanisms. Accumulating evidence has indicated that the fate

of stem cells is highly affected by the microenvironment (also

called niche) where they are located. In physiological milieu, stem

cells encounter complex stimulations (e.g. physical, chemical and

biological cues) from surrounding cells and extracellular matrix

(ECM), which have significant effects on fate determination [6–8].

For instance, stem cell factor (SCF) expressed by neighbor cells is a

key constituent that maintains the pluripotency of hematopoietic

stem cells [6]. Thus, engineering stem cell microenvironment

would benefit the production of stem cells and subsequent differ-

entiation into cells of interest for biomedical and clinical applica-

tions.

Although it is well accepted that biological and chemical cues

(e.g. hormones, growth factors, and small chemicals) can signifi-

cantly influence cell functions [9–11], more and more evidence has

also shown that physical cues, for example mechanical properties

of growing substrate [12], topographical cues [13] and tension

force [14], also play an important part in controlling the fate of

stem cells. Recently, with the development of nano- and micro-

engineering technologies [15], reconstructing 3D physical micro-

environment in vitro with a spatiotemporal control becomes fea-

sible. 3D artificial constructs can mimic the native physical
2014.01.015 www.drugdiscoverytoday.com 763
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environment to some extent and thus hold great promise to

facilitate controlling stem cell fate in a directed manner when

combined with the presence of chemical and biological cues.

Although several good reviews have been published on the

topic of interactions between stem cells and physical cues [16–22],

most of them addressed the effects of material property on the

stem cell fate, namely cell–substrate interaction where they are

commonly uniform or static. Few review articles focus on engi-

neering approaches that can manipulate the physical microen-

vironment in vitro accurately and dynamically. In this review, we

mainly aim to introduce the state-of-the-art technologies for

engineering complex physical microenvironment with a focus

on the physical factors that affect stem cells in vivo. Specifically,

we first summarized the physical cues that can be potentially used
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to regulate stem cell fate. Then we discussed how to engineer a

complex microenvironment with consideration of the important

physical cues.

Physical microenvironment of stem cells
Cells in vivo are exposed to a broad variety of physical cues

depending on their functions and locations. For instance, neurons

bear minimal mechanical loadings, muscle cells usually experi-

ence significant forces and endothelial cells are under shear stress

induced by blood flow. According to the nature of physical cues in

the ECM, we divided them into three categories including matrix

stiffness, mechanical force and topology. Besides, we emphasized

the presentation of these cues in a spatiotemporally dynamic

manner (Fig. 1).
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Matrix stiffness
Matrix stiffness is defined as the degree that an extracellular

scaffold resists deformation. Tissues in vivo possess a broad range

of mechanical properties, and are tailored to function at varying

mechanical demands. For example, adipose tissue is a soft cushion

for vital organs, whereas bone is a rigid protector and mechanical

support for body. The homeostasis of stiffness within a tissue is

important for its biological functions, whereas its alterations are

usually associated with dysfunction. Thereby, the varying stiffness

of ECM within different tissues is crucial to differentiate stem cells

into specific cell lineages. Additionally, matrix stiffness is of great

importance during embryogenesis in vivo. For instance, during the

gastrulation of Xenopus laevis the convergence and extension

movements can occur only if the notochord and mesoderm are

stiff enough to withstand buckling [23,24]. The involuting mar-

ginal zone becomes stiffer and thus does not deform or collapse

during gastrulation [25], indicative of the significance of stiffness

to cell function.

Mechanical forces
Mechanical forces are also a vital stimulus during embryogen-

esis and throughout life [26]. The forces at the cellular level can

be classified into two categories, namely internal forces and

external forces [27]. Internal forces are defined as a contractile

force arising from the cellular actomyosin cytoskeleton, whereas

external forces refer to the force acting from the outside of cells.

Although internal forces are also important for cell functions,

we will not discuss it here because it is beyond the scope of this

review in the perspective of engineering cell microenvironment.

Physiological actions such as blood flow, muscular movement,

gravity bearing and other processes generate different external

forces to cells, such as compressive forces, stretch forces and

shear stress. These mechanical forces are also found to be crucial

to determine the fate of stem cells in vitro. For instance, shear

stress has been found to drive the differentiation of embryonic

stem cells (ESCs) toward vascular endothelial cells [28], whereas

the stretching of mesenchymal stem cells (MSCs) results in

upregulation of specific markers as seen in smooth muscle

cells [29]. Therefore, mimicking the mechanical forces that

stem cells experience in vivo is desirable to control the fate of

stem cells.

Topography
Native ECM presents various geometrically defined physical

boundaries through composition and structure (i.e. topographies).

The components of the ECM can be arranged into structures such

as fibers and sheets that support cells and regulate their function

[30–34]. Take intestinal mucosa for example, it consists of epithe-

lial folds (i.e. villi) with a dimension of 400–500 mm [35,36] and

epithelial invaginations (i.e. intestinal crypts) with dimensions of

100–200 mm. The basement membranes under the intestinal

mucosa are composed of 50-nm-thick collagen fibers. Nanoscale

structures (e.g. collagen fibers) interact with cell receptors and

affect protein clustering and organization, whereas microscale

structures change the curvature of the cell membrane [37]. Both

of these structures can affect cytoskeleton assembly, alter internal

forces and influence stem cell behaviors [37]. In vitro, the topo-

graphy of the extracellular microenvironment can affect the
responses of stem cells during the process of attachment, migra-

tion, differentiation and formation of new tissues [19].

Spatiotemporal dynamics
Biophysical and biochemical signals can not only play an important

part in controlling cell functions but also significantly affect tissue

development and regeneration via forming dynamic concentration

gradients in a spatial–temporal manner [38,39]. For instance, inves-

tigations of zebrafish embryogenesis uncovered the underlying

spatial and temporal dynamics of molecular gradients (e.g. retinoic

acid and the Ntla transcription factors) during embryonic develop-

ment [40,41]. In addition, the gradient of some small molecules

such as H2O2 generated during wound formation in zebrafish helps

recruit leukocytes to the wound zone [42]. The effect of the dynamic

microenvironment on cell behavior has been studied in vitro.

Mechanical force gradients were also observed in the micropat-

terned epithelial monolayer. Such a force gradient drives cell

motions and the propagation of the gradient (termed mechanical

wave) plays a central part in epithelial expansion during the devel-

opment of organ shape [43]. In addition, the spatiotemporal micro-

environment can also regulate cell behavior at micro- and/or nano-

meter scales. Alignment of humans mesenchymal stem cells

(hMSCs) is sensitive to the dynamically and reversibly changed

topographies achieved through strain-responsive buckling patterns

on polydimethylsiloxane, which demonstrated the importance of

dynamic topography [44]. Besides, it is well known that cells grown

on substrates with a stiffness gradient will migrate to stiffer areas

[45], indicative of the importance of mechanical gradients.

Approaches for engineering physical microenvironment to
control the fate of stem cells
Studies on stem cells over the past two decades have shown that

engineering the physical microenvironment could facilitate

addressing the challenges in controlling the stem cell fate. A

variety of approaches have been developed to create microenvir-

onment in vitro including material-based approaches, mechanical-

force-based approaches and micro- and/or nano-fabrication-based

approaches (Fig. 2).

Material-based approaches
With advances in material science, a variety of materials including

polymers, ceramics and metals have been developed to match the

diverse elasticity of tissues in vivo, mimicking the physical micro-

environment where stem cells are surrounded (Fig. 2).

Polymers. With advances in polymer science, natural and syn-

thetic polymers with tunable properties have been developed,

providing more options for the control of stem cell fate [46].

The mechanical properties (e.g. stiffness) of polymers can be tuned

from 0.1 kPa to 1 MPa, making it attractive for tissue engineering

and regenerative medicine. The natural polymers commonly have

relatively lower stiffness (0.01–100 kPa) than synthetic polymers

(10 kPa to 1 MPa), therefore they are more suitable to mimic soft

niches. In addition, many of these natural polymers (such as

hyaluronic acid and chondroitin sulfate) exist in vivo and play

an important part in stem cell differentiation. However, there are

still some challenges associated with most natural polymers when

used in vivo, including weak mechanical properties and potential

immunoreaction risks.
www.drugdiscoverytoday.com 765
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FIGURE 2

Schematic representation of approaches for controlling stem cell fate with physical cues. The stem cell fate (i.e. self-renewal and differentiation) is affected by

spatiotemporal physical microenvironment. There are three approaches to engineering physical microenvironment in vitro including material-based approaches,

force-based approaches and micro- and/or nano-fabrication-based approaches. Abbreviation: ECM, extracellular matrix.
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Ceramics and metals. Owing to high mechanical properties,

ceramics and metals exhibit as good substrates for the osteogenic

differentiation of stem cells. The most commonly used ceramics

include calcium phosphate ceramics, bioactive glass and hydro-

xyapatite. When cultured on the surface of calcium phosphate

ceramics, MSCs displayed a stable osteoblastic phenotype with the

formation of apatite in the ECM [47]. Hydroxyapatite is a naturally

occurring ceramic mineral found in bones, and it has been widely

investigated as a bone substitution. This kind of materials can

adsorb proteins strongly, and thus benefit the adhesion, prolifera-

tion and differentiation of MSCs [48]. Bioactive glass, which is

composed of phosphate oxide, calcium oxide, sodium oxide,

calcium oxide and silicon dioxide, has a high compatibility with

bone tissues and it is usually used as defect fillers. MSCs grown on

this material demonstrated an osteoblastic phenotype with
766 www.drugdiscoverytoday.com
mineralized ECM, indicative of the promoted differentiation of

MSCs into osteoblasts [49]. Titanium is another type of material

that has been widely used in dental and orthopedic surgeries

owing to its good biocompatibility and inertness. Titanium sub-

strates (i.e. titanium dish) can favor stem cell adhesion, prolifera-

tion and differentiation [50]. Embryonic bodies (EBs) were also

observed to form effectively in 3D titanium scaffolds with obvious

cell–matrix interactions [51].

Regulation of stem cell fate by substrate stiffness. Engler et al. laid

the foundation of how physical cues direct stem cell differentia-

tion by culturing hMSCs on hydrogel substrates with different

stiffness [52]. The proteins and transcription profiles were ana-

lyzed to reflect the impacts of stiffness on stem cell fate. Stem cells

expressed significant neural markers on softer materials (0.3 kPa),

whereas osteogenic markers were observed on a rigid substrate
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(35 kPa). Stiff hydrogel substrates enhance the growth and devel-

opment of force sensors (focal adhesion). These sensors transfer

the cell–substrate force into the cell signal pathway and then

adjust cell–ECM interaction via actin–myosin contractions. As a

result, cells grown on a stiffer hydrogel substrate presented a more

highly tensed state. The generated forces on the cell actin cytos-

keleton contributed to regulating the differentiation of stem cells

into an osteogenic lineage. Subsequent studies also illustrated the

importance of substrate stiffness on stem cell fate [53,12,54].

Further, it was found that a substrate with a proper stiffness was

crucial to maintain the ‘stemness’. For instance, muscle stem cells

grown on a rigid Petri dish lose their pluripotency, resulting in

decreased regenerative capability in their progenitors. To address

this challenge, hydrogel-coated plastic dishes with different stiff-

ness (2, 12 and 42 kPa) were used to culture muscle stem cells. On

softer hydrogel substrates the number of muscle stem cells

increased twice after a week, whereas the number remained con-

stant when cultured on a rigid Petri dish, indicating an enhanced

cell survival and proliferation by soft hydrogels [53].

Mechanical-force-based approaches
Cyclic strain. Cyclic strain can be applied to stem cells in vitro and

affect their differentiation pathways. This effect depends on the

strain amplitudes, frequencies, load means and cell types. Com-

monly, stem cells are cultured on a flexible membrane (which can

be coated with various proteins or not), on which uniaxial or

biaxial strains are applied at a constant frequency. For instance,

the differentiation behavior of MSCs under cyclic strains has been

widely investigated using this system. MSCs encountering a 5–

10% uniaxial stretch showed a typical myogenic phenotype

accompanied with the expression of myogenic proteins (e.g.

smooth muscle actin) [55–57]. By contrast, such a phenotype

was not observed when the applied strains were lower than 1%

or higher than 15%, suggesting the importance of strain magni-

tude during MSC differentiation [58]. In addition, different cell

types such as adipose-derived stem cells responded differently to a

similar strain (10%) [59]. Uniform biaxial stretch was found to

enhance osteogenic differentiation of MSCs with an increased

expression of osteogenic-specific markers [60]. Cyclic compression

was usually achieved by loading a pressure on 3D hydrogels

encapsulating stem cells. For example, dynamic compression of

a MSC-laden 3D agarose hydrogel was used to study the mechan-

ical responses of stem cells. Under mechanical stimulus, an

increase in aggrecan and collagen II transcriptional activity was

observed, indicating that a chondrogenic differentiation was

induced by mechanical compression [61].

Shear stress. Shear stress can be created either by a stir-based

method [62] or pump-based method [63]. In the stir-based method

stem cells are seeded and then attached to a substrate of interest.

The apparatus for stress creation consists of a rotating disk driven

by a motor and a stage to adjust the distance between cells and the

disk. The shear stress can be controlled through angular velocity of

the disk and cell positions. In a pump-based method, a pump and a

parallel plate apparatus are used to create shear stress. The con-

figuration of a parallel apparatus (such as height and width) and

the velocity of fluid are the determining factors to the final shear

stress applied to the cells. Based on these platforms, the effects of

fluid shear stress on stem cell functions have been widely studied
[64–67]. For instance, two days after the shear stress was applied,

an increased expression of endothelial markers and formation of

vessel-like structures were observed for mouse ESCs, indicating

that shear stress promotes the differentiation of mouse ESCs

toward the endothelial-like phenotype [63]. These findings impli-

cate that the design of bioreactors, accompanied with complex

shear stress, is important for a scale production of stem cells and

targeted differentiation.

Micro- and nano-fabrication-based approaches
Emerging micro- and/or nano-scale engineering technologies offer

unprecedented opportunities for the creation of cell microenvir-

onment in vitro that recapitulates the crucial cues in vivo, such as

spatiotemporal physical and chemical gradients, surface topogra-

phy and dynamic mechanical microenvironment. Here, we sum-

marize three kinds of strategies that have been used to engineer

complex stem cell niches: bottom-up assembly, topography pat-

terning and organ-on-a-chip.

Bottom-up assembly. The bottom-up approach was firstly pro-

posed to construct intricate microstructural features of the cell

microenvironment by designing specific structural features on

microscale modules [68,69]. Emerging methods in recent years

hold great potentials to engineer heterogeneous physical cell

milieu (Fig. 3). For instance, an electrostatic-force-based platform

has been developed recently to assemble microgels into various

patterns with a control over final architectures [70]. By incorpor-

ating biomaterials with positively and negatively charged hydro-

gels, the biomaterials with opposite charges are attracted to each

other (Fig. 3a), which could be used to assemble biomaterials with

different physical properties. To improve the recognition effi-

ciency between microgels, DNA was used as a glue to direct the

self-assembly of microgels into prescribed structures [71]. Owing to

the high recognition efficiency of DNA, 50 distinct microgels were

assembled into 25 predesigned pairs in a simple mixing process

(Fig. 3b), demonstrating the capability of multiplexing microgel

assembly in a single system. Additionally, another multilayer

photolithography was developed to engineer digitally specified

3D spatial confinement on stem cells [72]. By switching multiple

masks with microscale controls, ECM components and cell types

can be modulated easily (Fig. 3c). Particularly, ESCs and two other

types of cells were aligned to mimic the complex process of

myocardium regeneration. Based on a similar principle, hetero-

geneous differentiation of EBs was investigated through the fab-

rication of two kinds of hydrogels around a single EB [73].

Moreover, the paramagnetic property of microgels was revealed,

and the microgels were manipulated temporally and spatially

without the need for other magnetic components (e.g. magnetic

nanoparticles) (Fig. 3d) [74]. Taken together, the rapid develop-

ment of bottom-up assembly methodologies provides a simple,

low-cost and highly accurate way to recreate stem cell niches in

vitro, especially with asymmetrical architectures.

Topography patterning. Nano- and micro-patterned surfaces have

gained increasing importance in the design of biomaterials for

regenerative medicine, as reviewed [19,75]. Numerous technolo-

gies, such as electron beam and nanoimprint lithography, have

been developed to recapitulate the topography in vivo and mod-

ulate the cell function in vitro [76]. For example, the electron beam

lithography has been used to fabricate an assay of nanopits that
www.drugdiscoverytoday.com 767
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FIGURE 3

Bottom-up assembly of physical microenvironment in vitro. (a) Assembly of microgels based on electrostatic force [70]; (b) DNA-glue-based assembly of microgels

with high recognition efficiency [71]; (c) construction of heterogeneous microenvironment for embryonic stem cells (encapsulated in microgels) by multilayer

photolithography [72]; (d) paramagnetic levitational assembly of microgels [74].
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allowed the maintenance of multipotency of MSCs [77]. More

recently, some effective microfabrication methods have been

developed to avoid the use of expensive and complex nanofabri-

cation techniques. Reactive ion etching was combined with stan-

dard photolithography and used for patterning nanoarchitecture

on glass substrates with precise control [78]. The features of

nanoarchitectures (i.e. shape, diameter, height, and distribution)

are the key regulators for various cell behaviors, including cell

adhesion, proliferation, self-renewal and differentiation. Micro-

scale topography can also regulate the behaviors of stem cells

(Fig. 4a). Microscale contact patterning of adhesive proteins

(e.g. fibronectin) to a nonadhesive surface makes it possible to

control the 2D cell geometry [79] and study its effects on the

commitment of stem cells into different linages. The geometry
768 www.drugdiscoverytoday.com
parameters such as shape, area, aspect ratio and curvature signifi-

cantly affect the differentiation commitment of stem cells. Take

human MSCs for example, they tend to differentiate into adipo-

cytes when having a small adhesion area (�1000 mm2), whereas

they tend to differentiate into osteoblasts when having a larger

adhesion area (�5000 mm2) [80]. 3D structures, for example micro-

groove [81], micropost [82] and microwell [83], are also important

to direct the differentiation of stem cells. For example, the size of

EBs can be controlled using microwells with designed dimensions,

which has been shown to affect the WNT signalling pathway and

subsequent differentiation [84].

Organ-on-a-Chip. Organ-on-a-Chip is defined as the reconstitu-

tion of native tissues within a microfluidic device that aims to

study the physiology of a specific organ or to develop disease
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FIGURE 4

Topography engineering and microfluidic technologies for recapitulation of physical cues in stem cell niche. (a) Engineering topography in cell microenvironment

from nanoscale to microscale [79,83,127]. (b) Collagen fibril density gradient generated from microfluidic device [90]. Abbreviations: DAPI, 40 ,6-diamidino-2-

phenylindole; EB, embryonic bodies.
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models in vitro [85]. With the rapid development of microfluidic

technologies [86–88], mounting evidence shows that the micro-

fluidic platform is a powerful tool to engineer physical niches of

cells including flow-induced shear stress and cyclic strain [85,89].

Besides, microfluidic devices can be used to create spatial gradients

in physical and biochemical aspects. Flow convection in a micro-

channel has been used to generate gradients of polymers, cells,

particles and molecules, where the fluid was pumped fast while

alternating flow directions (i.e. pumped and withdrawn) [90]. For

instance, a density gradient of collagen fibril (Fig. 4b) was achieved

by pumping a collagen solution at a higher concentration (3.8 mg/

ml) into a channel embedded with a collagen solution with a lower

concentration (0.5 mg/ml) with alternating flow. The gradient of

cell-adhesion ligand (Arg-Gly-Asp-Ser) was also generated based on

the similar principle to study the cell–material interactions [91].

3D gradients of cell density within a collagen hydrogel were

generated using a staggered herringbone microfluidic mixer

[92]. Using this method, linear, exponential and other geometrical

gradients could be potentially achieved through different micro-

fluidic designs. Opposing gradients of two cell types including
stem cells and osteoblasts were generated in 3D collagen hydrogels

that can potentially be used to mimic the bone marrow micro-

environment and to study the effect of stromal cell (i.e. osteo-

blasts) gradient on stem cell behaviors. Another 3D stiffness

gradient within a hydrogel was established in a tube using two

mixing pumps to study the effects of 3D stiffness gradient on the

stem cell fate [93]. MSCs cultured in softer regions had a higher

proliferation rate compared with those in stiffer regions [93].

State-of-the-art biojet technologies. Although the aforementioned

approaches have been used to recreate physical microenvironment

of stem cells for years, they are far from any clinical usage because

of tedious pre-processing steps and low throughput [94,95]. Con-

ventional cell printing approaches such as inkjet technology and

laser-directed writing have shown intriguing abilities to mimic

various physiological situations during the past decades [96–102].

However, they are suffering from the limited spatial resolution and

the shortage of sufficient biological assessment [103]. The emer-

ging newly developed biojet technologies have recently led to

many significant findings in regenerative medicine and have

undergone complete biological assessment, indicating a great
www.drugdiscoverytoday.com 769
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possibility in clinical application. Here, we briefly introduce these

technologies including cell electrospinning, bio-electrospraying

and aerodynamically assisted biojetting and threading.
� Cell electrospinning and bio-electrospraying. Electrospinning and

electrosprays basically exploit a potential difference between

two charged electrodes to draw a liquid jet that either generates

continuous fibers or droplets, respectively [104,105]. The basic

principle of this process relies on the movement of charged

liquid in the electric field existing between two charged

electrodes. The charging liquid is driven by an electric force,

exiting a needle toward the grounded electrode. Compared

with conventional cell printing approaches, these technologies

can fabricate droplets and fibers at a nanometer scale (�50 nm)

and they are compatible with large concentrations of materials

in suspension, or liquid with high viscosity (�10,000 mPas).

Besides, these two technologies have been well evaluated and

developed by Jayasinghe’s group at University College London

in technological and biological views [106–115]. First, they

have shown that these two technologies can work with a broad

range of cell types from stem cells to whole blood cells and

demonstrated their ability to control cell spatial distribution

within droplets or fibers. Second, the effects of this fabrication

process on cell function have been studied at the cellular and

molecular levels, and the feasibility of fabricated construct for

translation was demonstrated in mice. Owing to the vast

perspective in synthetic organotypic tissue engineering, these

technologies are now known as bio-electrospraying (BES) and

cell electrospinning (CE). It has been validated that BES and CE

are capable of handling heterogeneous cell populations at high

cell densities and of controlling cell distribution in 3D. In

addition, BES and CE can directly handle complex multicellular

organisms without altering their biological developments (such

as Danio rerio and Drosophila melanogaster at their early

development stage) [116,117]. Moreover, studies have shown

their capability to construct various cell-bearing structures that

can potentially be used in clinical application. For the sake of

complete assessment of any possibly missing cellular aspects

during previous in vitro studies, these cell-laden structures are

engrafted into mice to form a wide range of tissues, which

demonstrated that these two technologies are completely inert

to the cell function [109].
� Aerodynamically assisted biojetting and threading. Aerodynami-

cally assisted biojetting (AABJ) is a very versatile technique,

which has widespread biological applications such as printing

cells and tissues. In this system, droplets are squeezed out from

an exit orifice of a chamber by a pressure differential generated

through either a gas or liquid. Specifically, a high pressure

within the chamber is initially generated relative to the

atmosphere. Then, the medium reserved in designed needles

is drawn into a liquid filament under a high pressure, exiting

the orifice. Over the past decade, AABJ has been used to handle a

wide range of cells and whole organisms, and the functional

studies have also been investigated in vivo. For instance, AABJ-

treated splenic cells are capable of homing to lymph nodes after

transplantation into mice, indicating that AABJ does not alter

splenic cells functionally [118]. However, to date, this

technique is still under further evaluation (explored with other

animal models) before it can enter preclinical studies [119–121].
770 www.drugdiscoverytoday.com
Concluding remarks and future perspectives
The regulation of stem cell fate in vivo remains largely unknown.

The investigation of this topic requires a multidisciplinary

convergence including biology, chemistry, engineering, physics

and material science. Mounting evidence demonstrates that the

fate of stem cells is not only controlled by heredity but also by

the microenvironment. The ideal microenvironment is a com-

bination of various cues in a spatiotemporal context, including

specific ECM proteins, appropriate stiffness and force, and ade-

quate topography, among others. It is challenging to guide stem

cell behaviors by engineering only physical microenvironment,

because biological cues are also profound in regulating the

differentiation of stem cells. However, research in physical

microenvironment is deeply helpful to understand the beha-

viors of stem cells and to design materials and/or bioreactors for

regenerative medicine. Recent advances in micro- and/or

nanoengineering technologies endow the ability to recapitulate

the complexity of the native stem cell microenvironment such

as heterogeneity and physical and chemical gradients, which

makes it possible to study their roles in stem cell differentiation

and to provide useful platforms for a broad range of biomedical

applications.

Most current studies on physical microenvironment were per-

formed using a 2D model where cells are cultured in monolayers. It

is well known that stem cells reside in a 3D microenvironment in

vivo and that a 2D system cannot recapitulate the innate char-

acteristics of stem cells. For cells grown on 2D hydrogels the

stiffness of substrate can affect cell adhesion, spreading and fate.

In addition to stiffness, stem cells can also be influenced by

geometric constraints on cell adhesion, leading to limited tension

generation and cell spreading. So far, how stem cells respond to 3D

physical cues still largely remains unclear. Emerging studies have

shown that stem cells behaved differently in 3D physical niches.

For instance, the morphology of MSCs was independent of matrix

stiffness and remained rounded throughout the differentiation

process when MSCs were encapsulated into nondegradable algi-

nate hydrogels [122]. MSCs migrated on a 2D substrate with a

stiffness gradient [123], whereas no migration was observed in

matrix with a 3D gradient [93]. Therefore, the investigation of

stem cell behaviors in 3D physical niches is desirable in the future

with the aid of emerging approaches for engineering 3D micro-

environment.

The dynamic properties of 3D microenvironment (i.e. spatio-

temporal context) also play a significant part during embryonic

development and throughout the whole life. To date, several

studies have shown that stem cell behaviors can be regulated by

the dynamic changes of 3D microenvironment [124–126]. For

instance, the phenotypes of hMSCs encapsulated in hyaluronic

acid hydrogels can be regulated from osteogenesis to adipogenesis

by changing the ratio of mixed hydrogels [124]. This study indi-

cates that the traction force rather than the monomer of hydrogel

mediates the fate of stem cells encapsulated in a 3D nondegradable

hydrogel, providing insights into how stem cells interact with

their surroundings in 3D milieu and highlighting the significance

of degradability in the 3D microenvironment. However, the

mechanism of how the dynamic microenvironment affects stem

cell fate is still unknown. Therefore, future research is needed to

design exquisite and dynamic 3D microenvironments so as to
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unravel further the function of biochemical and biophysical cues

and subsequently to induce targeted stem cell differentiation.
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