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An analytical model for sound transmission through a clamped triple-panel partition of finite extent and
separated by two impervious air cavities is formulated. The solution derived from the model takes the
form of that for a clamp supported rectangular plate. A set of modal functions (or more strictly speaking,
the basic functions) are employed to account for the clamped boundary conditions, and the application of
the virtual work principle leads to a set of simultaneous algebraic equations for determining the

Keywords: unknown modal coefficients. The sound transmission loss (STL) of the triple-panel partition as a function
Sound transmission loss s . . is
Triple-panel of excitation frequency is calculated and compared with that of a double-panel partition. The model

predictions are then used to explore the physical mechanisms associated with the various dips on the STL
versus frequency curve, including the equivalent ‘mass-spring’ resonance, the standing-wave resonance
and the panel modal resonance. The asymptotic variation of the solution from a finite-sized partition to
an infinitely large partition is illustrated in such a way as to demonstrate the influence of the boundary
conditions on the soundproofing capability of the partition. In general, a triple-panel partition outper-
forms a double-panel partition in insulating the incident sound, and the relatively large number of
system parameters pertinent to the triple-panel partition in comparison with that of the double-panel

Clamp supported

partition offers more design space for the former to tailor its noise reduction performance.

© 2011 Elsevier Masson SAS. All rights reserved.

1. Introduction

Recent developments in building, transportation, environ-
mental and other engineering applications have prompted research
on finding innovative ways for noise reduction. The transmission
loss characteristics of a customarily used single-panel follow in
general the mass law. The traditional methods for low-frequency
noise reduction require therefore the use of heavy damping
materials, leading to weight penalty and hence offsetting the
performance gains of the panel. As a result, double-panel partitions
are extensively used in modern buildings, transportation vehicles,
aerospace/aeronautical fuselages, etc., which have superior sound
insulation properties than single-panel partitions (Lyle and Mixson,
1987; Pietrzko and Mao, 2008; Quirt, 1982, 1983; Wu et al., 1997;
Xin and Lu, 2010b, 2011a,b; Xin et al., 2009b, 2010). Since the
introduction of an additional panel can significantly enhance the
transmission loss performance of a single panel, one would expect
that a triple-panel partition constructed by adding another panel to
the double-panel partition may lead to further gains in noise
reduction. As a matter of fact, triple-panel partitions with separated
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air cavities have already been introduced as the standard configu-
ration for glazing windows in some high-class buildings. We aim
therefore in this research to develop an analytical model to inves-
tigate the sound transmission loss (STL) performance of a finite-
sized triple-panel partition, which is clamp mounted on a rigid
baffle and separated by two enclosed air cavities, and compare it
with that of a clamped double-panel partition.

A significant amount of research has been devoted to developing
accurate theoretical models of STL characteristics for single-panel
(Fahy, 1985; Graham, 2007; Langley et al., 1997; Lee and Kim,
2002; Liu et al, 2007; Lomas and Hayek, 1977; Sewell, 1970;
Toyoda et al., 2008) and double-panel structures (Beranek and
Work, 1949; Lin and Garrelick, 1977; London, 1950; Pietrzko and
Mao, 2008; Wang et al., 2005; Xin and Lu, 2009, 2010a, 2010c).
Extensive experimental study (Carneal and Fuller, 2004; Quirt, 1982,
1983; Tadeu and Mateus, 2001) has also been carried out and active
control strategies (Gardonio, 2002; Gardonio and Elliott, 1999;
Kaiser et al., 2003; Sas et al., 1995) for noise reduction proposed.

Early research on interior noise reduction concentrated
primarily on infinite structures, because the precise characteriza-
tion of sound transmission across a finite-sized structure requires
complex physical-mathematical treatment of the boundary condi-
tions as well as the fluid-structure coupling effects, and the
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Nomenclature

Roman symbols

a panel dimension in x-direction

b panel dimension in y-direction

Co sound speed in air

D; panel flexural rigidity, i = 1,2,3

€ unit vector in x-direction

e, unit vector in y-direction

€3 unit vector in z-direction

E; Young’s modulus, i = 1,2,3

Smn modified natural frequency of simply-supported panel

fi resonance frequency of mass-spring system

fn standing-wave resonance frequency

F generalized force vector

H, location of second panel in z-direction

Hy location of third panel in z-direction

H air cavity depth of double-panel

H, = H, thickness of bottom air cavity

H, = H, — H; thickness of top air cavity

h? thickness of double-panel, i = 1,2

h® thickness of single-panel

ht respective thickness of triple-panel, i = 1,2,3

I initial sound amplitude

j imaginary unit v—1

k wave number vector

k1 equivalent stiffness of bottom air cavity

ko equivalent stiffness of top air cavity

Ky wave number component in x-direction

ky wave number component in y-direction

k, wave number component in z-direction

Kxmn m—nth wave number component in x-direction

ky,mn m—nth wave number component in y-direction

Kzmn m—nth wave number component in z-direction

m; panel surface density, i = 1,2,3

DPa sound pressure, a = 1,2,3,4

qmn integral constant associated with generalized force

r position vector

STL sound transmission loss

t time

Tn non-zero diagonal sub-matrix (associated with
incident panel) of system stiffness matrix

T non-zero cross sub-matrix (associated with incident
panel) of system stiffness matrix

T non-zero cross sub-matrix (associated with middle
panel) of system stiffness matrix

Tao non-zero diagonal sub-matrix (associated with middle
panel) of system stiffness matrix

Tos non-zero cross sub-matrix (associated with middle
panel) of system stiffness matrix

Ts; non-zero cross sub-matrix (associated with radiation
panel) of system stiffness matrix

Ts3 non-zero diagonal sub-matrix (associated with

radiation panel) of system stiffness matrix

a, velocity

Vg local sound speed, « = 1,2,3,4

w; dynamical panel deflection, i = 1,2,3

Greek symbols

Q; modal coefficient vector, i = 1,2,3

Qimn modal coefficient, i = 1,2,3

Bmn m—nth reflected wave amplitude

0 variational symbol

At pre-defined constant matrix, s = 1,2; t = 1,2,3,4

Emn m—nth positive-going wave amplitude in top cavity

Cmn m—nth negative-going wave amplitude in top cavity

Nmn m—nth negative-going wave amplitude in bottom
cavity

ni panel material loss factor, i = 1,2,3

0 incident azimuth angle

A’{?mn pre-defined elemental matrix

s pre-defined elemental matrix

i pre-defined elemental matrix

22 pre-defined elemental matrix

52 pre-defined elemental matrix

/124 pre-defined elemental matrix

M = kims(my + my)

Ay = kamy(my + ms)

Mmn m—nth transmitted wave amplitude

Vi Poisson ratio, i = 1,2,3

Emn m—nth positive-going wave amplitude in bottom
cavity

11, sound power, « = 1,2,3,4

i panel material density, i = 1,2,3

Po air density

T transmission coefficient

D, velocity potential of acoustic field, « = 1,2,3,4

Pmn m—nth modal function of clamped boundary condition

0] incident elevation angle

® angular frequency

Subscripts

A panel surface area

i panel index

m,n modal order index

M,N truncation number

t partial derivative with respect to time

XY,z Cartesian coordinates

o acoustic field index

Superscripts

T transpose of vector or matrix

* denotation of complex conjugate

evaluation of the finite system response is more difficult due to the
presence of violent peaks and dips on STL versus frequency curves.

As far as infinite structures are concerned, Beranek and Work
(1949) developed an early model of sound transmission through
multiple structures containing flexible blankets based on the
progressive impedance method. London (1950) proposed a theory to
deal with the transmission of reverberant sound through a double
wall, also using the impedance method. The extension of Beranek’s

model to a random incidence field was carried out by Mulholland
et al. (1968). The above mentioned research established on the
progressive impedance method failed to fully account for the coin-
cidence effect, which was later overcame by the analytical model of
Antonio et al. (2003). An analysis method was developed by Lee and
Kim (2002) to study the sound transmission characteristics of a thin
plate stiffened by equally spaced line stiffeners in terms of the space
harmonic approach. Wang et al. (2005) further applied the space
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harmonic approach to periodically connected double-leaf partitions.
The transmission of structure-borne sound through a double-leaf
structure with a porous absorptive layer inserted in the cavity was
studied theoretically as well as experimentally by Yairi et al. (2003),
with the porous absorptive layer described using an electro-
acoustical equivalent model.

As for the sound transmission across finite-sized structures,
several approaches have been employed to account for the edge
conditions, such as FEM (finite element method) (Del Coz Diaz et al.,
2010; Panneton and Atalla, 1996; Ruzzene, 2004), BEM (boundary
element method) (Panneton and Atalla, 1996; Sgard et al., 2000),
SEA (statistical energy analysis) (Craik, 2003; Fahy, 1994; Langley
et al, 1997; Maidanik, 1962; Price and Crocker, 1970), modal
expansion method (Graham, 2007; Leppington et al., 2006; Pietrzko
and Mao, 2008), spatial windowing technique (Villot et al., 2001)
and patch-mobility method (Chazot and Guyader, 2007). In general,
FEM is applied together with BEM to deal with the boundary and
interface conditions. For example, for sound transmission through
finite multilayer systems containing poroelastic materials, Panneton
and Atalla (1996) used the classical elastic and fluid elements to
model the elastic and fluid media, but a BEM approach to account for
the fluid-structure coupling effects. Sgard et al. (2000) also
employed a variational BEM approach to cope with the fluid loading
effects. Based on two-dimensional FEM models, Del Coz Diaz et al.
(2010) established a methodology to predict the airborne sound
insulation of building elements, which agreed well with their
experimental measurements. Although FEM and BEM are well
suited for low-frequency transmission loss calculations, they require
high computation efforts when calculations over a wide frequency
range (high frequencies in particular) are needed (Pellicier and
Trompette, 2007) and provide few physical insights. Whilst SEA
can be used as an alternative of FEM and BEM, for it is substantially
more effective in providing sound transmission estimates for
complex systems at high frequencies, it is seldom reliable at low
frequencies because of the statistical uncertainties that prevail when
there are only a few resonant modes present in the subsystems
(Leppington et al., 2006; Xin et al., 2008). Furthermore, analogous to
FEM and BEM, SEA cannot provide detailed physical understanding
of singular phenomena such as resonance. The modal expansion
method based on simply-supported edge constraints has been
conventionally adopted to solve the vibroacoustic problem of finite
systems on account of its excellent capability to deal with resonant
modes. However, for clamped boundary conditions, this method is
only approximate and needs special treatment for numerical
convergence. The spatial windowing technique also suffers from the
disadvantage of indeterminate boundary condition disposal and few
physical insight gains. The patch-mobility method adopted by
Chazot et al. (Chazot and Guyader, 2007) is essentially built upon the
modal expansion method.

Although extensive theoretical research on sound transmission
through finite and infinite multilayer systems has been carried out,
there exists no analytical modeling of sound transmission across
a finite-sized triple-panel construction with boundary constraints.
A thorough literature search revealed that a few experimental
studies (Brekke, 1981; Quirt, 1983; Vinokur, 1990) have concerned
the transmission of sound through triple glazing windows. To
squarely address this deficiency, the present research aims to
develop an analytical model to investigate the detailed process of
sound transmission across a clamped triple-panel partition of finite
extent and separated by two impervious air cavities. The model is
then used to validate one’s expectation that a triple-panel partition
would possess superior sound insulation properties than the
widely used double-panel partition. Specifically, the ‘mass-spring’
resonance, the standing-wave resonance, the modal behavior of the
panel and other interesting vibroacoustic phenomena are identified

and interpreted on physical grounds, the asymptotic variation of
the transmission loss from finite to infinite extent is illustrated, and
a systematic parametrical study regarding the effects of panel
thickness and air cavity depth is carried out.

2. Dynamic structural-acoustic formulation
2.1. Geometry and description of triple-panel configuration

We model theoretically the reflection, transmission and radia-
tion of a sound pressure wave propagating through a clamp
mounted rectangular triple-panel configuration (Fig. 1), with fluid-
structure interaction and coupling effects duly accounted for. The
structure is composed of three homogenous and isotropic panels
and separated by two enclosed air cavities. A right-handed Carte-
sian coordinate system (x,y,z) is applied, with the x- and y-axis
horizontally located on the surface of the incidence panel (bottom
panel) and the z-axis pointing vertically upward, as shown in Fig. 1.
In the defined coordinate system, the three panels are indexed as
bottom, middle and upper panels having thickness hy, hy and hs and
located at z = 0, Hy and H,, respectively (Fig. 1). The rectangular
panels have identical dimensions a x b in the x—y plane. The rigid
baffle mounting the triple-panel partition is assumed to be infi-
nitely large so as to exclude possible diffraction of sound around the
baffle from the sound source side (z < 0) to the sound radiation/
transmission side (z > Hj).

Under typical fluid-structure interface conditions, the uniform
plane sound pressure varying harmonically in time constitutes
a basic sound wave incidence on the bottom panel, characterized by
the incident elevation angle ¢ and the incident azimuth angle 6, as
shown in Fig. 1. Part of this disturbance is reflected back by the
bottom panel, and the rest propagates consecutively through the
bottom panel, the bottom cavity, the middle panel and the top cavity
to the upper panel, and then is emitted by the vibrating upper panel.
The model proposed for the above physical process is based upon
the classical vibration theorem for thin flexural plates, which
enables the three panels to possess different physical (e.g., Young’s
modulus, Poisson ratio and loss factor) and geometrical (e.g., length
and width) parameters, but requires the panels to be sufficiently
thin relative to their length and width so that the shear displace-
ment of a panel is much smaller than its lateral displacement.

2.2. Mathematical formulation and solutions

The acoustic velocity potential for an obliquely incident uniform
plane sound wave varying harmonically in time can be expressed as

0= Iefj(kxx+kyy+kzzf(ut) (1)

where [ is the amplitude, j = v/—1, w is the angular frequency, and
wave number components of the incident sound in x-, y-, and
z-directions can be separately calculated as

kx = ko sing cost, ky =k sing sinf, k; =ko cos¢ (2)

here kg = w/cq is the wave number in air and ¢ is the sound speed
in air.

As noted above, the three panels are modeled as classical thin
plates so that, in terms of the thin plate vibration theorem, their
motions under sound excitation are governed by:

4 62W1 .
Diviws +mi— - —jopo(P1 —P2) =0 (3)
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Fig. 1. Schematic of sound transmission through a clamp mounted triple-panel partition: (a) overall view; (b) side view in the arrow direction in (a).

2

0“w: .
D, V4w, + my Tzz —Jjope(P2 — P3) = 0 (4)
4 62W3 .
DsViws +m3y — 5= —Jjwpo(P3 —P4) =0 (5)

where D;, m; and w; denote separately the panel flexural rigidity,
surface density and deflection, with i = 1,2, 3 representing sepa-
rately the bottom, middle and top panels, p, is the air density, and
Py(a = 1,2,3,4) are the velocity potentials in the incident field, in
the bottom and top air cavities, and in the transmitted field (Fig. 1),
respectively.

In the context of harmonic sound excitation, the transverse
displacements of the structure should also be time harmonic,
which can be written as

Wi(X,Y;t) = > Qi mn@mn(x.y)€" (i = 1,2,3) (6)
m,n

where the modal functions (or, more strictly speaking, the basic
functions) ¢,,, take the following forms (Leissa, 1993; Taylor and
Govindjee, 2004; Xin et al., 2009a)

2mmx 2nmy
4 )(1 — COoS T) (7)

The velocity potentials of the acoustic field are associated with the
local velocity by i, = —V@,, and related to the acoustic pressure
by pa = poPar = jwpoPs. The velocity potentials can be described
in terms of the modal function ¢,,,, as:

Omn(X,y) = (1 — €os

Dy(r5t) = > Inn@p (X, y)e k==
m,n

+ Z6mn¢mn(X,y)e*f(*kzlfwt) ®)
mn

b, (r;t) = Z EmnPmn (x’y)efj(kzz—wt)
mn

+ Z Zmn(ﬂmn(x,y)e*f(*kﬂ—wt) ©)
mn

D3(r;t) = Z Emn®mn (X7.V)eij<k127m)
mn

+ " N @mn (x, y)e I kz00 (10)
m,n
Dy(r;6) = > frpn@pn (X, y)e I K00 (11)
m,n

where I;n, stands for the amplitudes of the incident sound wave,
Bmn represents the amplitude of the reflected sound waves,
emn(Emn) and {pmn (Mmn) denote the amplitudes of the positive- and
negative-going waves in the bottom and top cavities, respectively;
Umn is the amplitudes of transmitted waves (i.e., the positive-going
waves) in the transmitted domain (see Fig. 1).

On the premise that the considered vibroacoustic problem
involves fluid—structure interaction and mutual coupling, the
velocity continuity condition (equivalent to the displacement
continuity condition when the surrounding fluid is stationary with
respect to the structure (Ingard, 1959)) should be satisfied at the
fluid—structure interface, so that:

A 00, . 00, .

z=0; 5z = jowyq, — = jow, (12)
o 00, . 003 .

z = Hy; oz JwwWa, oz JOw; (13)
o 003 . 004 .

zZ = Hy; oz Jwws, oz Jwws (14)

Substitution of Eq. (6) and Eqs. (8)—(11) into the above velocity
continuity conditions leads to a set of simultaneous equations for
the unknown coefficients Bmn, émn,» {mn» Emns Mmns Mmn» aS:

—Je(kaxthy) Z {ﬂmn JF%‘)‘l,mn} X Omn(X,y) = 0 (15)
mn z

S ke( — emn + Cmn) + 001 mn] X Pmn(x,Y) = 0 (16)

mn

[kz<*5mn(5'7jkzl.l1 +Cmnejsz1> JrcUo‘l,mn] XQmn(%,y)=0 (17)

Ei
=

[kz ( - Emneijle1 + 77111nelik2]-h> + waZﬁmn] X Omn (va) =0 (1 8)

3
=

[z (= Emne 72 42 ) + 003 un | X @ (x.y) =0 (19)

Ei
=

[* kz:umne_jszZ + Gl)Ol3,mn] X Qmn(x,y) = 0 (20)

B
=
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Since the above simultaneous equations are valid at all values of
x and y, they can be further simplified [except Eq. (15)], as:

w(a 1mnezj‘szl _a 2.mneijHl)

emn = ko (X — 1) 21

jk,H
w(“],mn - az,mnej Z 1)

Cmn = kz (ezjszl — .l) (22)
P w(a3 mn€lh — aZ,mnejsz2>
S ", (edke(Hi—Ha) — gik:(Hx —H)) (23)
C"(‘;“B.mneijszl - a2.mneijsz2)
NMmn = — o (24)
Kz (elke(Fi—Ha) — gike(Ha—Hn))
wa el
Kmn = 3n;<r; (25)

2.2.1. The principle of virtual work

To determine the unknown modal coefficients ay py, 0 mp and
a3 mn, the principle of virtual work is employed. The work exerted
by the force on each particle that acts through an arbitrary virtual
displacement (i.e., an arbitrary infinitesimal change in the position
of the particle consistent with the constraints imposed on the
motion of the particle) is given by:

ow; = 5ai,mn(/)mn(xv.V) (i=1,2,3) (26)

Summing the above for the system gives the virtual work that
must equal zero. For the present problem, the principle of virtual
work in the weak form can be specified as:

//A (@) — By)|-owydA = 0 (27)

//A (@) — B3)| owpdA — 0 (28)

// D3V4ws +m 62w (@3 — By)|-owsdA =0 (29)
A

Upon substitution of Egs. (6)—(11) and (26) into Egs. (27)—(29)
and, with the help of Egs. (15) and (21)—(25), three infinite
systems of equations are obtained, which can be solved simulta-
neously by truncation, as demonstrated below.

2.2.2. Determination of modal coefficients

Finally, following the procedures outlined in the preceding
section and after some laborious but straightforward algebraic
manipulations, three infinite systems of simultaneous algebraic
equations for the unknown coefficients a1 mn, 02,mn and a3 my can be
obtained, as:

a,an] 3(7)"+3(3) " 2(3)" () Jorm
P20 w32 (5) )

k=m

9ab 2 . w
T | T MW" mn T]9Po k_zaljanFganr:mn

3ab 5 . w
+—— — MW~ &y kp +Jwpg Fal,kn +8kn+Ckn

k#m z

BGb 2 . w
+—— — MW= m+JWPg Fal‘ml"'eml"'cml

I#n z

+ab Z

k#m,l#n

= 2jwpolqmn (kx, ky) (30)

2 . w
— MW=y g +jwpg Ea1,kl+€1<1+Ckl

auran] 3(7)"+3(3) 2(3)" () Joam
- 3 2f) s T2 e
[ ¢

9ab i
+— 4 { mzw 02 mn —Jj©po | (Emn —Emn)e JheH

+ (& —nmn)elszl] } +3Clb { myw? 2 kn
m

k+

—jwpg [(ekn - gkn)eﬁ'kZHl + (Ckn — nkn)eilel] }

3 b
- Z{ M0y — j0OPo [(€m1—5m1)€ Jheth
I#n
+ i — m l)ellczHl}}Jrab > {—mzwzaz,kl
k#=m,l#n

—jopo (e —Era)e T 4 Ly —ma)et ] L =0 (31)

asran] 3(7)"+3(3) " 2(3)" () Joom
3 2) i S2()

k+m

9ab .
+ T{ - m3w2a3 mn —J®WPo [(gmn — Hmn)e

+ nmneikZHz] } 3ab Z { m3w A3 kn — JwPO

k=+m

_jszZ

i ; 3ab
X [(gkn — Hn)e dheHz 4 nknelszz] + >

I#n

{ M3’ a3y — jopo [(sml — e Rt 4 nmlejszz} }

+ab

k#=m,l#n

+ et} = 0 (32)

_jkH
{ — M3 03 g — jwpg [(bkl — pyg)e T

where the abbreviation l X (or IE ) has the conventional meaning
K#=m #n

that summation is intended with the index k (or I) taking integer
values from 1 to + = except for the specified value m (or n). Simi-

larly, the notation B 21 denotes double summation about indices
#m,l#n
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k and I from 1 to + apart from the prescribed values m and n.
Additionally, a parameter associated with the generalized force
F (see Appendix A for details) appears during the process of inte-
gration, as:

4jn2772a(1 - e*f"yb)
ky (K3b2 — 4n?7?)
4jm27r2b(1 - e‘kaa>

qmn (k)ﬁ ky) =

kx (k2a2 — 4m2n2
16m2n2n (1 - e—jkxa) (1 _ esz@b)
kxky (k,z(a2 - 4m21r2) (ka,bz - 4n27r2>

In terms of matrix formulation, Egs. (30)—(32) can be rewritten
as a linear system of equations consisting of 3MN equilibrium
equations by taking truncation of m from 1 to M and n from 1 to N,
as:

Ty Tz O % F
Ty Ty T o =40 (34)
0 T3 Ts3[3unwsmn %3 ) spnsa 0 J smnx1

where Ty, T12 are the vectors derived from Eq. (30) that correspond
to the unknown modal coefficient vector a1; Ty, Tao, Ta3 are the
vectors arising from Eq. (31) that relate to the unknown modal
coefficient vector o; and the vectors T3, and Ts3 are derived from
Eq. (32) with respect to a3. More details can be found in Appendix A.

2.3. Sound transmission loss

The sound power of the relevant acoustic fields (« = 1,2,3,4; see
Fig. 1) can be defined as (Chazot and Guyader, 2007; Panneton and
Atalla, 1996):

I - %Re / /A Pa-vi.dA (35)

where the local volume velocity is related to the sound pressure
through the impendence of air as v, = pa/(poCo), and the super-
script asterisk denotes complex conjugate.

The transmission coefficient is defined as the ratio of the
transmitted sound power to the incident sound power:

e, 0) = (36)

which is dependent upon the incident angles ¢ and 6. The sound
transmission loss (STL) is then customarily defined as the inverse of
the power transmission coefficient in decibels scale, as:

STL = 10 log;q G) (37)

Throughout the present study, STL is used as a measure of the
effectiveness of a clamped triple-panel (or, for comparison, double-
panel) configuration of finite extent in isolating the incident sound.

kx#=0andk, = 0

3. Numerical results and discussion

Due to the presence of additional panel and air cavity, the
acoustic insulation behavior of a triple-panel partition is expected

ab ky =0andk, =0

ky = 0and k,#0

(33)

ky#0and ky, #0

to contain considerably richer physical details than those of
a double-panel partition. A set of numerical calculations with the
present analytical model is carried out below to quantify the
transmission loss characteristics of a clamp supported triple-panel
partition and explore the underlying physical mechanisms. To
understand the main features of the overall system, the sound
transmission performance of an infinitely large triple-panel parti-
tion is firstly investigated; subsequently, the comparison between
single- and triple-panel partitions aims to understand the different
modal behaviors of sound transmission through the two different
structures; finally, the performance of the triple-panel is compared
with that of a double-panel for different cases.

3.1. Model validation

The validity and feasibility of the proposed theoretical model for
sound transmission across triple-panel partitions is checked by
comparing model predictions with existing experiment results
(Brekke, 1981), as shown in Fig. 2. In the present simulation, sound
transmission loss (STL) is calculated in 1/3 octave bands with
a diffuse field integration. Overall, as illustrated in Fig. 2, the
present theoretical results agree excellently with those measured.
The small discrepancies may be attributed to the fact that the
mineral wool filled around the edges of the partition in factual
measurement is not accounted for in the model.

3.2. Sound transmission characteristics of triple-panel structure

3.2.1. Physical interpretation of STL dips

To exclude the panel modal behavior due to edge constraints,
Fig. 3 shows separately the characteristics of normal incident
transmission loss through a single-, double- and triple-panel
partition of infinite extent. As anticipated, the STL versus
frequency curve of the single-panel obeys the mass law, while a set
of dips appear on the STL versus frequency curves of double- and
triple-panel partitions at frequencies related to the system reso-
nance mode. Note that similar plots for double-panel partitions
have been presented in our previous work. With special focus
placed upon the STL versus frequency curve of the triple-panel
partition, it is observed that within the frequency range consid-
ered, two different kinds of resonance exist, i.e., those associated
with the first and second dips labeled by the symbol &, and
subsequent dips at higher frequencies labeled by the symbol A.

Analogous to the ‘mass—air—mass’ resonance of a double-panel
system, the triple-panel partition can also be simplified as a system
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Fig. 2. Diffuse sound transmission loss (STL) plotted as a function of incident
frequency: comparison between present model predictions with experimental
measurements (Brekke, 1981).

of three lumped masses (my, my and m3) connected together by two
springs with stiffness k1 and kj, respectively. In the case of sound
incident normally to the partition, the eigenvalue equation of this
simplified mass-spring system can be written as:

k1 - w2m1 7](] 0
|I(—CL)2M‘ = —kq ki +ky —w2m2 —ko =0 (38)
0 —ky ky — w?ms
180 : mans) ;
—-—--Infinite triple-panel

160r Infinite double-panel

140 === In_flmtfe?s?lngle-panelf
m 100
'—
7]

60

20|

10 100 1k 10k
Frequency (Hz)

Fig. 3. Comparison of STL versus frequency curves amongst infinite single-, double-
and triple-panel partitions (h* = 0.002 m for single-panel; H = 01 m,
h¢ = hg = 0.002 m for double-panel; H; = H, = 0.1 m, h} = hy = h§ = 0.002 m for
triple-panel). Symbols: @ mass—air—mass resonance; 4 mass—air—mass—air—mass
resonance; A standing-wave resonance.

from which the resonance frequencies of the equivalent mass-
spring system can be obtained, as:

A+ Ay — v/ (A1 — Ay)%+4kkym2m?2
f]:Q 1+4 \/(1 2) 1komyms (39)

4 mimypms

V2 |kt Rat \/(7\1 — Ap)? +4ky kym3m3
4 mymyms

L= (40)

Here, Ay = kym3z(my +my) and Ay, = kymq(m, + ms3), with
ki = poc(z,/ﬁl,- (i = 1,2), are the equivalent stiffness of the lower
air cavity and the upper air cavity, respectively. The introduction of
the additional panel and air cavity induces more complicated fluid-
structural coupling in the triple-panel system. As a result, one dip
corresponding to the ‘mass—air—mass’ resonance of the double-
panel system is divided into two dips for the triple-panel system.
The two formulas (39) and (40) can be used to estimate the reso-
nance frequencies associated with the two dips, which have been
specially labeled by symbol # in Fig. 3.

At larger frequencies, the resonance dips denoted by symbol A
in Fig. 3 are associated with the standing-wave resonance
phenomenon due to the interaction effect of successively reflected
waves inside the air cavity. For such phenomenon to occur, the
depth of the air cavity should be integer numbers of the half
wavelength of the incident sound. The n-th standing-wave reso-
nances occurs therefore at the frequency (Wang et al., 2005):

ncp
fin =50
where H is the depth of the air cavity having a value of 0.1 m for
both the double- and triple-panel systems considered. In accor-
dance with the prediction of (41), the standing-wave resonance
frequencies should be the same for the two systems, which
is confirmed by the excellent agreement shown in Fig. 3 for
frequencies above 1 kHz.

The predictions of the present theory for the resonance
frequencies of an infinite triple-panel partition are compared in
Table 1 with those of the closed-formulas, i.e., Eqs. (39)—(41).
Excellent agreement is achieved, suggesting that the theoretical
modeling is consistent with the above stated physical nature of the
STL dips.

For a clamp supported triple-panel partition of finite extent, the
modal behavior of the panel plays a dominant role in the appear-
ance of numerous resonance dips on the STL versus frequency
curve, as shown in Fig. 4. To clearly identify the resonance dips
induced by the panel natural vibratory modes, the STL versus
frequency curves of the single- and double-panels are plotted
together with that of the triple-panel. It is seen from Fig. 4 that the
first dips associated with the three partitions agree well with each
other, while other dips associated with the panel vibratory modes
achieve good agreement only between the double- and triple-panel

(n=1,273.) (41)

Table 1
Comparison between theory and closed-form formulas for resonance frequencies of
infinite triple-panel partition.

Order Mass-spring resonance f; (Hz) Standing-wave
resonance f;, (Hz)
Theory Eqgs. (39) and (40) Theory Eq. (41)
1 81.20 81.72 1719 1715
2 140.89 141.54 3436 3430
3 \ \ 5146 5145
4 \ \ 6863 6860
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Fig. 4. Comparison of STL versus frequency curves amongst clamp supported rectan-
gular single-, double- and triple-panel partitions (h* = 0.002 m for single-panel;
H = 0010 m, hf =hd = 0002 m for double-panel; H; = H, = 0.010 m,
h{ = hi = h§ =0.002 m for triple-panel). Symbols: ® mass—air—mass resonance; 4
mass—air—mass—air—mass resonance.

partitions, which deviate away from those of the single-panel
partition. This is caused by the air cavity coupling effect that is
absent in the single-panel system. Moreover, several additional
dips appear on the STL frequency curves of double- and triple-panel
partitions due to the mass-spring resonance and standing-wave
resonance.

Built upon the results for simply-supported boundary condi-
tions, the frequencies corresponding to the STL dips arising from
panel vibratory modes in clamp supported double- and triple-panel
partitions can be approximately estimated by:

w/m? n?
finn AR

3.2.2. Comparison amongst single-, double- and triple-panel
partitions with equivalent total mass

As illustrated in Fig. 4, for relatively high frequencies exceeding
the mass-spring resonance frequency, improved sound insulation is
demonstrated for triple-panel partitions over single- and double-
panel partitions. However, an increase of STL would be expected
simply from the mass increase resulting from the addition of a third
panel. To provide a fair comparison, theoretical results for the three
configurations (i.e., single-, double- and triple-panel partitions)
with equivalent total mass are plotted in Fig. 5.

In comparison, the STL dips induced by the mass-spring reso-
nance deviate much amongst different structures, due mainly to
the different panel masses and air cavity coupling effects. In the
frequency range above the mass-spring resonance frequency, on
the whole a triple-panel partition provides larger STL than
a double-panel partition and remarkably larger STL than a single-
panel partition. This suggests that cavity-coupling effects play
a dominant role in this frequency range for double- and triple-
panel partitions. In contrast, in the frequency range below the
mass-spring resonance frequency, the triple-panel partition
exhibits poorer sound insulation than both single- and double-
panel partitions. In other words, multi-panel partitions do not
provide improved soundproofing capability than single panels with
equivalent mass in frequencies below the mass-spring resonance

V2Eh?

12p(1 — »2) (42)

150———— —rrTTT —r—
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Fig. 5. Comparison of STL versus frequency curves amongst clamp supported rectan-
gular single-, double- and triple-panel partitions (h°* = 0.006 m for single-panel;
H = 0020 m, h4 =h$ = 0003 m for double-panel; H; = H, = 0.010 m,
hi = hY = h} =0.002 m for triple-panel). Symbols: @ mass—air—mass resonance; ¢
mass—air—mass—air—mass resonance.

frequency, implying that cavity coupling of multi-panel partitions
has little effect on STL in the low-frequency range.

For frequencies below the cut-off frequency for the cavities, the
present theoretical results as discussed above are completely in
accordance with the experimental results of Brekke (1981) for
double- and triple-panel partitions.

3.3. Parametrical study for clamp supported triple-panel partitions

3.3.1. Asymptotic variation of STL versus frequency curve from finite
to infinite system

To examine the variation of the transmission loss characteristics
of a triple-panel partition with varying geometrical dimensions,
two selected finite cases (i.e., 0.25 m x 0.25 m and 0.5 m x 0.5 m)
are compared in Fig. 6 with the infinite case, with the air cavity
depth fixed at 0.010 m. It is seen from Fig. 6 that, as the panel
dimensions increase, the panel-mode-dominated STL dips are

180 I 1

----- Infinite triple-panel

—-—--Finite triple-panel 0.5mx0.5m
150 Finite triple-panel 0.25mx0.25m

120

STL (dB)

ok
Frequency (Hz)

Fig. 6. Variation of sound transmission loss with panel dimensions for triple-panel
partitions (H; = H, = 0.010 m, h} = h} = h} = 0.002 m).
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shifted toward the lower frequencies, which are consistent with the
predictions of Eq. (42). Beyond the mass-spring resonance dip, the
STL versus frequency curve of the infinite triple-panel structure sets
upper bound for the finite-sized partitions, because the panel-
mode-dominated STL dips vanish in the infinite case. At frequen-
cies below the mass-spring dip, however, the soundproofing
performance of the infinite structure is significantly inferior to that
of finite-sized structures due to boundary constraint effects. Actu-
ally, this trend is mainly affected by the (1,1) panel mode resonance
dips for different panel geometrical dimensions. As can be seen in
Eq. (42), the (1, 1) panel mode resonance frequency decreases with
increasing panel dimensions, which are separately associated with
the first dip for the two finite cases and the dip at 0 Hz for the
infinite case. Also, for the same reason, the soundproofing capa-
bility of the triple-panel partition increases with decreasing panel
dimensions. Since for many applications, noise reduction at the
low-frequency range (<500 Hz) is of vital importance, this finding
has significant implications on the practical design of triple-panel
partitions such as the soundproofing windows installed in high-
class buildings and aircraft fuselages.

3.3.2. Effects of panel thickness

To demonstrate how the sound transmission performance of
a triple-panel partition varies with panel thickness, the STL versus
frequency curves for the infinite case are plotted in Figs. 7 and 8 whilst
those for the finite case are presented in Figs. 9 and 10. As shown in
Fig. 7, the STL value is increased significantly as the panel thickness is
increased, which is consistent with the mass law for a single panel but
more noticeable due to cavity coupling effects. The mass-spring
resonance dips shift downward as the panel thickness is increased,
due to the increased surface density of the panel. The standing-wave
resonance dips reside in their original locations, however, implying
that these are independent of the panel thickness.

To highlight the different roles played by the three panels in the
sound transmission process, the thicknesses of arbitrarily selected
two panels are fixed whilst that of the remaining one is system-
atically varied. The results for a triple-panel partition of infinite
extent are firstly presented in Fig. 8, and it is seen that the increased
thickness of any panel amongst the three leads to the increase in
STL. The good agreement between Fig. 8(a) and 8(c) suggests the
same role played by the incident panel and the radiation panel,

220 ; mmaa .
200L.| — h=h=h=0002m | | ..
180l | — P:=h;=h;=0.005m
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140+
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I
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Fig. 7. Effects of panel thickness on STL for infinite triple-panel partition
(Hy = H, = 0.1 m) under normal sound excitation: 4 mass—air—mass—air—mass
resonance; A standing-wave resonance.
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Fig. 8. Variation of STL for infinite triple-panel partition (H; = H, = 0.1 m) under
normal sound excitation with the thickness of: (a) incident panel; (b) middle panel; (c)
radiation panel.

which completely follows the acoustical reciprocal theorem. The
mass-spring resonance dips shift in a distinct way as the thickness
of the middle panel is increased [Fig. 8(b)], which is in accordance
with the predictions of Egs. (39) and (40).

200—— TTT -
- h1=h2=h3=0.010 m
______ h=h,=h.=0.005 m

160+ ___. h=h,=h,=0.002 m

~100 ik ok
Frequency (Hz)

l:'ig. 9. thfects of panel thickness on STL for finite triple-panel partition (0.5 m x 0.5 m,
H; = H, = 0.01 m) under normal sound excitation.
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Fig. 10. Variation of STL for finite triple-panel partition (0.5 m x 0.5 m,
H; = H, = 0.01 m) under normal sound excitation with the thickness of: (a) incident

panel; (b) middle panel; (c) radiation panel.

For triple-panel partitions of finite extent, as the panel thickness
is increased, two prominent features can be observed from Fig. 9:
(1) remarkable increase of the STL value; (2) shifting of the reso-
nance dips toward higher frequencies, which is attributed to the
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Fig. 11. Effects of air cavity thickness on STL for infinite triple-panel partition
(h% = hb = hj =0.002 m)under normal sound excitation: 4 mass—air—mass—air—mass
resonance; A standing-wave resonance.
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Fig. 12. Effects of air cavity thickness on STL for finite triple-panel partition
(025 m x 0.25 m, h{ = h} = h{ = 0.002 m) under normal sound excitation: &

mass—air—mass—air—mass resonance.

increased panel stiffness and surface density. The individual role of
each panel in sound transmission is illustrated in Fig. 10(a—c) for
the incident panel, the middle panel and the radiation panel,
respectively. The most noticeable feature of the results shown in
Fig. 10 is that increasing the incident panel thickness causes the STL
value to increase more dramatically than increasing the thickness
of the middle or radiation panel, especially at relatively low
frequencies. This is because the middle or radiation panel does not
significantly affect the coupling between the panels through air
stiffness for frequencies below the cut-off frequency of the cavities
(Brekke, 1981). This feature is also consistent with the experimental

a 150 :
| —0.020 m-0.010m
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0.010 m--0.020 m
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Fig. 13. Effects of air cavity thickness on STL for finite triple-panel partition
(0.25m x 0.25m, h{ = hy = h% = 0.002 m) partition under normal sound excitation:
(a) only varying the depth of the air cavity adjacent to the incident panel; (b) only
varying the depth of the air cavity adjacent to the radiating panel.
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results of (Vinokur, 1990). The pronounced deviation between the
resonant dips for different cases shown in Fig. 10(a) implies the
predominant role of the incident panel vibratory modes. In
contrast, the good agreement between the resonant dips in the
high frequency range for different panel thicknesses in Fig. 10(b and
c) suggests that the vibratory modes of the middle or radiation
panel have negligible effects. At relatively low frequencies,
however, the shifting of the resonant dips with varying panel
thickness demonstrates the significant effects of each panel [see
Fig. 10(a—c)]. Note that the steeper dips for the case of
(h{ = k% = h§ = 0.005 m) than other cases is attributed to the
noticeable enhancement of the same vibratory modes of the three
identical panels.

3.3.3. Effects of air cavity depth

For an infinitely large triple-panel partition under normal sound
excitation, Fig. 11 plots the STL versus frequency curves for selected
air cavity depths, with the thickness of each panel fixed at 0.002 m.
As the air cavity depth is increased, the tendency of the STL versus
frequency curve varies significantly. Within the frequency range
between the mass-spring resonance and the first order standing-
wave resonance, increasing the air cavity depth leads to remark-
able increase of the STL value. The mass-spring resonance dips shift
downward with increasing air cavity depth, which is attributed to
the decreased equivalent stiffness of the air cavities. According to
Eq. (41), the natural frequency of each standing-wave resonance
decreases as the air cavity depth is increased, which is consistent
with the results of Fig. 11.

The effects of air cavity depth on sound transmission across
a finite-sized triple-panel partition are shown in Figs. 12 and 13,
again with the panel thickness fixed at 0.002 m. It is seen that
whilst the increase of air cavity depth leads to enhanced sound-
proofing capability of the structure, the effects are particularly
noticeable if the depth of the two cavities is increased simulta-
neously (see Fig. 12). The mass-spring resonance dips alter signif-
icantly, consistent with the predictions of Egs. (39) and (40). The
dips dominated by panel vibratory modes change little because the
boundary condition plays a stronger effect than cavity coupling
effects at these dips. In addition, the good agreement between
Fig. 13(a and b) demonstrates the identical role of the two air
cavities in the process of sound transmission through the finite
triple-panel structure, which can be explained with the acoustical
reciprocal theorem.

4. Concluding remarks

A theory has been established that can be used to predict the
sound transmission characteristics of a clamp mounted triple-panel
partition separated by two enclosed air cavities. A set of modal
functions (basic functions) are employed to account for the clam-
ped boundary conditions, and the application of the virtual work
principle leads to a set of simultaneous algebraic equations for
determining the unknown modal coefficients. The present theory
has the advantage of clearly showing the major vibroacoustic
phenomena associated with the edge constraints and fluid-
—structure coupling, such as the equivalent mass-spring resonance,
the standing-wave resonance and the modal resonance of the
system. Extensive numerical calculations are carried out to obtain
the frequency characteristic curves of the transmission loss
performance of the triple-panel structure, with detailed physical
explanations given for the above mentioned resonance dips.
Comparison of the triple-panel partition with the double-panel
partition suggests that, for the purpose of maximizing the trans-
mission loss, the former is a preferred alternative of the latter
although the superiority is not remarkable when the total masses of

the two are equivalent. Moreover, the relatively large number of
system parameters owned by the triple-panel partition allows
more design space for tailoring its noise reduction capability. Since
for many applications, noise reduction at the low-frequency range
(<500 Hz) is of vital importance, the finding that the soundproofing
capability of a triple-panel partition increases with decreasing
panel dimensions has significant implications on the design of
soundproofing windows installed in high-class buildings and
aircraft fuselages.

As a future work, an active control strategy to minimize the
sound transmission across a clamp mounted triple-panel structure
will be analytically and experimentally developed based upon the
proposed theory from the viewpoint of practical noise reduction.
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Appendix A. Modal coefficients and generalized forces

The modal coefficients of the three panels are:

- T
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The generalized forces can be written in vector form as:
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In the context of the above sub-matrices, the elemental matrices
can be derived as:
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